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H={1=Hyp<Hy<---<Hp=G}

K={1=Ky<Ki<4---<aKm=G}
G. Gratzer, J.B. Nation (2010) dr, Hi/Hi—l \/ Kw(i)/Kw(i)—l

G. Czédli, E.T.Schmidt (2011): d!'«w as above.

subnormal = <*. SNSub(G), a poset

H.Wielandt 1939: if 3H, then SNSub(G) is a sublattice of
Sub(G). Not hard: then SNSub(G) is lower semimodular.

Define CSLg(H,K) := ({H;NKj :i,5 € {0,...,n}}; C)
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Fact: CSLo(H,K) is a N-subsemilattice of NSub(G), whence

lower semimodular.
Q: how many such lattices are for a given length n?

O: CSLG(EI, [?) is lower semimodular and meet-generated by two
chains.

Prop: Assume k£ = pi1...pn and L is lower semimodular, meet-
generated by two chalns ~and Iength(L) = n. Then the cyclic Cj
group of order k has H, K with L = CSLCk(H K).

Describes what we want to count.

By duality, it suffices to count slim (= join-generated by two
chains) semimodular lattices of length n, asymptotically.
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1. Describe these lattices (Cz-Sch) — permutations!

2. Count permutations (Cz-O-U).

sk sk sk sk sk sk sk sk >k sk sk ok ok sk
Part I. description by permutations.

Thm (Cz-Sch): Slim semimodular (planar) diagrams «— permu-
tations.

Need: a pair of reciprocal bijections.

*http://www.math.u-szeged.hu/~czedli/



The locomotive as a math. tool  czedi® at al, March 15, 2012 6//14’
D — 7 by a locomotive. = — D by quotient join-semilattice.

*http://www.math.u-szeged.hu/~czedli/



Flip between two narrows CzédIE at al, March 15, 2012 7'/13’

Reflecting a segment <«— inverting the restriction of =«

:3‘@( :&é@r
'q ;0 % 'q ;0 %

*http://www.math.u-szeged.hu/~czedli/



Segments CzédI® at al, March 15, 2012 9'/11

The segments of = are {1}, {2}, {3,4,5,6}, {7,8}.

*http://www.math.u-szeged.hu/~czedli/



Sectionally inverse or equal Czé&dI® at al, March 15, 2012 10’/10’

Lemma: L(w) = L(r) iff # and 7 are ‘sectionally inverse or

equal”, denoted by 7 ~ 7.

It suffices to determine |Sy,/ ~ |, asymptotically.

*http://www.math.u-szeged.hu/~czedli/
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Treatment for the involutions  czediE at al, March 15, 2012 12//8’
Ag(n) ;={nr € Sy :m=7"1}.

j: number of transpositions (2-cycles)

Choosing the set {aq,,-. .,azj} of non-fixed elements: (Z) Wways.

The image of a1: 25 — 1 ways.

w(first element distinct from a1, aﬂ(l)): 27— 3 ways. Etc. Hence

= ZW D (3)2i =121 =3)(2) - 5)... =

[n/2] n! 25)! _
n' 2.j=1 (n—2)1-(2) (23];' o

n/4 n
Z} /1J (n— 231)'2-7]' ZL /LTJ/4J+1 (n— 231)'239' =2 +3"

*http://www.math.u-szeged.hu/~czedli/
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Ag(n n/4 n
| O( )| Z]L /1J (n 2]:5'2]]'_'_2'_ /LTJ/AI_J_'_]_ (n 2]]j|233| _Z/+Z”'

In >/, each denominator is at least (n — 2|n/4])! > |n/2]|!, and
there are fewer than n summands. Hence 3/ < n-(|n/2])~1 — 0.

In Y7, each denominator is at least 2*/4 and there are fewer than
n summands, so Y <n.2""/% - 0. Thus,

im [Ag(n)|

n—oo n!

= 0.

So, involutions can be disregarded.

Large segment: consists of at least 3 elements.
*http://www.math.u-szeged.hu/~czedli/
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If m has exactly k£ segments onto which the restriction of =« is
NOT an involution, then the ~-block of =« is 2k_element. Let
Ar(n) be the set of all these . Ag(n) is as before.

Sn = Ag(n)UA1(n)UA>(n)UA3(n)U--- = Ag(n)UA1(n)UB(n). (1)
The number of ~-blocks is:
[Ao(n)] | [A1(n)| | [A2(n)| | [A3(n)

(37,! T 21n! T zzm,! + én! Jo

tail

Snl/~|/n! = (2)

4

We already know that |Ag(n)|/n! — 0.We are going to show that
|B(n)/n'| — 0. Then, since this majorizes the tail, tail — 0. From
|Ag(n)|/n!' — 0, |B(n)/n!| — 0, and (1) we obtain |A1(n)/n!| — 1.
Hence |A1(n)/(2n!)| — 1/2 Finally, |Ag(n)|/n! — 0, tail — 0, and
|A1(n)/(2n!)| — 1/2 give the desired |Sp/~|/n! — 1/2.

*http://www.math.u-szeged.hu/~czedli/
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Suppose w € B(n). Then there are at least two large m-segments.
We define the pivot element p(xw) of w as the greatest element
of the leftmost large m-segment. Then 3 < p(w) < n — 3 since
there are at least two large m-segments.

Both the intervals [1,p(7)] = {1,...,p(x)} and [p(x) + 1,n] are
unions of w-segments, whence both are closed with respect to
. Hence if we denote the restrictions of w to these intervals by
A=T|[1p(x)] @Nd p = T[[p(x)+1,n] then 7 is determined by A and
p.

Since A € S,(), there are at most p(m)! many such A. (In fact,
there are much fewer.) Similarly, there are at most (n — p(x))!
many p.

*http://www.math.u-szeged.hu/~czedli/
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Taking the well-known fact

(Z) < (Z) S S (Ln72J> — ((nfi;gq) > ((n/QTWL—I- 1) Z 2 (nig)

at <* into account and counting the permutations according to
their pivot elements, we obtain:

n—3 n—3 n—3
|B(n)| S 1 Z Ll (n—k)' _ Z k! - (n—k)! _ Z (n)—l
n! n! — — n! — k
) n—3 n~ —1 6
< ];3(3) S"'n(n—n(n—z) 0. Q.E.D.
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