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ON A SEMIGROUP VARIETY OF GYÖRGY POLLÁK

Edmond W. H. Lee1

Abstract. Let P be the variety of semigroups defined by the identity
xyzx ≈ x2. By a result of György Pollák, every subvariety of P is finitely
based. The present article is concerned with subvarieties of P and the lat-
tice they constitute, where the main result is a characterization of finitely
generated subvarieties of P. It is shown that a subvariety of P is finitely
generated if and only if it contains finitely many subvarieties, and the
identities defining these varieties are described. Specifically, it is decid-
able when a finite set of identities defines a finitely generated subvariety
of P. It follows that the finitely generated subvarieties of P constitute
an incomplete lattice while the non-finitely generated subvarieties of P
constitute an interval. It is also shown that given any pair of finitely gen-
erated subvarieties of P, a finite semigroup that generates their meet is
computable.
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1. Introduction

All varieties in this article are varieties of semigroups. The reader is referred
to [3, 15] for any undefined notation and terminology. A variety V is said to
be quasilinear if for each word w, the variety V satisfies an identity of the form
w ≈ w′ for some linear word w′. Recently, Dolinka and D̄apić [4] described
all quasilinear varieties. There are precisely nine quasilinear varieties that are
band varieties [4, Proposition 1]. But the situation for non-band varieties is
more complicated since it follows from [4, Theorem 5] that there are infinitely
many non-band quasilinear varieties, all of which satisfy the identity

(1) xyx ≈ x2.

Dolinka and D̄apić also deduced that each quasilinear variety is both finitely
based and finitely generated.

It is well and long known that every band variety is finitely based [2, 5,
6]. However, the finite basis property of every non-band quasilinear variety is
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actually a consequence of a stronger result of Pollák [12], which states that every
semigroup that satisfies the identity

(2) xyzx ≈ x2

is finitely based. Since the identity (1) implies the identity (2), every non-band
quasilinear variety is also finitely based.

Let P be the variety defined by the identity (2) and L(P) be the lattice of
subvarieties of P. The lattice L(P) has a very complex structure since a result
of Vernikov and Volkov [14] implies that every finite lattice is embeddable in it.
But the lattice L(P) is only countably infinite due to the finite basis property
of all subvarieties of P. On the other hand, although all quasilinear varieties
are finitely generated, not all subvarieties of P are finitely generated. In fact,
infinitely many subvarieties of P are non-finitely generated [10, Proposition 4.2].
Apart from this result, not much is known about the subvarieties of P with
respect to the finite generation property. The present article aims to shed some
light in this direction.

A diverse identity is an identity of the form x1x2 · · ·xn ≈ w where w is a
word that is not formed by any permutation of the variables x1, x2, . . . , xn.

Theorem 1. The following statements on any subvariety V of P are equivalent:

(a) V is finitely generated;

(b) any basis for V contains some diverse identity;

(c) any basis for V contains an identity not implied by the identities (2) and

(3) xy ≈ yx;

(d) V contains finitely many subvarieties.

Remark 2. It follows from Theorem 1 that a subvariety of P is finitely gener-
ated if and only if it contains finitely many subvarieties. This result, however,
does not hold for varieties in general since there exist finitely generated varieties
with infinitely many subvarieties [10] and non-finitely generated varieties with
finitely many subvarieties [8, 9]. In fact, there exist finitely generated varieties
with continuum many subvarieties [7].

Corollary 3. Given any finite set Σ of identities, it is decidable if the subvariety
of P defined by Σ is finitely generated. In particular, the variety P is non-finitely
generated.

Remark 4. Since every subvariety of P is finitely based, the finiteness of the set
Σ of identities in Corollary 3 does not compromise the possibility of Σ defining
any subvariety of P. But as noted in [15, Problem 2.3], the problem of deciding
when a finite set of identities defines a finitely generated variety remains open
in general.
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Let C be the subvariety of P defined by the commutativity identity (3). For
each n ≥ 2, let Dn be the subvariety of P defined by the diverse identity

(4n) x1x2 · · ·xn ≈ x2
1x

2
n.

