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Combinatorics and algebra

Combinatorics often lies at the heart of problems in algebra we are interested
in solving...

“[Roger] Lyndon produces elegant mathematics and thinks in
terms of broad and deep ideas . . . I once asked him whether there
was a common thread to the diverse work in so many different
fields of mathematics, he replied that he felt the problems on which
he had worked had all been combinatorial in nature.”

K. I. Appel, in Contributions to Group Theory, 1984.



Combinatorics: (0, 1)-matrices

C1 C2 C3 C4

R1
R2
R3

 1 0 1 1
1 1 0 0
0 0 1 0


R1

R2

R3

C1

C2

C3

C4

(0, 1)-matrix Bipartite graph



(0, 1)-matrices and connectedness

1 1 0
0 0 1
0 1 1


0 1 0

1 1 0
0 0 1



I The 1s in the matrix are connected if any pair of entries 1 is connected
by a sequence of 1s where adjacent terms in the sequence belong to
same row/column.



Combinatorics

Symbols
A = {♥,,,☼,�}

Table

M =


☼ ♥ , ♥
� ☼ ☼ �
☼ � ☼ ☼
, ☼ , ♥



For each symbol x we can ask whether the xs are connected in M.

Let ∆(x) be a graph with vertices the occurrences of the symbol x and
symbols in the same row/col connected by an edge.



Connectedness in tables

M =


☼ ♥ , ♥
� ☼ ☼ �
☼ � ☼ ☼
, ☼ , ♥



�

�

�

∆(�) is not connected

☼

☼

☼

☼ ☼

☼ ☼

∆(☼) is connected



Tables in algebra
Multiplication tables

Group multiplication tables

1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

I The multiplication table of a group is a Latin square, so..
I None of the graphs ∆(x) will be connected.



Tables in algebra
Multiplication tables

Multiplication table of a field.

Field with three elements F = {0, 1, 2}.

0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

I ∆(0) is connected
I ∆(f ) is not connected for every f 6= 0



Tables in algebra
Vectors

F = {0, 1}, vectors in F3, entries in table from F0
0
0

 0
0
1

 0
1
0

 0
1
1

 1
0
0

 1
0
1

 1
1
0

 1
1
1


(0, 0, 0) 0 0 0 0 0 0 0 0
(0, 0, 1) 0 1 0 1 0 1 0 1
(0, 1, 0) 0 0 1 1 0 0 1 1
(0, 1, 1) 0 1 1 0 0 1 1 0
(1, 0, 0) 0 0 0 0 1 1 1 1
(1, 0, 1) 0 1 0 1 1 0 1 0
(1, 1, 0) 0 0 1 1 1 1 0 0
(1, 1, 1) 0 1 1 0 1 0 0 1

I For every symbol x in the table ∆(x) is connected.
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Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents e = e2 of S

Definition. S is idempotent generated if 〈E(S)〉 = S

I Many natural examples
I Howie (1966) - Tn \ Sn, the non-invertible transformations;
I Erdös (1967) - singular part of Mn(F), semigroup of all n× n matrices

over a field F;
I Putcha (2006) - conditions for a reductive linear algebraic monoid to have

the same property.
I Idempotent generated semigroups are “general”

I Every semigroup S embeds into an idempotent generated semigroup.
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Free idempotent generated semigroups
A problem in algebra

S - semigroup, E = E(S) - idempotents of S

Let IG(E) denote the semigroup defined by the following presentation.

IG(E) = 〈E | e · f = ef (e, f ∈ E, {e, f} ∩ {ef , fe} 6= ∅) 〉

IG(E) is called the free idempotent generated semigroup on E.

Theorem (Easdown (1985))
Let S be an idempotent generated semigroup with E = E(S). Then IG(E) is
an idempotent generated semigroup and there is a surjective homomorphism
φ : IG(E)→ S which is bijective on idempotents.
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First steps towards understanding IG(E)

Conclusion. It is important to understand IG(E) if one is interested in
understanding an arbitrary idempotent generated semigroups.

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?
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Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

I Work of Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee
(2002) led to a conjecture that all these groups must be free groups.

I Brittenham, Margolis & Meakin (2009) - gave the first counterexamples
to this conjecture obtaining the groups

I Z⊕ Z and F∗ where F is an arbitrary field.

I Gray & Ruskuc (2012) proved that every group is a maximal subgroup
of some free idempotent generated semigroup.

New focus
What can be said about maximal subgroups of IG(E) where E = E(S) for
semigroups S that arise in nature?
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The full linear monoid

F - arbitrary field, n ∈ N

Mn(F) = {n× n matrices over F}.

I Plays an analogous role in semigroup theory as the general linear group
does in group theory.

