New Maximal Subsemigroups of the Semigroup of all Transformations on a countable set

Jörg Koppitz

Potsdam University

March 2012

 2002 L. Heindorf: The maximal clones on countable sets that include all permutations

- 2002 L. Heindorf: The maximal clones on countable sets that include all permutations
- 2005 M. Pinsker: Clones on uncountable sets that include all permutations

- 2002 L. Heindorf : The maximal clones on countable sets that include all permutations
- 2005 M. Pinsker: Clones on uncountable sets that include all permutations
- April 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set containing all permutations

- 2002 L. Heindorf: The maximal clones on countable sets that include all permutations
- 2005 M. Pinsker: Clones on uncountable sets that include all permutations
- April 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set containing all permutations
- September 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set.

• Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω :

- Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω :
- ullet setwise stabilizer of a non-empty finite subset of Ω

- Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω :
- ullet setwise stabilizer of a non-empty finite subset of Ω
- ullet the stabilizer of a finite partition of Ω

- Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω :
- ullet setwise stabilizer of a non-empty finite subset of Ω
- ullet the stabilizer of a finite partition of Ω
- the stabilizer of an ultrafilter on Ω .

 \bullet Let Ω be countable

- \bullet Let Ω be countable
- \bullet Ω^Ω semigroup of all mappings on the set Ω

- ullet Let Ω be countable
- \bullet Ω^Ω semigroup of all mappings on the set Ω
- $U\subset\Omega^{\Omega}$

- ullet Let Ω be countable
- ullet Ω^Ω semigroup of all mappings on the set Ω
- $U \subset \Omega^{\Omega}$
- $W \leq \Omega^{\Omega}$, where each $\alpha \in U$ is a generator modulo W

- ullet Let Ω be countable
- ullet Ω^Ω semigroup of all mappings on the set Ω
- $U \subset \Omega^{\Omega}$
- ullet $W \leq \Omega^{\Omega}$, where each $lpha \in U$ is a generator modulo W
- $W \leq S \leq \Omega^{\Omega}$

- ullet Let Ω be countable
- ullet Ω^Ω semigroup of all mappings on the set Ω
- $U \subset \Omega^{\Omega}$
- ullet $W \leq \Omega^{\Omega}$, where each $lpha \in U$ is a generator modulo W
- $W \leq S \leq \Omega^{\Omega}$

Problem

Characterization of all maximal subsemigroups of S

Notations

ullet we define a set $\mathcal{H}(\emph{U}, \emph{W})$

Notations

ullet we define a set $\mathcal{H}(\mathit{U},\mathit{W})$

Definition

For $M \subseteq \mathcal{P}(\Omega^{\Omega})$, let J(M) be the set of all $A \subseteq \bigcup M$ with $\forall m \in M(A \cap m \neq \emptyset) \& \forall a \in A \exists m \in M(A \cap m = \{a\})$

Notations

ullet we define a set $\mathcal{H}(\textit{U},\textit{W})$

Definition

For $M \subseteq \mathcal{P}(\Omega^{\Omega})$, let J(M) be the set of all $A \subseteq \bigcup M$ with $\forall m \in M(A \cap m \neq \emptyset) \& \forall a \in A \exists m \in M(A \cap m = \{a\})$

Definition

For $U \subset \Omega^{\Omega}$ and $W \leq \Omega^{\Omega}$, we put $\operatorname{Gen}(U) := \{A \subseteq \Omega^{\Omega} \mid A \text{ is finite and } \langle A \rangle \cap U \neq \emptyset \}$ and $\mathcal{H}(U,W) := \{A \subseteq \Omega^{\Omega} \setminus W \mid A \in J(\operatorname{Gen}(U))\}$

Main theorem

Theorem

Let $W \leq S \leq \Omega^{\Omega}$ and $U \subset \Omega^{\Omega}$ such that each $\alpha \in U$ is a generator modulo W. Then the following statements are equivalent:

- (i) S is maximal.
- (ii) There is a set $H \in \mathcal{H}(U, W)$ with $S = \Omega^{\Omega} \setminus H$.

ullet Inj (Ω) the set of all injective but not surjective mappings on Ω

- ullet Inj (Ω) the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω

- ullet Inj (Ω) the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- ullet $C_p(\Omega):=\{lpha\in\Omega^\Omega\mid \mathit{rank}(lpha)=leph_0 \ \mathsf{and} \ \mathit{k}(lpha)=leph_0\}$