It is easy to show that the inclusion Dn ⊆ Dn+1 holds for any n ≥ 2.

Proposition 5. (i) The finitely generated subvarieties of P constitute the
incomplete sublattice

⋃{L(Dn) | n ≥ 2} of L(P).

(ii) The non-finitely generated subvarieties of P constitute the subinterval
[C,P] of L(P).

Consequently, L(P) = [C,P] ∪⋃{L(Dn) | n ≥ 2}.
For any semigroup S, let 〈S〉 denote the variety generated by S. In general,

if S1 and S2 are any finite semigroups, then the meet 〈S1〉∩〈S2〉 is a variety that
may or may not be finitely generated. Even if the variety 〈S1〉 ∩ 〈S2〉 is known
to be finitely generated, the task of computing a finite generating semigroup
is nontrivial. However, this task can be accomplished if S1 and S2 are finite
semigroups in the variety P.

Theorem 6. Given any finite semigroups S1 and S2 in the variety P, a finite
semigroup that generates the meet 〈S1〉 ∩ 〈S2〉 is computable.

Theorem 1, Proposition 5, and Theorem 6 are established in the next three
sections. Corollary 3 follows from the equivalence of statements (a) and (b) in
Theorem 1.

2. Regarding Theorem 1

Let X ∗ be the free monoid over a countably infinite set X of variables.
Elements of X ∗ are referred to as words. The content of a word w, denoted
by c(w), is the set of variables occurring in w. A word is linear if each of its
variables has multiplicity one. A permutation identity is an identity u ≈ v where
u and v are distinct linear words such that c(u) = c(v). Note that a nontrivial
identity u ≈ v is diverse if and only if it is a non-permutation identity where
either u or v is a linear word.

Lemma 7. (i) If a set Σ of identities implies some diverse identity, then the
set Σ must contain some diverse identity.

(ii) An identity u ≈ v is non-diverse if and only if the identities (2) and (3)
imply the identity u ≈ v.

Proof. (i) Let Σ be any set of non-diverse identities. Then the set Σ can only
contain the following identities: trivial identities, permutation identities, and
identities formed by nonlinear words. It is then easy to show that the set Σ
cannot imply any diverse identity.

(ii) Since the identities (2) and (3) are non-diverse, it follows from part (i)
that they can only imply non-diverse identities. Conversely, let u ≈ v be any
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non-diverse identity. It is clear that the identities (2) and (3) imply any per-
mutation identity. Therefore it suffices to assume that both u and v are non-
linear words, whence u = u1xu2xu3 and v = v1yv2yv3 for some x, y ∈ X and
ui, vi ∈ X ∗. Since

u
(3)≈ x2u1u2u3

(2)≈ xy2xu1u2u3

(3)≈ yx2u1u2u3y
(2)≈ y2

(2)≈ y3v1v2v3y
(3)≈ y4v1v2v3

(2)≈ y2v1v2v3

(3)≈ v,

the identities (2) and (3) imply the non-diverse identity u ≈ v.

Lemma 8. Let S be any finite semigroup in the variety P with |S| = n ≥ 2.
Then S satisfies the diverse identity (4n) and hence belongs to the variety Dn.

Proof. Suppose that a1, a2, . . . , an ∈ S. Then it follows from [1, Proposi-
tion 3.7.1] that a1a2 · · · an = b1b

2
2b3 for some b1, b2, b3 ∈ S. Since

a2
1a

2
n

(2)
= a1a2 · · · ana2

1a
2
na1a2 · · · an = b1(b2

2b3a
2
1a

2
nb1b

2
2)b3

(2)
= b1b

2
2b3 = a1a2 · · · an,

the semigroup S satisfies the identity (4n).

