Robust algorithms for CSPs

Libor Barto

joint work with Marcin Kozik

McMaster University
and
Charles University in Prague

AAA 83 Novi Sad, March 15, 2012

(Part 1) Outline

» (Part 2) Introduction

» (Part 3) Problem

» (Part 4) Problem solved

» (Part 5) Proof of a different result

» (Part 6) Proof of one more different result

(Part 2)

Introduction

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:
» V ...a set of variables
» A ...a domain
» list of constraints of the form R(xi, ..., xx), where

> X1,...,xk €V
» R is a k-ary relation on A (i.e. R C AX) constraint relation

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:
» V ...a set of variables

> A ...a domain
» list of constraints of the form R(xi, ..., xx), where

> X1,...,xk €V
» R is a k-ary relation on A (i.e. R C AX) constraint relation

An assignment f : V — A satisfies R(x, ..., xk), if
(f(x1),...,f(xx)) €R

f:V — Ais a solution if it satisfies all the constraints

Some questions we can ask

» Decision CSP: Does a solution exist?
» Max-CSP: Find a map satisfying maximum number of
constraints

» Approx. Max-CSP: Find a map satisfying at least
0.7 x Optimum constraints

Some questions we can ask

» Decision CSP: Does a solution exist?
» Max-CSP: Find a map satisfying maximum number of
constraints

» Approx. Max-CSP: Find a map satisfying at least
0.7 x Optimum constraints

Definition

An algorithm (c, 3)-approximates CSP (0 < o < < 1) if it
returns an assignment satisfying a-fraction of the constraints
given a (-satisfiable instance.

Some questions we can ask

» Decision CSP: Does a solution exist?

» Max-CSP: Find a map satisfying maximum number of
constraints

» Approx. Max-CSP: Find a map satisfying at least
0.7 x Optimum constraints

Definition

An algorithm (c, 3)-approximates CSP (0 < o < < 1) if it
returns an assignment satisfying a-fraction of the constraints
given a (-satisfiable instance.

Example

(0.7, B)-approximating algorithm returns a map satisfying at least
0.7 x Optimum constraints.

Constraint language

Mentioned problems are computationally hard

One possible restriction (widely studied) — fix a set of possible
constraint relations:

Definition

A constraint language [is a finite set of relations on a finite set A.

An instance of CSP(I") is a CSP instance such that every
constraint relation is from .

Example: 2-coloring

A={0,1}, T ={R}, R=1{(0,1),(1,0)} (inequality)

Instance: R(x1,x2), R(x1,x3), R(x2, xa), . ..
(can be drawn as a graph)

Solution = 2-coloring (bipartition)

» Decision CSP(I'): Is a given graph bipartite? (easy)
» Max-CSP(T'): also called Max-Cut (hard)
» Approx. Max-CSP(I)
» (0.53, 3)-approx easy
» (0.8783, 3)-approx easy Goemans and Williamson'95
» (16/173, 3)-approx hard
Trevisan, Sorkin, Sudan, Williamson'00, Hastad'01

» ((0.878 +¢)83,) - approx UGC-hard
Khot, Kindler, Mossel, O'Donnel'07

Example: 3-SAT

A ={0,1}, T = {Rooo, Roo1, Ro11, Ri11}, Rk = {0,1}3 {(i.j, k)}
Instance: Rogo(x1,x2,x3), Roo1 (X1, X3, X5), Ro11(X3, X2, X6)

or: (x1VxVx3)& (x1V-x3V-xs5)& (x3V-x2V —xp)

» Decision CSP(I'): 3-SAT (hard)
» Max-CSP(I'): Max-3-SAT (hard)
» Approx. Max-CSP(I):
» (7/803, B)-approx easy Karloff, Zwick'96
d,1)-approx hard for some 6 < 1

> (
(=PCP theorem, Arora, Lund, Motwani, Sudan, Szegedy'98)
(7/8 + €, 1)-approx hard Hastad'01

>

Example: 3-Lin-2

A ={0,1}, T ={affine subspaces of Z3}

Instance: system of linear equation over Z»
(each equation contains at most 3 variables)

» Decision CSP(I'): easy (Gaussian elimination)
» Max-CSP(I'): hard
» Approx. Max-CSP(I):

» (1/28, 3)-approx easy
» (1/2+¢,1 — e)-approx hard Hastad'01

(Part 3)

Problem

Between decision and approximation

Definition ()

CSP(I') admits a robust algorithm, if there is a polynomial time
algorithm which

(1 —g(e),1 — e)-approximates CSP(I") (for every),

where g(¢) — 0 when ¢ — 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by noise),
we want to find an “almost solution”.

