
Robust algorithms for CSPs

Libor Barto

joint work with Marcin Kozik

McMaster University
and

Charles University in Prague

AAA 83 Novi Sad, March 15, 2012

(Part 1) Outline

I (Part 2) Introduction

I (Part 3) Problem

I (Part 4) Problem solved

I (Part 5) Proof of a different result

I (Part 6) Proof of one more different result

(Part 2)
Introduction

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

I V . . . a set of variables

I A . . . a domain
I list of constraints of the form R(x1, . . . , xk), where

I x1, . . . , xk ∈ V
I R is a k-ary relation on A (i.e. R ⊆ Ak) constraint relation

An assignment f : V → A satisfies R(x1, . . . , xk), if
(f (x1), . . . , f (xk)) ∈ R

f : V → A is a solution if it satisfies all the constraints

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

I V . . . a set of variables

I A . . . a domain
I list of constraints of the form R(x1, . . . , xk), where

I x1, . . . , xk ∈ V
I R is a k-ary relation on A (i.e. R ⊆ Ak) constraint relation

An assignment f : V → A satisfies R(x1, . . . , xk), if
(f (x1), . . . , f (xk)) ∈ R

f : V → A is a solution if it satisfies all the constraints

Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.

Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.

Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.

Constraint language

Mentioned problems are computationally hard

One possible restriction (widely studied) — fix a set of possible
constraint relations:

Definition

A constraint language Γ is a finite set of relations on a finite set A.

An instance of CSP(Γ) is a CSP instance such that every
constraint relation is from Γ.

Example: 2-coloring

A = {0, 1}, Γ = {R}, R = {(0, 1), (1, 0)} (inequality)

Instance: R(x1, x2),R(x1, x3),R(x2, x4), . . .
(can be drawn as a graph)

Solution = 2-coloring (bipartition)

I Decision CSP(Γ): Is a given graph bipartite? (easy)

I Max-CSP(Γ): also called Max-Cut (hard)
I Approx. Max-CSP(Γ)

I (0.5β, β)-approx easy
I (0.878β, β)-approx easy Goemans and Williamson’95
I (16/17β, β)-approx hard

Trevisan, Sorkin, Sudan, Williamson’00, Hastad’01
I ((0.878 + ε)β, β) - approx UGC-hard

Khot, Kindler, Mossel, O’Donnel’07

Example: 3-SAT

A = {0, 1}, Γ = {R000,R001,R011,R111}, Rijk = {0, 1}3 {(i , j , k)}

Instance: R000(x1, x2, x3),R001(x1, x3, x5),R011(x3, x2, x6)

or: (x1 ∨ x2 ∨ x3) & (x1 ∨ ¬x3 ∨ ¬x5) & (x3 ∨ ¬x2 ∨ ¬x6)

I Decision CSP(Γ): 3-SAT (hard)

I Max-CSP(Γ): Max-3-SAT (hard)
I Approx. Max-CSP(Γ):

I (7/8β, β)-approx easy Karloff, Zwick’96
I (δ, 1)-approx hard for some δ < 1

(=PCP theorem, Arora, Lund, Motwani, Sudan, Szegedy’98)
I (7/8 + ε, 1)-approx hard Hastad’01

Example: 3-Lin-2

A = {0, 1}, Γ ={affine subspaces of Z 3
2 }

Instance: system of linear equation over Z2

(each equation contains at most 3 variables)

I Decision CSP(Γ): easy (Gaussian elimination)

I Max-CSP(Γ): hard
I Approx. Max-CSP(Γ):

I (1/2β, β)-approx easy
I (1/2 + ε, 1− ε)-approx hard Hastad’01

(Part 3)
Problem

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by noise),
we want to find an “almost solution”.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98
I (1− O(ε1/3), 1− ε)-approx algorithm for 2-SAT
I (1− O(1/(log(1/ε))), 1− ε)-approx algorithm for HORN-SAT

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width !!!

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a semidefinite
programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Bonus Krokhin’11: even the quantitative dependence on ε is
+- controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a semidefinite
programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Bonus Krokhin’11: even the quantitative dependence on ε is
+- controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true
I Conjecture confirmed for width 1 CSPs

Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed
Barto, Kozik’11.

Conjecture confirmed
Barto, Kozik’11. Using a semidefinite programming relaxation
and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Bonus Krokhin’11: even the quantitative dependence on ε is
+- controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a semidefinite
programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Bonus Krokhin’11: even the quantitative dependence on ε is
+- controlled by polymorphisms.

Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a semidefinite
programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Bonus Krokhin’11: even the quantitative dependence on ε is
+- controlled by polymorphisms.

This was (Part 4)
Problem solved

Now (Part 5)
Proof of a different result

MAX-CUT Goemans and Williamson’95

A = {−1, 1}, Γ = {R}, R = {(−1, 1), (1,−1)} (inequality)

Instance I: V = {x1, x2, . . . , }, C = R(x2, x1),R(x1, x4), . . .

Max-CSP – hard:
Find numbers f (x), x ∈ V , f (x) ∈ {−1, 1} which maximize

Opt(I) =
1

|C|
∑

R(x ,y)∈C

1− f (x)f (y)

2

SDP (semidefinite programming) relaxation – easy:
Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

MAX-CUT Goemans and Williamson’95

A = {−1, 1}, Γ = {R}, R = {(−1, 1), (1,−1)} (inequality)

Instance I: V = {x1, x2, . . . , }, C = R(x2, x1),R(x1, x4), . . .