Lemma 9. Let u ≈ v be any diverse identity. Suppose that w is any shortest
linear word in {u, v}. Then the identities (2) and u ≈ v imply the following:

(a) the identity (4n) with n = |w|+ 4;

(b) some permutation identity.

Proof. Without loss of generality, assume that u = x1x2 · · ·xm is a shortest
linear word in {u, v} and that y1, y2, y3, z1, z2 /∈ c(uv).

Case 1. v is nonlinear. Then v = v1xv2xv3 for some vi ∈ X ∗ and x ∈ X .
Let ϕ be the substitution x 7→ z1xz2 and let v′i = viϕ. Then

y1(uϕ)y2 ≈ y1(vϕ)y2 = y1v
′
1z1(xz2v

′
2z1x)z2v

′
3y2

(2)≈ (y1v
′
1z1xy1)(y2xz2v

′
3y2)

(2)≈ y2
1y2

2

so that the identities (2) and u ≈ v imply the identity y1(uϕ)y2 ≈ y2
1y2

2 . Since
the word y1(uϕ)y2 is linear and

|y1(uϕ)y2| = |uϕ|+ 2 =
{

m + 2 if x /∈ c(u),
m + 4 if x ∈ c(u),

it follows that the identities (2) and u ≈ v imply (a). Now the words y1y2y3(uϕ)
and y1y3y2(uϕ) are also linear. Since

y1y2y3(uϕ) ≈ y1y2y3(vϕ) = y1y2y3v
′
1z1(xz2v

′
2z1x)z2v

′
3

(2)≈ (y1y2y3v
′
1z1xy2

1)xz2v
′
3

(2)≈ y1y3y2v
′
1z1(xy2

1x)z2v
′
3

(2)≈ y1y3y2v
′
1z1xz2v

′
2z1xz2v

′
3 = y1y3y2(vϕ)

≈ y1y3y2(uϕ),
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the identities (2) and u ≈ v imply (b).
Case 2. v is linear. Since |u| ≤ |v|, some variable z in v does not occur

in u. Let vz be the word obtained from v by replacing z with z2. Then the
identity u ≈ v implies the identity u ≈ vz where vz is a nonlinear word. The
same argument in Case 1 can be repeated to show that the identities (2) and
u ≈ vz imply (a) and (b).

Lemma 10 (Malyshev [11]). Any variety that satisfies some diverse identity
and some permutation identity contains finitely many subvarieties.

Recall that a variety V is locally finite if each finitely generated semigroup
in V is finite.

Lemma 11. Let V be any locally finite variety whose subvarieties satisfy the
ascending chain condition. Then V is a finitely generated variety.

Proof. For each n ≥ 1, let Vn be the variety generated by the V-free semigroup
over n variables. The varieties in the chain V1 ⊆ V2 ⊆ · · · are finitely generated
because the variety V is locally finite. By the ascending chain condition, there
exists some sufficiently large r such that Vr = Vr+1 = · · · . Consequently,
V = Vr.

Proof of Theorem 1. The theorem holds vacuously if the variety V is trivial.
Therefore assume that the variety V is nontrivial, and let Σ be any basis for V.

(a) implies (b). Suppose that the variety V is generated by some nontrivial
semigroup of order n. Then by Lemma 8, the variety V satisfies the diverse
identity (4n) so that Σ implies (4n). By Lemma 7(i), some identity in Σ is
diverse.

(b) implies (c). Suppose that the set Σ contains some diverse identity
u ≈ v. Since the identities (2) and (3) are non-diverse identities, it follows from
Lemma 7(i) that the identities (2) and (3) do not imply the identity u ≈ v.

(c) implies (d). Suppose that the identities (2) and (3) do not imply some
identity in Σ. Then it follows from Lemma 7(ii) that the variety V satisfies some
diverse identity. By Lemma 9, the variety V also satisfies some permutation
identity. Hence by Lemma 10, the variety V contains finitely many subvarieties.