- ullet $\mathit{Inj}(\Omega)$ the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := |\{x \in im\alpha \mid |x\alpha^{-1}| = \aleph_0| \text{ (infinite contraction index of } \alpha\}$

- ullet Inj (Ω) the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := \left| \{ x \in im\alpha \mid \left| x\alpha^{-1} \right| = \aleph_0 \right| \text{ (infinite contraction index of } \alpha \text{)}$
- ullet $d(lpha):=|\Omega\setminus imlpha|$ (defect of lpha)

- ullet $\mathit{Inj}(\Omega)$ the set of all injective but not surjective mappings on Ω
- $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := \left| \{ x \in im\alpha \mid \left| x\alpha^{-1} \right| = \aleph_0 \right| \text{ (infinite contraction index of } \alpha \text{)}$
- $d(\alpha) := |\Omega \setminus im\alpha|$ (defect of α)
- $c(\alpha) := \sum\limits_{x \in im\alpha} (\left| x\alpha^{-1} \right| 1)$ (collapse of α)

- ullet Inj (Ω) the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := \left| \{ x \in im\alpha \mid \left| x\alpha^{-1} \right| = \aleph_0 \right| \text{ (infinite contraction index of } \alpha \text{)}$
- $d(\alpha) := |\Omega \setminus im\alpha|$ (defect of α)
- $c(\alpha) := \sum_{x \in im\alpha} (\left| x\alpha^{-1} \right| 1)$ (collapse of α)
- $\mathit{IF}(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid \mathit{rank}(\alpha) = \aleph_0, \ \mathit{c}(\alpha) = \aleph_0, \ \mathsf{and} \ \mathit{d}(\alpha) < \aleph_0 \}$

- ullet Inj (Ω) the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := \left| \{ x \in im\alpha \mid \left| x\alpha^{-1} \right| = \aleph_0 \right| \text{ (infinite contraction index of } \alpha \text{)} \right|$
- $d(\alpha) := |\Omega \setminus im\alpha|$ (defect of α)
- $c(\alpha) := \sum_{x \in im\alpha} (\left| x\alpha^{-1} \right| 1)$ (collapse of α)
- $\mathit{IF}(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid \mathit{rank}(\alpha) = \aleph_0, \ \mathit{c}(\alpha) = \aleph_0, \ \mathsf{and} \ \mathit{d}(\alpha) < \aleph_0 \}$
- $FI(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid \mathit{rank}(\alpha) = \aleph_0, \ d(\alpha) = \aleph_0, \ \mathsf{and} \ c(\alpha) < \aleph_0 \}$

- ullet Inj (Ω) the set of all injective but not surjective mappings on Ω
- ullet $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := \left| \{ x \in im\alpha \mid \left| x\alpha^{-1} \right| = \aleph_0 \right| \text{ (infinite contraction index of } \alpha \text{)}$
- $d(\alpha) := |\Omega \setminus im\alpha|$ (defect of α)
- $c(\alpha) := \sum_{x \in im\alpha} (\left| x\alpha^{-1} \right| 1)$ (collapse of α)
- $\mathit{IF}(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid \mathit{rank}(\alpha) = \aleph_0, \ \mathit{c}(\alpha) = \aleph_0, \ \mathsf{and} \ \mathit{d}(\alpha) < \aleph_0 \}$
- $FI(\Omega) := \{ \alpha \in \Omega^{\Omega} \mid rank(\alpha) = \aleph_0, \ d(\alpha) = \aleph_0, \ and \ c(\alpha) < \aleph_0 \}$

Theorem

(L. Heindorf 2002)

Let $S \leq \Omega^{\Omega}$ containing the symmetric group. S is maximal iff

$$S = \Omega^{\overline{\Omega}} \setminus H$$
 for some $H \in \{Inj(\Omega), Sur(\Omega), C_p(\Omega), IF(\Omega), FI(\Omega)\}$

Sur(X) and Inj(X)

 \bullet The maximal subsemigroups containing $\mathit{Inj}(\Omega)$ or $\mathit{Sur}(\Omega)$

Sur(X) and Inj(X)

ullet The maximal subsemigroups containing $\mathit{Inj}(\Omega)$ or $\mathit{Sur}(\Omega)$

Theorem

Let $S \leq \Omega^{\Omega}$ containing $Sur(\Omega)$. S is maximal iff $S = \Omega^{\Omega} \setminus Inj(\Omega)$ or $S = \Omega^{\Omega} \setminus FI(\Omega)$.