Between decision and approximation

Definition ()

CSP(I') admits a robust algorithm, if there is a polynomial time

algorithm which
(1 —g(e),1 — e)-approximates CSP(I") (for every),
where g(¢) — 0 when ¢ — 0, and g(0) = 0.

» 2-SAT, HORN-SAT have robust algorithms Zwick'98

Between decision and approximation

Definition ()

CSP(I') admits a robust algorithm, if there is a polynomial time
algorithm which

(1 —g(e),1 — e)-approximates CSP(I") (for every),

where g(¢) — 0 when ¢ — 0, and g(0) = 0.

» 2-SAT, HORN-SAT have robust algorithms Zwick'98
» (1 — 0(¢}/3),1 — £)-approx algorithm for 2-SAT
» (1—-0(1/(log(1/¢))),1 — €)-approx algorithm for HORN-SAT

Between decision and approximation

Definition ()

CSP(I') admits a robust algorithm, if there is a polynomial time
algorithm which

(1 —g(e),1 — e)-approximates CSP(I") (for every),

where g(¢) — 0 when ¢ — 0, and g(0) = 0.

» 2-SAT, HORN-SAT have robust algorithms Zwick'98

» If the decision problem for CSP(I') is NP-complete, then
CSP(IN) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan, Trevisan, Williamson'00
for larger Jonsson, Krokhin, Kuivinen'09)

Between decision and approximation

Definition ()

CSP(I') admits a robust algorithm, if there is a polynomial time
algorithm which

(1 —g(e),1 — e)-approximates CSP(I") (for every),

where g(¢) — 0 when ¢ — 0, and g(0) = 0.

» 2-SAT, HORN-SAT have robust algorithms Zwick'98

» If the decision problem for CSP(I') is NP-complete, then
CSP(IN) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan, Trevisan, Williamson'00
for larger Jonsson, Krokhin, Kuivinen'09)

» LIN-p has no robust algorithm Hastad'01

Between decision and approximation

Definition ()

CSP(I') admits a robust algorithm, if there is a polynomial time
algorithm which

(1 —g(e),1 — e)-approximates CSP(I") (for every),

where g(¢) — 0 when ¢ — 0, and g(0) = 0.

» 2-SAT, HORN-SAT have robust algorithms Zwick'98

» If the decision problem for CSP(I') is NP-complete, then
CSP(IN) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan, Trevisan, Williamson’'00
for larger Jonsson, Krokhin, Kuivinen'09)

» LIN-p has no robust algorithm Hastad'01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?

Decision CSPs and bounded width

» Poll" = clone of polymorphisms (operations compatible with
all relations in ')

» Complexity of the decision problem for CSP(I") controlled by
HSP(Pol ') Bulatov, Jeavons, Krokhin 00

Decision CSPs and bounded width

» Poll" = clone of polymorphisms (operations compatible with
all relations in ')

» Complexity of the decision problem for CSP(I") controlled by
HSP(Pol ') Bulatov, Jeavons, Krokhin 00

» CSP(I') has bounded width iff it can be solved by local
consistency checking

Decision CSPs and bounded width

» Poll" = clone of polymorphisms (operations compatible with
all relations in ')

» Complexity of the decision problem for CSP(I") controlled by
HSP(Pol ') Bulatov, Jeavons, Krokhin 00

» CSP(I') has bounded width iff it can be solved by local
consistency checking

» CSP(IN) has bounded width iff [“cannot encode linear

equations”, more precisely, HSP(Pol I') does not contain a
reduct of a module (for core 1y Barto, Kozik'09 Bulatov'09

