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Abstract. Let P be the variety of semigroups defined by the identity
zyzr ~ x2. By a result of Gyérgy Polldk, every subvariety of P is finitely
based. The present article is concerned with subvarieties of P and the lat-
tice they constitute, where the main result is a characterization of finitely
generated subvarieties of P. It is shown that a subvariety of P is finitely
generated if and only if it contains finitely many subvarieties, and the
identities defining these varieties are described. Specifically, it is decid-
able when a finite set of identities defines a finitely generated subvariety
of P. It follows that the finitely generated subvarieties of P constitute
an incomplete lattice while the non-finitely generated subvarieties of P
constitute an interval. It is also shown that given any pair of finitely gen-
erated subvarieties of P, a finite semigroup that generates their meet is
computable.
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1. Introduction

All varieties in this article are varieties of semigroups. The reader is referred
to [3L [I5] for any undefined notation and terminology. A variety V is said to
be quasilinear if for each word w, the variety V satisfies an identity of the form
w ~ w' for some linear word w’. Recently, Dolinka and Dapié [4] described
all quasilinear varieties. There are precisely nine quasilinear varieties that are
band varieties [4, Proposition 1]. But the situation for non-band varieties is
more complicated since it follows from [4, Theorem 5] that there are infinitely
many non-band quasilinear varieties, all of which satisfy the identity

(1) ryx ~ 2.

Dolinka and Papi¢ also deduced that each quasilinear variety is both finitely
based and finitely generated.

It is well and long known that every band variety is finitely based [2 [
0]. However, the finite basis property of every non-band quasilinear variety is
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actually a consequence of a stronger result of Polldk [12], which states that every
semigroup that satisfies the identity

(2) ryze ~ o’

is finitely based. Since the identity () implies the identity (2)), every non-band
quasilinear variety is also finitely based.

Let P be the variety defined by the identity ([2)) and £(P) be the lattice of
subvarieties of P. The lattice £(P) has a very complex structure since a result
of Vernikov and Volkov [I4] implies that every finite lattice is embeddable in it.
But the lattice £(P) is only countably infinite due to the finite basis property
of all subvarieties of P. On the other hand, although all quasilinear varieties
are finitely generated, not all subvarieties of P are finitely generated. In fact,
infinitely many subvarieties of P are non-finitely generated [10, Proposition 4.2].
Apart from this result, not much is known about the subvarieties of P with
respect to the finite generation property. The present article aims to shed some
light in this direction.

A diverse identity is an identity of the form xyxs---z, =~ w where w is a
word that is not formed by any permutation of the variables x1, o, ..., Zy,.

Theorem 1. The following statements on any subvariety V of P are equivalent:
(a) V is finitely generated;
(b) any basis for V contains some diverse identity;

(¢c) any basis for V contains an identity not implied by the identities [2) and
(3) TY R YT;

(d) V contains finitely many subvarieties.

Remark 2. It follows from Theorem [I] that a subvariety of P is finitely gener-
ated if and only if it contains finitely many subvarieties. This result, however,
does not hold for varieties in general since there exist finitely generated varieties
with infinitely many subvarieties [10] and non-finitely generated varieties with
finitely many subvarieties [8, 9]. In fact, there exist finitely generated varieties
with continuum many subvarieties [7].

Corollary 3. Given any finite set ¥ of identities, it is decidable if the subvariety
of P defined by X is finitely generated. In particular, the variety P is non-finitely
generated.

Remark 4. Since every subvariety of P is finitely based, the finiteness of the set
Y of identities in Corollary [l does not compromise the possibility of ¥ defining
any subvariety of P. But as noted in [I5, Problem 2.3], the problem of deciding
when a finite set of identities defines a finitely generated variety remains open
in general.
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Let C be the subvariety of P defined by the commutativity identity (B). For
each n > 2, let D,, be the subvariety of P defined by the diverse identity

(4,) T1Tg - Ty A T2X2,
It is easy to show that the inclusion D,, C D,, 1 holds for any n > 2.

Proposition 5. (i) The finitely generated subvarieties of P constitute the
incomplete sublattice | J{£(Dy) | n > 2} of £(P).

(ii) The non-finitely generated subvarieties of P constitute the subinterval
[C,P] of £(P).
Consequently, £(P) = [C,P]UU{L(D,) | n > 2}.

For any semigroup S, let (S) denote the variety generated by S. In general,
if S; and Sy are any finite semigroups, then the meet (S1)N(Ss) is a variety that
may or may not be finitely generated. Even if the variety (Sq1) N (S2) is known
to be finitely generated, the task of computing a finite generating semigroup
is nontrivial. However, this task can be accomplished if S; and S, are finite
semigroups in the variety P.