I Important in a range of areas:
I Representation theory of semigroups
I Putcha–Renner theory of linear algebraic monoids and finite monoids of

Lie type

Aim
Investigate the above problem in the case S = Mn(F) and E = E(S).
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Properties of Mn(F)

Theorem (J.A. Erdös (1967))

〈E(Mn(F))〉 = {identity matrix and all non-invertible matrices}.

I Mn(F) may be partitioned into the sets

Dr = {A : rank(A) = r}, r ≤ n,

(these are the D-classes).
I The maximal subgroups in Dr are isomorphic to GLr(F).



The problem

By Easdown (1985) we may identify

E = E(Mn(F)) = E(IG(E)).

Let

W =

[
Ir 0
0 0

]
∈ Dr ⊆ Mn(F)

where Ir denotes the r × r identity matrix.

W is an idempotent matrix of rank r.

Problem: Identify the maximal subgroup HW of

IG(E) = 〈E | e · f = ef (e, f ∈ E, {e, f} ∩ {ef , fe} 6= ∅) 〉

containing W.

General fact: HW is a homomorphic preimage of GLr(F).
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Results

n ∈ N, F - field, E = E(Mn(F)),

W ∈ Mn(F) - idempotent of rank r

HW = maximal subgroup of IG(E)

Theorem (Brittenham, Margolis, Meakin (2009))
For n ≥ 3 and r = 1 we have HW ∼= GLr(F) ∼= F∗.

I This result provided the first example of a torsion group that arises as a
maximal subgroup of a free idempotent generated semigroup.

Theorem (Dolinka, Gray (2012))
Let n and r be positive integers with r < n/3. Then HW ∼= GLr(F).
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Recent results

Our proof builds on ideas developed in the following recent papers:

M. Brittenham, S. W. Margolis, and J. Meakin,
Subgroups of the free idempotent generated semigroups need not be
free.
J. Algebra 321 (2009), 3026–3042.

M. Brittenham, S. W. Margolis, and J. Meakin,
Subgroups of free idempotent generated semigroups: full linear
monoids.
arXiv: 1009.5683.

R. Gray and N. Ruškuc,
On maximal subgroups of free idempotent generated semigroups.
Israel J. Math. (to appear).

R. Gray and N. Ruškuc,
Maximal subgroups of free idempotent generated semigroups over the
full transformation monoid.
Proc. London Math. Soc. (to appear)



Step 1: Writing down a presentation for HW

Definition
A matrix is in reduced row echelon form (RRE form) if:

I rows with at least one nonzero element are above any rows of all zeros
I the leading coefficient (the first nonzero number from the left) of a

nonzero row is always strictly to the right of the leading coefficient of
the row above it, and

I every leading coefficient is 1 and is the only nonzero entry in its
column.

Examples 1 0 0 5
0 1 0 3
0 0 1 7

 ,
 1 2 0 5

0 0 1 7
0 0 0 0

 ,
 1 0 2 0

0 1 1 0
0 0 0 1

 .



Step 1: Writing down a presentation for HW

n, r ∈ N fixed with r < n

Yr = {r × n rank r matrices in RRE form}
Xr = {transposes of elements of Yr}

I Matrices in Yr have no rows of zeros, so have r leading columns.

e.g. n = 4, r = 3,

 1 0 2 0
0 1 1 0
0 0 0 1

 ∈ Y3.

I Define a matrix Pr = (Pr(Y,X)) defined for Y ∈ Yr, X ∈ Xr by

Pr(Y,X) = YX ∈ Mr(F).
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The group HW is defined by the presentation with...

Generators: {aj | Aj is an entry in Pr satisfying Aj ∈ GLr(F) }

Relations:
(I) aj = 1 for all entries Aj in Pr satisfying Aj = Ir

(II) aja−1
k = ala−1

m ⇔ (Aj,Ak,Al,Am) is a singular square of
invertible r × r matrices from Pr with A−1

j Ak = A−1
l Am.

Aj Ak

Al Am
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Structure of the proof that HW
∼= GLr(F)

Step 1: Write down a presentation for HW .

Step 2: Prove that for any two entries Aj, Ak in the table Pr, if
Aj = Ak ∈ GLr(F) then aj = ak is deducible from the relations.

Step 3: Find defining relations for GLr(F) using the singular square relations
(II).



Step 2: Strong edges and relations

Definition
We say entries Aj and Ak with Aj = Ak are connected by a strong edge if

Aj Ak

Ir Ir

or

Aj

Ak

Ir

Ir

Lemma: If Aj = Ak ∈ GLr(F) are connected by a strong edge then aj = ak

is a consequence of the relations.