Sur(X) and Inj(X)

ullet The maximal subsemigroups containing $\mathit{Inj}(\Omega)$ or $\mathit{Sur}(\Omega)$

Theorem

Let $S \leq \Omega^{\Omega}$ containing $Sur(\Omega)$. S is maximal iff $S = \Omega^{\Omega} \setminus Inj(\Omega)$ or $S = \Omega^{\Omega} \setminus FI(\Omega)$.

Theorem

Let $S \leq \Omega^{\Omega}$ containing $Inj(\Omega)$. S is maximal iff $S = \Omega^{\Omega} \setminus Sur(\Omega)$ or $S = \Omega^{\Omega} \setminus IF(\Omega)$ or $S = \Omega^{\Omega} \setminus C_p(\Omega)$.

ullet maximal subsemigroups containing $FI(\Omega)$ (using main theorem)

 \bullet maximal subsemigroups containing $\mathit{FI}(\Omega)$ (using main theorem)

Lemma

 $FI(\Omega)$ is a subsemigroup of Ω^{Ω} .

 \bullet maximal subsemigroups containing $\mathit{FI}(\Omega)$ (using main theorem)

Lemma

 $\mathsf{FI}(\Omega)$ is a subsemigroup of Ω^Ω .

Lemma

Each $\alpha \in C_p(\Omega) \cap Sur(\Omega)$ is a generator modulo $FI(\Omega)$.

ullet maximal subsemigroups containing $FI(\Omega)$ (using main theorem)

Lemma

 $FI(\Omega)$ is a subsemigroup of Ω^{Ω} .

Lemma

Each $\alpha \in C_p(\Omega) \cap Sur(\Omega)$ is a generator modulo $FI(\Omega)$.

Theorem,

Let $S \leq \Omega^{\Omega}$ containing $FI(\Omega)$. S is maximal iff $S = \Omega^{\Omega} \setminus H$ for some $H \in \mathcal{H}(C_p(\Omega) \cap Sur(\Omega), FI(\Omega))$.

ullet maximal subsemigroups containing $\mathit{IF}(\Omega)$ (using main theorem)

 \bullet maximal subsemigroups containing $\mathit{IF}(\Omega)$ (using main theorem)

Lemma

 $\mathit{IF}(\Omega)$ is a subsemigroup of Ω^{Ω} .

ullet maximal subsemigroups containing $\mathit{IF}(\Omega)$ (using main theorem)

Lemma

 $\mathit{IF}(\Omega)$ is a subsemigroup of Ω^{Ω} .

Lemma

Each $\alpha \in FI(\Omega) \cap Inj(\Omega)$ is a generator modulo $IF(\Omega)$.

ullet maximal subsemigroups containing $\mathit{IF}(\Omega)$ (using main theorem)

Lemma

 $\mathit{IF}(\Omega)$ is a subsemigroup of Ω^{Ω} .

Lemma

Each $\alpha \in \mathit{FI}(\Omega) \cap \mathit{Inj}(\Omega)$ is a generator modulo $\mathit{IF}(\Omega)$.

Theorem

Let $S \leq \Omega^{\Omega}$ containing $IF(\Omega)$. S is maximal iff $S = \Omega^{\Omega} \setminus H$ for some $H \in \mathcal{H}(Inj(\Omega) \cap FI(\Omega), IF(\Omega))$.

infinite contraction index

ullet maximal subsemigroups containing $\mathcal{C}_p(\Omega)$ (using main theorem)

infinite contraction index

ullet maximal subsemigroups containing $\mathcal{C}_p(\Omega)$ (using main theorem)

Lemma

Each $\alpha \in FI(\Omega) \cap Inj(\Omega)$ is a generator modulo $\langle C_p(\Omega) \rangle$.

infinite contraction index

ullet maximal subsemigroups containing $\mathcal{C}_p(\Omega)$ (using main theorem)

Lemma

Each $\alpha \in FI(\Omega) \cap Inj(\Omega)$ is a generator modulo $\langle C_p(\Omega) \rangle$.

Theorem

Let $S \leq \Omega^{\Omega}$ containing $IF(\Omega)$. S is maximal iff $S = \Omega^{\Omega} \setminus H$ for some $H \in \mathcal{H}(Inj(\Omega) \cap FI(\Omega), C_p(\Omega))$.