Decision CSPs and bounded width

» Poll" = clone of polymorphisms (operations compatible with
all relations in ')

» Complexity of the decision problem for CSP(I") controlled by
HSP(Pol ') Bulatov, Jeavons, Krokhin 00

» CSP(I') has bounded width iff it can be solved by local
consistency checking

» CSP(IN) has bounded width iff [“cannot encode linear
equations”, more precisely, HSP(Pol I') does not contain a
reduct of a module (for core 1y Barto, Kozik'09 Bulatov'09

» Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Decision CSPs and bounded width

» Poll = clone of polymorphisms (operations compatible with
all relations in)

» Complexity of the decision problem for CSP(I") controlled by
HSP(Pol ') Bulatov, Jeavons, Krokhin 00

» CSP(IN) has bounded width iff it can be solved by local
consistency checking

» CSP(IN) has bounded width iff I “cannot encode linear
equations”, more precisely, HSP(Pol ') does not contain a
reduct of a module (for core 1y Barto, Kozik'09 Bulatov'09

» Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width !!!

Decision CSPs and bounded width

» Poll = clone of polymorphisms (operations compatible with
all relations in I")

» Complexity of the decision problem for CSP(I") controlled by
HSP(Pol ') Bulatov, Jeavons, Krokhin 00

» CSP(I) has bounded width iff it can be solved by local
consistency checking

» CSP(IN) has bounded width iff I “cannot encode linear
equations”, more precisely, HSP(Pol ') does not contain a
reduct of a module (for core 1y Barto, Kozik'09 Bulatov'09

» Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture ()
CSP(I') admits a robust algorithm iff CSP(I") has bounded width.

Universal algebra attacks robust approximation

» robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin'11

» = one direction of the Guruswami-Zhou conjecture is true

Universal algebra attacks robust approximation

» robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin'11

» = one direction of the Guruswami-Zhou conjecture is true

» Conjecture confirmed for width 1 CSPs
Kun, O'Donell, Tamaki, Yoshida, Zhou'11,
Dalmau, Krokhin'11.
width 1 iff linear programming relaxation can be used.

Universal algebra attacks robust approximation

» robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin'11
» = one direction of the Guruswami-Zhou conjecture is true
» Conjecture confirmed for width 1 CSPs
Kun, O'Donell, Tamaki, Yoshida, Zhou'11,
Dalmau, Krokhin'11.
width 1 iff linear programming relaxation can be used.

. Conjecture confirmed
Barto, Kozik'11.

Universal algebra attacks robust approximation

» robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin'11

» = one direction of the Guruswami-Zhou conjecture is true

» Conjecture confirmed for width 1 CSPs
Kun, O'Donell, Tamaki, Yoshida, Zhou'11,
Dalmau, Krokhin'11.
width 1 iff linear programming relaxation can be used.
» Conjecture confirmed Barto, Kozik'11l. Using a semidefinite
programming relaxation and Prague strategies.
» Randomized (1 — O(loglog(1/¢)/log(1/¢)),1 — £)-approx
algorithm

» Deterministic (1 — O(loglog(1/¢)/+/log(1/¢)),1 — £)-approx

algorithm

Universal algebra attacks robust approximation

» robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin'11

» = one direction of the Guruswami-Zhou conjecture is true

» Conjecture confirmed for width 1 CSPs
Kun, O'Donell, Tamaki, Yoshida, Zhou'11,
Dalmau, Krokhin'11.
width 1 iff linear programming relaxation can be used.
» Conjecture confirmed Barto, Kozik'11l. Using a semidefinite
programming relaxation and Prague strategies.
» Randomized (1 — O(loglog(1/¢)/log(1/¢)),1 — £)-approx

algorithm
» Deterministic (1 — O(loglog(1/¢)/+/log(1/¢)),1 — £)-approx
algorithm

» Bonus Krokhin'11l: even the quantitative dependence on ¢ is
+- controlled by polymorphisms.