Theorem 6. Given any finite semigroups S1 and So in the variety P, a finite
semigroup that generates the meet (S1) N (Sa) is computable.

Theorem [Il Proposition Bl and Theorem [f] are established in the next three
sections. Corollary Bl follows from the equivalence of statements (a) and (b) in
Theorem [I1

2. Regarding Theorem [I]

Let X* be the free monoid over a countably infinite set X of variables.
Elements of X* are referred to as words. The content of a word w, denoted
by c(w), is the set of variables occurring in w. A word is linear if each of its
variables has multiplicity one. A permutation identity is an identity u &~ v where
uw and v are distinct linear words such that c(u) = c(v). Note that a nontrivial
identity w ~ v is diverse if and only if it is a non-permutation identity where
either u or v is a linear word.

Lemma 7. (i) If a set X of identities implies some diverse identity, then the
set X must contain some diverse identity.

(ii) An identity u = v is non-diverse if and only if the identities @) and (3]
imply the identity u ~ v.

Proof. (i) Let ¥ be any set of non-diverse identities. Then the set ¥ can only
contain the following identities: trivial identities, permutation identities, and
identities formed by nonlinear words. It is then easy to show that the set X
cannot imply any diverse identity.

(ii) Since the identities ([2) and ([B) are non-diverse, it follows from part (i)
that they can only imply non-diverse identities. Conversely, let © =~ v be any
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non-diverse identity. It is clear that the identities [2) and (Bl) imply any per-
mutation identity. Therefore it suffices to assume that both v and v are non-
linear words, whence u = ujzuszruz and v = viyveyvs for some z,y € X and
u;, v; € X*. Since

u =~ .’I?QU1UQ’U,3 ~ xygxuluzu;g ~ yx2u1u2u;>,y ~ y2
@ . @ , @ , @
N Y U1V2V3Y R Y U1U2V3 N Y U1U203 = U,
the identities (2) and (B]) imply the non-diverse identity u ~ v. O

Lemma 8. Let S be any finite semigroup in the variety P with |S| = n > 2.
Then S satisfies the diverse identity (&) and hence belongs to the variety D,,.

Proof. Suppose that aj,as,...,a, € S. Then it follows from [I Proposi-
tion 3.7.1] that ajas - - - a, = b1b3bs for some by, by, bs € S. Since

@ 2 2 2, 2 25 ;2
aja; = a1as - apaia,a1as - - - an = by (bsbsaia;bibs)bs

=]

blbgbg = Q102" 0an,
the semigroup S satisfies the identity ([@]). O

Lemma 9. Let u ~ v be any diverse identity. Suppose that w is any shortest
linear word in {u,v}. Then the identities &) and u = v imply the following:

(a) the identity [EL]) with n = |w| + 4;
(b) some permutation identity.

Proof. Without loss of generality, assume that u = x125---x,, is a shortest
linear word in {u,v} and that y1,y2, ys, 21, 22 ¢ c(uv).

CASE 1. v is nonlinear. Then v = vizvexvy for some v; € X* and x € X.
Let ¢ be the substitution z — z1222 and let v} = v;0. Then

y1(up)y2 = y1(vp)ys = y1v] 21 (2220521 2) 2205Yyo

@ @
X (yroyzieyn) (y2a2205y2) = Yiys
so that the identities (@) and u ~ v imply the identity y1 (up)ys ~ y3y3. Since
the word yi (up)ys is linear and
_ _f m+2 ifxéc(u),

ly1(up)yz| = lup| +2 = { md e clu)
it follows that the identities (2]) and u ~ v imply (a). Now the words y1yays(up)
and y1ysy2(up) are also linear. Since

Y1y2y3(up) = y1y2y3(ve) = y1y2ysvy 21 (T22vp21 ) 2003

o=

@
(Y1Y2y30) 212Y7) 12205 = Y1ysy2v] 21 (TY;T) 2004

B

y1y3y211'1219322vé2’11220é = Y1Y3Y2 (’USD)

Y1y3y2(up),

Q
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the identities (@) and u = v imply (b).

CASE 2. v is linear. Since |u| < |v|, some variable z in v does not occur
in u. Let v, be the word obtained from v by replacing z with z2. Then the
identity u =~ v implies the identity u =~ v, where v, is a nonlinear word. The
same argument in Case 1 can be repeated to show that the identities ([2]) and
u ~ v, imply (a) and (b). O

Lemma 10 (Malyshev [11]). Any variety that satisfies some diverse identity

and some permutation identity contains finitely many subvarieties.

Recall that a variety V is locally finite if each finitely generated semigroup
in V is finite.

Lemma 11. Let V be any locally finite variety whose subvarieties satisfy the
ascending chain condition. Then V is a finitely generated variety.