Aj Ak

Ir Ir

A singular square Using relations (I)

⇒

aj ak

1 1

⇒ aj = ak can be deduced



Step 2: Proving Ai = Aj invertible ⇒ ai = aj

Definition
Strong path = path composed of strong edges.

Aim
Prove that for every pair Aj, Ak of entries in Pr, if Aj = Ak then there is a
strong path from Aj to Ak.

Once proved this will have the following:

Corollary
For every pair Aj = Ak ∈ GLr(F) in the table Pr the relation aj = ak is a
consequence of the defining relations in the presentation.



The small box Q
Is the subtable of Pr containing entries whose row and column are labelled
by matrices of the form

(
Ir | A

)
and their transposes, where A is an

r × (n− r) matrix over F.



Strongly connecting the small box Q

Observation: In the small box every edge is a strong edge.

∴ strongly connecting the small box ≡ connecting the small box.



An equivalent problem
T = matrix obtained by taking Q and subtracting Ir from every entry

For every symbol X in the table Q the graph ∆(X) in Q is connected.
⇔ For every symbol X in the table T the graph ∆(X) in T is connected.



Connecting the small box

So, we have reduced the problem of strongly connecting the small box in Pr

to the following:

Let m, k ∈ N with k < m, and let

B = {all k × m matrices over F},
A = {all m× k matrices over F}.

Define the matrix T = T(B,A) by

T(B,A) = BA ∈ Mk(F), B ∈ B, A ∈ A.

Question: Is it true that for every symbol X ∈ Mk(F) in the table T the
graph ∆(X) is connected?



Déjà vu

F = {0, 1}, vectors in F3, entries in table from F0
0
0

 0
0
1

 0
1
0

 0
1
1

 1
0
0

 1
0
1

 1
1
0

 1
1
1


(0, 0, 0) 0 0 0 0 0 0 0 0
(0, 0, 1) 0 1 0 1 0 1 0 1
(0, 1, 0) 0 0 1 1 0 0 1 1
(0, 1, 1) 0 1 1 0 0 1 1 0
(1, 0, 0) 0 0 0 0 1 1 1 1
(1, 0, 1) 0 1 0 1 1 0 1 0
(1, 1, 0) 0 0 1 1 1 1 0 0
(1, 1, 1) 0 1 1 0 1 0 0 1

I For every symbol x in the table ∆(x) is connected.



Combinatorial properties of tables

And it generalises...

Proposition
Let m, k ∈ N with k < m, and let

B = {all k × m matrices over F},
A = {all m× k matrices over F}.

Define the matrix T = T(B,A) by

T(B,A) = BA ∈ Mk(F), B ∈ B, A ∈ A.

Then for every symbol X ∈ Mk(F) in the table T the graph ∆(X) is
connected.

Corollary
For every pair Aj, Ak in the small box, if Aj = Ak then there is a strong path
in the small box from Aj to Ak.



Finishing off Step 2

Proposition: For every pair Aj, Ak of entries in Pr, if Aj = Ak then there is a
strong path between Aj and Ak. Thus, for every pair Aj = Ak ∈ GLr(F) in the
table Pr the relation aj = ak is deducible.



Structure of the proof that HW
∼= GLr(F)

Step 1: Write down a presentation for HW .

Step 2: Prove that for any two entries Aj, Ak in the table Pr, if
Aj = Ak ∈ GLr(F) then aj = ak is deducible from the relations.

Step 3: Find defining relations for GLr(F) among the singular square
relations (II).



Finishing off the proof

For any pair of matrices A,B ∈ GLr(F) we can find the following singular
square in Pr: 

0r×r

0r×r

Ir

0(n−3r)×r




Ir

0r×r

B

0(n−3r)×r


[ 0r×r Ir A 0r×(n−3r) ] A AB
[ 0r×r 0r×r Ir 0(n−3r)×r ] Ir B

I Every relation in the presentation holds in GLr(F).
I Conversely, every relation that holds in GLr(F) can be deduced from

the multiplication table relations that arise from the squares above.
I It follows that HW ∼= GLr(F) (when r < n/3).



Open problems

I What happens in higher ranks?

Conjecture (Brittenham, Margolis, Meakin (2009))
Let n and r be positive integers with r ≤ n/2. Then HW ∼= GLr(F).

I The same result might even be true for r < n− 1.

What we do know...

I We will not find the full multiplication inside the presentation in
general. Indeed, it can be shown that for certain finite Mn(F) and
r < n− 1 the number of generators aj in the presentation will be strictly
less than the number of elements in the corresponding general linear
group.

I The analogous result does hold for Tn, with r < n− 1, with the
symmetric groups Sr arising as maximal subgroups of IG(E) (Gray &
Ruskuc (2012)).
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