This was (Part 4)
Problem solved

Now (Part 5)

Proof of a different result

MAX-CUT

A={-1,1}, T ={R}, R={(-1,1),(1,-1)} (inequality)
Instance Z: V = {x1,x2,...,}, C = R(x2, x1), R(x1, xa), . ..

MAX-CUT

A={-1,1}, T ={R}, R={(-1,1),(1,-1)} (inequality)
Instance Z: V = {x1,x2,...,}, C = R(x2, x1), R(x1, xa), . ..

Max-CSP — hard:

Find numbers f(x),x € V, f(x) € {—1,1} which maximize

‘C‘ R(x,y)eC

MAX-CUT

A={-1,1}, T ={R}, R={(-1,1),(1,-1)} (inequality)
Instance Z: V = {x1,x2,...,}, C = R(x2, x1), R(x1, xa), . ..

Max-CSP — hard:
Find numbers f(x),x € V, f(x) € {—1,1} which maximize

‘C‘ R(x,y)eC

SDP (semidefinite programming) relaxation — easy:
Find vectors g(x),x € V, |g(x)|?> = 1 which maximize
1 1 -g(x)ely)
SDPOpt(Z) = —- —=ed
pt(Z) | > 5

MAX-CUT cont'd

Find vectors g(x),x € V, |g(x)|?> = 1 which maximize

1 1—g(x)gly
SDPopt(I):ﬂ > %
R(x,y)eC

MAX-CUT cont'd

Find vectors g(x),x € V, |g(x)|?> = 1 which maximize

1 1—g(x)gly
SDPopt(I):ﬂ > %
R(x,y)eC

» SDPOpt(Z) > Opt(Z), if SDPOpt(Z) = 1 then Opt(Z) = 1.

MAX-CUT cont'd

Find vectors g(x),x € V, |g(x)|?> = 1 which maximize

1 1—g(x)gly
SDPopt(I):ﬂ > %
R(x,y)eC

» SDPOpt(Z) > Opt(Z), if SDPOpt(Z) = 1 then Opt(Z) = 1.
» We need to round the vector solution g to a reasonably good
assignment f

MAX-CUT cont'd

Find vectors g(x),x € V, |g(x)|?> = 1 which maximize

1 1—g(x)gly
SDPopt(I):ﬂ > %
R(x,y)eC

» SDPOpt(Z) > Opt(Z), if SDPOpt(Z) = 1 then Opt(Z) = 1.
» We need to round the vector solution g to a reasonably good
assignment f
» Choose a random hyperplane through the origin and choose

one side S
» Put f(v) =1if g(v) € S and f(v) = —1 otherwise

MAX-CUT cont'd

Find vectors g(x),x € V, |g(x)|?> = 1 which maximize

1 1—g(x)gly
SDPopt(I):ﬂ > %
R(x,y)eC

» SDPOpt(Z) > Opt(Z), if SDPOpt(Z) = 1 then Opt(Z) = 1.
» We need to round the vector solution g to a reasonably good
assignment f

» Choose a random hyperplane through the origin and choose
one side S
» Put f(v) =1if g(v) € S and f(v) = —1 otherwise

» This is (0.87803, 3)-approx and robust algorithm

(Part 6)

Proof of one more different result

SDP relaxation for general CSP

Notation and simplifying assumptions:

» A — domain
» [contains only binary relations, CSP(I') has bounded width

» V —variables, 7 - instance, C — constraints

SDP relaxation for general CSP

Notation and simplifying assumptions:
» A — domain
» [contains only binary relations, CSP(I') has bounded width
» V —variables, Z - instance, C — constraints

» V {x,y} C V, x # y there is at most one constraint
ny(X7Y) eC

[picture]

SDP relaxation for general CSP

Notation and simplifying assumptions:

» A — domain

» [contains only binary relations, CSP(I') has bounded width
» V —variables, 7 - instance, C — constraints
>

V {x,y} C V, x # y there is at most one constraint
ny(X7Y) eC
Opt(Z) — optimal fraction of satisfied constraints

v

v

. and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

SDP relaxation for general CSP

Notation and simplifying assumptions:

» A — domain

» [contains only binary relations, CSP(I') has bounded width
» V —variables, 7 - instance, C — constraints
>

V {x,y} C V, x # y there is at most one constraint
ny(X7Y) eC
Opt(Z) — optimal fraction of satisfied constraints

v

v

. and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Let's try to use it for our problem.