Proof. For each n > 1, let V,, be the variety generated by the V-free semigroup

over n variables. The varieties in the chain V; C V, C - - are finitely generated
because the variety V is locally finite. By the ascending chain condition, there
exists some sufficiently large r such that V, = V.41 = ---. Consequently,
V="V, -

Proof of Theorem [II The theorem holds vacuously if the variety V is trivial.
Therefore assume that the variety V is nontrivial, and let ¥ be any basis for V.

(a) IMPLIES (b). Suppose that the variety V is generated by some nontrivial
semigroup of order n. Then by Lemma [ the variety V satisfies the diverse
identity (4,]) so that ¥ implies (£]). By Lemma [7[i), some identity in ¥ is
diverse.

(b) IMPLIES (c). Suppose that the set ¥ contains some diverse identity
u &~ v. Since the identities (2)) and (B) are non-diverse identities, it follows from
Lemma [7(i) that the identities ([2) and (@) do not imply the identity u = v.

(c¢) IMPLIES (d). Suppose that the identities [2) and () do not imply some
identity in 3. Then it follows from Lemmal[flii) that the variety V satisfies some
diverse identity. By Lemma [ the variety V also satisfies some permutation
identity. Hence by Lemma [I0], the variety V contains finitely many subvarieties.

(d) iMPLIES (a). By [I3, Theorem P], the variety V is locally finite. If the
variety V contains finitely many subvarieties, then it is finitely generated by
Lemma [T} O

3. Regarding Proposition

Proof of Proposition Bl (i) Let V be any subvariety of D,, for any n > 2 and
let ¥ be any basis for V. Since ¥ implies the diverse identity (@), it follows
from Lemma [7i) that ¥ contains some diverse identity. Hence the variety V
is finitely generated by Theorem [Il Conversely, it follows from Lemma [§ that
any finitely generated subvariety of P is a subvariety of D,, for some n > 2.
Consequently, the finitely generated subvarieties of P constitute the set

D = J{&(Dn) n > 2}.
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Since D,, C D,,41 for any n > 2, it is easy to show that © is a lattice. For each

n > 1, let P, be the variety generated by the P-free semigroup over n variables.

Then P = \/{P, | n > 1} where each P, is finitely generated. However,

the variety P is non-finitely generated by Corollary [ so that the lattice D is
incomplete.

(ii) This follows from the equivalence of statements (a) and (¢) in Theorem Il

O

4. Regarding Theorem

Suppose that S is any semigroup in the variety D,, for some n > 5. Then
the semigroup S is defined within D,, by identities that are formed by words of
length less than n, that is, S is defined within D,, by some set of identities from

Uy, ={urv|c(u),c(v) C Xopo, [ul,[v] <n},
where XQH,Q = {1‘1, oy ... ,LL‘Qn,Q}.

Lemma 12. Let S be any finite semigroup in the variety P. Then a finite basis
for S is computable.

Proof. By Lemmal8 the semigroup S belongs to the variety D,, for some n > 2.
Since Dy C D3 C ---, it can further be assumed that n > 5. Hence S is defined
within D,, by some set of identities from W,,. Let U$ be the set of all identities
from W,, that are satisfied by S. Then {[), @)} U ¥S is a basis for S. Since S
and U,, are both finite, the set U is also finite and computable. O

Lemma 13. Let ¥ be any finite set of identities and V be the subvariety of P
defined by 3. Suppose that V is finitely generated. Then a finite semigroup that
generates the variety V is computable.

Proof. By Theorem [I the set ¥ contains some diverse identity u =~ v. By
Lemma[d] the variety V satisfies the identity ([4]) for some n € {|u| + 4, |v| + 4}
and so is contained in the variety D,,. Hence the variety V is defined within
D,, by some set of identities from ¥,,. Let ¥/ be set of all identities from ¥,
that are not satisfied by the variety V. Then any semigroup in V that does not
satisfy any identity in ¥/ will generate the variety V.

Let F be the V-free semigroup over Xa, 5. Let u = v € ¥/ . Since the
variety V' does not satisfy the identity u = v, some semigroup S in V also
does not satisfy the identity u =~ v. Since u and v are words over X, _o, the
semigroup S can be chosen to be finitely generated by at most 2n — 2 elements.
Therefore the semigroup S is a homomorphic image of the semigroup F, whence
F does not satisfy the identity u ~ v. The semigroup F is clearly computable
and so is the required semigroup that generates the variety V. O

Proof of Theorem [6l For eachi € {1,2}, let S; be any finite semigroup in the
variety P. By Lemma [I2] a finite basis ¥; for the semigroup S; is computable.
Then the variety ¥V = (S1) N (S3) is defined by ¥ = £; U X5 and is finitely
generated by Proposition [Bfi). By Lemma [I3] a finite semigroup that generates
the variety V is computable. O
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