Max-CSP – hard:
Find numbers f (x), x ∈ V , f (x) ∈ {−1, 1} which maximize

Opt(I) =
1

|C|
∑

R(x ,y)∈C

1− f (x)f (y)

2

SDP (semidefinite programming) relaxation – easy:
Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

MAX-CUT Goemans and Williamson’95

A = {−1, 1}, Γ = {R}, R = {(−1, 1), (1,−1)} (inequality)

Instance I: V = {x1, x2, . . . , }, C = R(x2, x1),R(x1, x4), . . .

Max-CSP – hard:
Find numbers f (x), x ∈ V , f (x) ∈ {−1, 1} which maximize

Opt(I) =
1

|C|
∑

R(x ,y)∈C

1− f (x)f (y)

2

SDP (semidefinite programming) relaxation – easy:
Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

MAX-CUT cont’d

Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

I SDPOpt(I) ≥ Opt(I), if SDPOpt(I) = 1 then Opt(I) = 1.
I We need to round the vector solution g to a reasonably good

assignment f

I Choose a random hyperplane through the origin and choose
one side S

I Put f (v) = 1 if g(v) ∈ S and f (v) = −1 otherwise

I This is (0.878β, β)-approx and robust algorithm

MAX-CUT cont’d

Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

I SDPOpt(I) ≥ Opt(I), if SDPOpt(I) = 1 then Opt(I) = 1.

I We need to round the vector solution g to a reasonably good
assignment f

I Choose a random hyperplane through the origin and choose
one side S

I Put f (v) = 1 if g(v) ∈ S and f (v) = −1 otherwise

I This is (0.878β, β)-approx and robust algorithm

MAX-CUT cont’d

Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

I SDPOpt(I) ≥ Opt(I), if SDPOpt(I) = 1 then Opt(I) = 1.
I We need to round the vector solution g to a reasonably good

assignment f

I Choose a random hyperplane through the origin and choose
one side S

I Put f (v) = 1 if g(v) ∈ S and f (v) = −1 otherwise

I This is (0.878β, β)-approx and robust algorithm

MAX-CUT cont’d

Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

I SDPOpt(I) ≥ Opt(I), if SDPOpt(I) = 1 then Opt(I) = 1.
I We need to round the vector solution g to a reasonably good

assignment f
I Choose a random hyperplane through the origin and choose

one side S
I Put f (v) = 1 if g(v) ∈ S and f (v) = −1 otherwise

I This is (0.878β, β)-approx and robust algorithm

MAX-CUT cont’d

Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

I SDPOpt(I) ≥ Opt(I), if SDPOpt(I) = 1 then Opt(I) = 1.
I We need to round the vector solution g to a reasonably good

assignment f
I Choose a random hyperplane through the origin and choose

one side S
I Put f (v) = 1 if g(v) ∈ S and f (v) = −1 otherwise

I This is (0.878β, β)-approx and robust algorithm

(Part 6)
Proof of one more different result

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A – domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V – variables, I - instance, C – constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) – optimal fraction of satisfied constraints

I ... and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Let’s try to use it for our problem.

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A – domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V – variables, I - instance, C – constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) – optimal fraction of satisfied constraints

I ... and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Let’s try to use it for our problem.

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A – domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V – variables, I - instance, C – constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) – optimal fraction of satisfied constraints

I ... and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Let’s try to use it for our problem.

SDP relaxation for general CSP

Notation and simplifying assumptions:

I A – domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V – variables, I - instance, C – constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) – optimal fraction of satisfied constraints

I ... and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Let’s try to use it for our problem.

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)

I We are trying to give small weights to pairs outside Rxy

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get

Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

I It is a subset: If xayb > 0 then xa, yb 6= o
I It is subdirect: If xa 6= o then 0 6= ||xa||2 = xaxA = xayA,

therefore xayb 6= 0 for some b

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).
I wxB = (yB+(x,y)− xB)xB = yB+(x,y)xB − xBxB = yB+(x,y)xB −

yAxB = −(yA − yB+(x,y))xB = −yA−(B+(x,y))xB = 0
I ww = · · · = xA−ByB+(x,y)

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}
I For B ⊆ Px , we have yB+(x ,y) = xB + w,

where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

Random facts about Px , Pxy - summary

Definition

The new instance with constraints Pxy (x , y) and subsets
Px ⊆ A, x ∈ V satisfies
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

I It is 1-minimal (Pxy is a subdirect subset of Px × Py)

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution K

Weak Prague instance

Definition

An instance with constraints Pxy (x , y) and subsets Px ⊆ A, x ∈ V
is a weak Prague instance if
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

I It is 1-minimal (Pxy is a subdirect subset of Px × Py)

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution K

Weak Prague instance

Definition

An instance with constraints Pxy (x , y) and subsets Px ⊆ A, x ∈ V
is a weak Prague instance if
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

I It is 1-minimal (Pxy is a subdirect subset of Px × Py)

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution K

Weak Prague instance

Definition

An instance with constraints Pxy (x , y) and subsets Px ⊆ A, x ∈ V
is a weak Prague instance if
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

I It is 1-minimal (Pxy is a subdirect subset of Px × Py)

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution K

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}

I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}
I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I ...

I ...

IW..........W......OOO......RRR.........K......K.......

IW..........W....O......O.....R.....R......K...K.......

IW...W...W....O......O......RRR........KK..............

IW...W...W....O......O.....R.....R......K...K..........

IW...W.........OOO.......R.......R....K......K......

I ...

I QED

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

Wild guess: NU ⇒ polynomial loss

I SDP, LP outputs ↔ consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

Wild guess: NU ⇒ polynomial loss

I SDP, LP outputs ↔ consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

Wild guess: NU ⇒ polynomial loss

I SDP, LP outputs ↔ consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

Wild guess: NU ⇒ polynomial loss

I SDP, LP outputs ↔ consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

I Thank you!

Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

Wild guess: NU ⇒ polynomial loss

I SDP, LP outputs ↔ consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

I Thank you!