Canonical SDP relaxation

Find vectors g(x,a) =: xa,x € V,a € A (notation: xg = >__ .5 Xa)

Canonical SDP relaxation

Find vectors g(x,a) =: xa,x € V,a € A (notation: xg = >__ .5 Xa)
such that for all x,y € V, a,be€ A

» (SDP1) x,yp >0

» (SDP2) x,x, =0if a# b

> (SDP3) x4 =ya, [xa|?=1

Canonical SDP relaxation

Find vectors g(x,a) =: xa,x € V,a € A (notation: xg = >__ .5 Xa)
such that for all x,y € V, a,be€ A

» (SDP1) x,yp >0

> (SDP2) x.xp=0ifa#b

> (SDP3) x4 =ya, [xa|?=1
maximizing

1
SDPOpt(Z) = il Z Z XaYb-
Ry (x,y)EC (a,b)ERyy

Intuition:

Canonical SDP relaxation

Find vectors g(x,a) =: xa,x € V,a € A (notation: xg = >__ .5 Xa)
such that for all x,y € V, a,be€ A

» (SDP1) x,yp >0

> (SDP2) x.xp=0ifa#b

> (SDP3) x4 =ya, [xa|?=1
maximizing

1
SDPOpt(Z) = il Z Z XaYb-
Ry (x,y)EC (a,b)ERyy

Intuition:

> X.Yp is a weight (nonnegative) of the pair (a, b) between
variables x, y

Canonical SDP relaxation

Find vectors g(x,a) =: xa,x € V,a € A (notation: xg = >__ .5 Xa)
such that for all x,y € V, a,be€ A

» (SDP1) x,yp >0

» (SDP2) x,x, =0if a# b

> (SDP3) x4 =ya, [xa|?=1

maximizing

SDPOpt(I):% Z Z XaYb-

Ry (x,y)EC (a,b)ERyy

Intuition:

> X.Yp is a weight (nonnegative) of the pair (a, b) between
variables x, y

» Sum of all weights (between x, y) is 1 from (SDP3)

Canonical SDP relaxation

Find vectors g(x,a) =: xa,x € V,a € A (notation: xg = >__ .5 Xa)
such that for all x,y € V, a,be€ A

» (SDP1) x,yp >0

» (SDP2) x,x, =0if a# b

> (SDP3) x4 =ya, [xa|?=1

maximizing

SDPOpt(I):% Z Z XaYb-

Ry (x,y)EC (a,b)ERyy

Intuition:

> X.Yp is a weight (nonnegative) of the pair (a, b) between
variables x, y

» Sum of all weights (between x, y) is 1 from (SDP3)

» We are trying to give small weights to pairs outside R,

» We try to produce a good assignment from the SDP output
vectors.

» We try to produce a good assignment from the SDP output
vectors.

» In particular, is it true that if SDPOpt(Z) = 1 then Z has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

» We try to produce a good assignment from the SDP output
vectors.

» In particular, is it true that if SDPOpt(Z) = 1 then Z has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

» So, assume SDPOpt(Z) = 1.

» We try to produce a good assignment from the SDP output
vectors.

» In particular, is it true that if SDPOpt(Z) = 1 then Z has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

» So, assume SDPOpt(Z) = 1.
> It follows that x,y, = O for every (a, b) € Ry

» We try to produce a good assignment from the SDP output
vectors.

» In particular, is it true that if SDPOpt(Z) = 1 then Z has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

» So, assume SDPOpt(Z) = 1.

> It follows that x,y, = O for every (a, b) € Ry

» Define Py, = {(a, b) € A% : xay5 > 0}. Replace R, with P,,.
If the new instance has a solution then the old one has a
solution.

» We try to produce a good assignment from the SDP output
vectors.

» In particular, is it true that if SDPOpt(Z) = 1 then Z has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

» So, assume SDPOpt(Z) = 1.