(d) implies (a). By [13, Theorem P], the variety V is locally finite. If the
variety V contains finitely many subvarieties, then it is finitely generated by
Lemma 11.

3. Regarding Proposition 5

Proof of Proposition 5. (i) Let V be any subvariety of Dn for any n ≥ 2 and
let Σ be any basis for V. Since Σ implies the diverse identity (4n), it follows
from Lemma 7(i) that Σ contains some diverse identity. Hence the variety V
is finitely generated by Theorem 1. Conversely, it follows from Lemma 8 that
any finitely generated subvariety of P is a subvariety of Dn for some n ≥ 2.
Consequently, the finitely generated subvarieties of P constitute the set

D =
⋃
{L(Dn) | n ≥ 2}.
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Since Dn ⊆ Dn+1 for any n ≥ 2, it is easy to show that D is a lattice. For each
n ≥ 1, let Pn be the variety generated by the P-free semigroup over n variables.
Then P =

∨{Pn | n ≥ 1} where each Pn is finitely generated. However,
the variety P is non-finitely generated by Corollary 3 so that the lattice D is
incomplete.

(ii) This follows from the equivalence of statements (a) and (c) in Theorem 1.

4. Regarding Theorem 6

Suppose that S is any semigroup in the variety Dn for some n ≥ 5. Then
the semigroup S is defined within Dn by identities that are formed by words of
length less than n, that is, S is defined within Dn by some set of identities from

Ψn = {u ≈ v | c(u), c(v) ⊆ X2n−2, |u|, |v| < n},
where X2n−2 = {x1, x2, . . . , x2n−2}.
Lemma 12. Let S be any finite semigroup in the variety P. Then a finite basis
for S is computable.

Proof. By Lemma 8, the semigroup S belongs to the variety Dn for some n ≥ 2.
Since D2 ⊆ D3 ⊆ · · · , it can further be assumed that n ≥ 5. Hence S is defined
within Dn by some set of identities from Ψn. Let ΨS

n be the set of all identities
from Ψn that are satisfied by S. Then {(2), (4n)} ∪ΨS

n is a basis for S. Since S
and Ψn are both finite, the set ΨS

n is also finite and computable.

Lemma 13. Let Σ be any finite set of identities and V be the subvariety of P
defined by Σ. Suppose that V is finitely generated. Then a finite semigroup that
generates the variety V is computable.

Proof. By Theorem 1, the set Σ contains some diverse identity u ≈ v. By
Lemma 9, the variety V satisfies the identity (4n) for some n ∈ {|u|+ 4, |v|+ 4}
and so is contained in the variety Dn. Hence the variety V is defined within
Dn by some set of identities from Ψn. Let Ψ′n be set of all identities from Ψn

that are not satisfied by the variety V. Then any semigroup in V that does not
satisfy any identity in Ψ′n will generate the variety V.

Let F be the V-free semigroup over X2n−2. Let u ≈ v ∈ Ψ′n. Since the
variety V does not satisfy the identity u ≈ v, some semigroup S in V also
does not satisfy the identity u ≈ v. Since u and v are words over X2n−2, the
semigroup S can be chosen to be finitely generated by at most 2n− 2 elements.
Therefore the semigroup S is a homomorphic image of the semigroup F, whence
F does not satisfy the identity u ≈ v. The semigroup F is clearly computable
and so is the required semigroup that generates the variety V.

Proof of Theorem 6. For each i ∈ {1, 2}, let Si be any finite semigroup in the
variety P. By Lemma 12, a finite basis Σi for the semigroup Si is computable.
Then the variety V = 〈S1〉 ∩ 〈S2〉 is defined by Σ = Σ1 ∪ Σ2 and is finitely
generated by Proposition 5(i). By Lemma 13, a finite semigroup that generates
the variety V is computable.
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