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C. Jordan (1870), O. Hölder (1889).

~H = {1 = H0 / H1 / · · · / Hn = G}

~K = {1 = K0 / K1 / · · · / Km = G}

G. Grätzer, J.B. Nation (2010): ∃π, Hi/Hi−1 ↘↗ Kπ(i)/Kπ(i)−1

G. Czédli, E.T. Schmidt (2011): ∃!π as above.

subnormal = /∗. SNSub(G), a poset

H. Wielandt 1939: if ∃ ~H, then SNSub(G) is a sublattice of
Sub(G). Not hard: then SNSub(G) is lower semimodular.

Define CSLG( ~H, ~K) := ({Hi ∩Kj : i, j ∈ {0, . . . , n}};⊆)

∗http://www.math.u-szeged.hu/∼czedli/
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Fact: CSLG( ~H, ~K) is a ∩-subsemilattice of NSub(G), whence
lower semimodular.

Q: how many such lattices are for a given length n?

O: CSLG( ~H, ~K) is lower semimodular and meet-generated by two
chains.

Prop: Assume k = p1 . . . pn and L is lower semimodular, meet-
generated by two chains, and length(L) = n. Then the cyclic Ck
group of order k has ~H, ~K with L ∼= CSLCk(

~H, ~K).

Describes what we want to count.

By duality, it suffices to count slim (= join-generated by two
chains) semimodular lattices of length n, asymptotically.
∗http://www.math.u-szeged.hu/∼czedli/
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Lattice Theory + Combinatorics Czédli∗ at al, March 15, 2012 4′/16’

1. Describe these lattices (Cz-Sch) → permutations!

2. Count permutations (Cz-O-U).

**************

Part I: description by permutations.

Thm (Cz-Sch): Slim semimodular (planar) diagrams ↔ permu-

tations.

Need: a pair of reciprocal bijections.

∗http://www.math.u-szeged.hu/∼czedli/
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The locomotive as a math. tool Czédli∗ at al, March 15, 2012 6′/14’

D 7→ π by a locomotive. π 7→ D by quotient join-semilattice.

∗http://www.math.u-szeged.hu/∼czedli/
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Flip between two narrows Czédli∗ at al, March 15, 2012 7′/13’

Reflecting a segment ⇐⇒ inverting the restriction of π

∗http://www.math.u-szeged.hu/∼czedli/
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Segments Czédli∗ at al, March 15, 2012 9′/11’

The segments of π are {1}, {2}, {3,4,5,6}, {7,8}.

∗http://www.math.u-szeged.hu/∼czedli/
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Sectionally inverse or equal Czédli∗ at al, March 15, 2012 10′/10’

Lemma: L(π) ∼= L(τ) iff π and τ are “sectionally inverse or

equal”, denoted by π ∼ τ .

It suffices to determine |Sn/ ∼ |, asymptotically.

∗http://www.math.u-szeged.hu/∼czedli/
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Choosing the set {a1, , . . . , a2j} of non-fixed elements:
(
n
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)
ways.

The image of a1: 2j − 1 ways.

π(first element distinct from a1, aπ(1)): 2j−3 ways. Etc. Hence

|A0(n)|
|Sn| = 1

n!
∑bn/2c
j=1

(
n
2j

)
(2j − 1)(2j − 3)(2j − 5) . . . =

1
n!
∑bn/2c
j=1

n!
(n−2j)!·(2j)! ·

(2j)!
2j·j! =

∑bn/4c
j=1

1
(n−2j)!·2j·j! +

∑bn/2c
j=bn/4c+1

1
(n−2j)!·2j·j! =

∑′+∑′′.

∗http://www.math.u-szeged.hu/∼czedli/
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|A0(n)|
n! =

∑bn/4c
j=1

1
(n−2j)!·2j·j! +

∑bn/2c
j=bn/4c+1

1
(n−2j)!·2j·j! =

∑′+∑′′.

In
∑′, each denominator is at least (n − 2bn/4c)! ≥ bn/2c!, and

there are fewer than n summands. Hence
∑′ ≤ n·(bn/2c!)−1 → 0.

In
∑′′, each denominator is at least 2n/4 and there are fewer than

n summands, so
∑′′ ≤ n · 2−n/4 → 0. Thus,

lim
n→∞

|A0(n)|
n!

= 0.

So, involutions can be disregarded.

Large segment: consists of at least 3 elements.
∗http://www.math.u-szeged.hu/∼czedli/
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If π has exactly k segments onto which the restriction of π is

NOT an involution, then the ∼-block of π is 2k-element. Let

Ak(n) be the set of all these π. A0(n) is as before.

Sn = A0(n)∪A1(n)∪A2(n)∪A3(n)∪· · · = A0(n)∪A1(n)∪B(n). (1)

The number of ∼-blocks is:

Sn|/∼|/n! =
|A0(n)|
n!

+
|A1(n)|

2n!
+
|A2(n)|

4n!
+
|A3(n)|

8n!
∪ · · ·

︸ ︷︷ ︸
tail

. (2)

We already know that |A0(n)|/n!→ 0.We are going to show that

|B(n)/n!| → 0. Then, since this majorizes the tail, tail→ 0. From

|A0(n)|/n!→ 0, |B(n)/n!| → 0, and (1) we obtain |A1(n)/n!| → 1.

Hence |A1(n)/(2n!)| → 1/2 Finally, |A0(n)|/n!→ 0, tail → 0, and

|A1(n)/(2n!)| → 1/2 give the desired |Sn/∼|/n!→ 1/2.
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Suppose π ∈ B(n). Then there are at least two large π-segments.

We define the pivot element p(π) of π as the greatest element

of the leftmost large π-segment. Then 3 ≤ p(π) ≤ n − 3 since

there are at least two large π-segments.

Both the intervals [1, p(π)] = {1, . . . , p(π)} and [p(π) + 1, n] are

unions of π-segments, whence both are closed with respect to

π. Hence if we denote the restrictions of π to these intervals by

λ = πe[1,p(π)] and ρ = πe[p(π)+1,n], then π is determined by λ and

ρ.

Since λ ∈ Sp(π), there are at most p(π)! many such λ. (In fact,

there are much fewer.) Similarly, there are at most (n − p(π))!

many ρ.

∗http://www.math.u-szeged.hu/∼czedli/
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The last steps Czédli∗ at al, March 15, 2012 20′/0’

Taking the well-known fact
(n
3

)
≤
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4

)
≤ · · · ≤
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bn/2c
)

=
( n

dn/2e
)
≥
( n

dn/2e+ 1

)
≥ · · · ≥

( n

n− 3

)

at ≤∗ into account and counting the permutations according to

their pivot elements, we obtain:

|B(n)|
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∗http://www.math.u-szeged.hu/∼czedli/
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