> It follows that x,y, = O for every (a, b) € Ry

» Define Py, = {(a, b) € A% : xay5 > 0}. Replace R, with P,,.
If the new instance has a solution then the old one has a
solution.

» Define P, = {a € A: x, # o}. And let’s see what we get

Random facts about Py, Py,

PXy:{(aab)€A2:anb>O},P ={a€A:x, #o0}

> P, is a subdirect subset of Py x P, (1-minimality)

Random facts about Py, Py,

PXy:{(aab)€A2:anb>O},P ={a€A:x, #o0}

> P, is a subdirect subset of Py x P, (1-minimality)

» It is a subset: If x,y, > 0 then x,,y, # 0
» It is subdirect: If x, # o then 0 # |x,]? = x.xa4 = X,y a,
therefore x,y, # 0 for some b

Random facts about Py, Py,

ny:{(a,b)eAzzxayb>O}, P.={ac A:x,+# o}
> P, is a subdirect subset of Py x P, (1-minimality)
For BC Py let B+ (x,y) ={ce A:(3be B) (b,c) € Py}

» For B C Py, we have yp(x,) =Xg + W,
where wxg =0, and w =0 iff B= B+ (x,y) — (x,y).

Random facts about Py, Py,

Py = {(a,b) € A% : xayp >0}, Py ={a€ A:x, # o}
> P, is a subdirect subset of Py x P, (1-minimality)

For BC Py let B+ (x,y) ={ce A:(3be B) (b,c) € Py}
» For B C Py, we have yp(x,) =Xg + W,

where wxg =0, and w =0 iff B= B+ (x,y) — (x,y).

> WXg = (YB+(x,y) — XB)XB = YB+(x,y)XB — XBXB = YB(x,y)XB —
yaxg = —(ya — y5+(x,y))XB = —YA-(B+(xy)XB8 =0
> WW == XA—BYB+(x,y)

Random facts about Py, Py,

ny:{(a,b)eAzzxayb>O}, P.={ac A:x,+# o}
> P, is a subdirect subset of Py x P, (1-minimality)
For BC Py let B+ (x,y) ={ce A:(3be B) (b,c) € Py}

» For B C Py, we have yp(x,) =Xg + W,
where wxg =0, and w =0 iff B= B+ (x,y) — (x,y).

A (correct) sequence of variables is called a pattern
B + p, B — p defined in a natural way for a pattern p

Random facts about Py, Py,

ny:{(a,b)eAz:xayb>O}, P.={ac A:x,+# o}
> P, is a subdirect subset of Py x P, (1-minimality)
For BC Py let B+ (x,y) ={ce A:(3be B) (b,c) € Py}

» For B C Py, we have yp(x,) =Xg + W,
where wxg =0, and w =0 iff B= B+ (x,y) — (x,y).

A (correct) sequence of variables is called a pattern

B + p, B — p defined in a natural way for a pattern p

For any B C P, and patterns p, g from x to x we have
» If B+p=Bthen B—p=2B

Random facts about Py, Py,

ny:{(a,b)eAz:xayb>O}, P.={ac A:x,+# o}
> P, is a subdirect subset of Py x P, (1-minimality)
For BC Py let B+ (x,y) ={ce A:(3be B) (b,c) € Py}

» For B C Py, we have yp(x,) =Xg + W,
where wxg =0, and w =0 iff B= B+ (x,y) — (x,y).

A (correct) sequence of variables is called a pattern
B + p, B — p defined in a natural way for a pattern p

For any B C P, and patterns p, g from x to x we have
» If B+p=Bthen B—p=2B
» fB+p+qg=Bthen B4+p=2B

Random facts about Py, P,, - summary

The new instance with constraints Py, (x, y) and subsets
P, C A, x € V satisfies
(for every x,y € V, B C P, and patterns p, g from x to x)

> It is 1-minimal (P, is a subdirect subset of Py x Py)
» IfB+p=Bthen B—p=8B
» IfB+p+qg=Bthen B+p=B

Weak Prague instance

An instance with constraints P, (x,y) and subsets P, C A, x € V
is a weak Prague instance if
(for every x,y € V, B C P, and patterns p, g from x to x)

> It is 1I-minimal (P, is a subdirect subset of Py x Py)
» IfB+p=Bthen B—p=8
» If B+p+qg=Bthen B+p=B

Weak Prague instance

An instance with constraints P, (x,y) and subsets P, C A, x € V
is a weak Prague instance if
(for every x,y € V, B C P, and patterns p, g from x to x)

> It is 1I-minimal (P, is a subdirect subset of Py x Py)
» IfB+p=Bthen B—p=8
» If B+p+qg=Bthen B+p=B

» Slightly weaker notion than Prague strategy

» Every Prague strategy has a solution (if Py, 's are invariant
under PolT...) BK

Weak Prague instance

An instance with constraints P, (x,y) and subsets P, C A, x € V
is a weak Prague instance if
(for every x,y € V, B C P, and patterns p, g from x to x)

> It is 1I-minimal (P, is a subdirect subset of Py x Py)
» IfB+p=Bthen B—p=8
» If B+p+qg=Bthen B+p=B

» Slightly weaker notion than Prague strategy

» Every Prague strategy has a solution (if Py, 's are invariant
under PolT...) BK

» Every weak Prague strategy has a solution K

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}

> If 0 is big enough then for almost all x, y we have P,, C R,,

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

General case

SDPOpt(lN) =1 —¢, € small
We define Py, = {(a, b) : xaxp > d}

If § is big enough then for almost all x,y we have P,, C R,

vV V. v Y

If § is small enough then the calculations will almost work...

v

General case

» SDPOpt(lN) =1 —¢, € small

> We define Py, = {(a, b) : x,xp > d}

> If 0 is big enough then for almost all x, y we have P,, C R,,
» If § is small enough then the calculations will almost work...
>

General case

» SDPOpt(lN) =1 —¢, € small

> We define Py, = {(a, b) : x,xp > d}

> If 0 is big enough then for almost all x, y we have P,, C R,,
» If § is small enough then the calculations will almost work...
>

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

B e
B e e e
> LW W......000......RRR......... K. .K...
» W W....0.....0....R...R...K.K...
» . W.W.W..0...0...RRR..... KK
» .W.W.W..0..0..R.R..K.K....

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

B e
B e e e
> LW W......000......RRR......... K. .K...
» W W....0.....0....R...R...K.K...
» . W.W.W..0...0...RRR..... KK
» .W.W.W..0..0..R.R..K.K....
> W..W..... 000....... R....... R...K....K......

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

B e
B e e e
> LW W......000......RRR......... K. .K...
» W W....0.....0....R...R...K.K...
» . W.W.W..0...0...RRR..... KK
» .W.W.W..0..0..R.R..K.K....
> W..W..... 000....... R....... R...K....K......

General case

» SDPOpt(lN) =1 —¢, € small
> We define Py, = {(a, b) : x,xp > d}
> If 0 is big enough then for almost all x, y we have P,, C R,,

» If § is small enough then the calculations will almost work...

B e

B e e e

> LW W......000......RRR......... K. .K...
» W W....0.....0....R...R...K.K...
» . W.W.W..0...0...RRR..... KK
» .W.W.W..0..0..R.R..K.K....
> W..W..... 000....... R....... R...K....K......
>

Final remarks

» Is the quantitative dependence optimal?

Final remarks

» Is the quantitative dependence optimal?

» How to improve derandomization to match the randomized
version?

Final remarks

» Is the quantitative dependence optimal?

» How to improve derandomization to match the randomized
version?

» What can we say about the quantitative dependence on ¢ in
general?

Wild guess: NU = polynomial loss

Final remarks

» Is the quantitative dependence optimal?
» How to improve derandomization to match the randomized
version?

» What can we say about the quantitative dependence on ¢ in
general?

Wild guess: NU = polynomial loss

» SDP, LP outputs < consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

Final remarks

» Is the quantitative dependence optimal?

» How to improve derandomization to match the randomized
version?

» What can we say about the quantitative dependence on ¢ in
general?
Wild guess: NU = polynomial loss

» SDP, LP outputs < consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

Thank you!

v

