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Commuting operations

Generalized

W et A be an arbitrary set, and n and m positive integers.
neutral

element and
o fgae We denote [n] := {1,...,n}.
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Definition
We say that f: A” — Aand g: A™ — A commute if

g(f(au, ai, .- -, 31n)7 B f(am1, am2, -+, amn))

= f(g(alhaﬂ,. . .,aml), e ,g(al,,,ag,,, .. .,am,,)),

for all ajj € A (i € [m], j € [n]).

If f and g commute, then we write f 1 g.
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o g( ann an - am )= a
g( am an - am )= @
g( anl dam ce anm ) = GCp
~ ~ ~ ~
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An algebra A = (A; F) is called entropic if every pair of its
fundamental operations commute.
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terms t1,...,t, of A such that A satisfies the identity
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g(f(xll,...,x,,l),...,f(xlm,...,x,,m)) ~

f(tl(Xll, . ,le), abag tn(an, . ,Xnm)).
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g(f(xll,...,x,,l),...,f(xlm,...,x,,m)) ~

f(tl(Xll, . ,le), abag tn(an, . ,Xnm)).

Entropy implies generalized entropy.
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element and m Every commutative semigroup is entropic.

in inverse

semigroups m There are non-commutative semigroups that are entropic,
& Lehtonen e.g., any left-zero band (a groupoid satisfying xy =~ x).

m The variety of groupoids satisfying
(x1x2)(x3xa) =~ (x3x1)(X2xa)

has the generalized entropic property but it is not entropic
(Adaricheva, Pilitowska, Stanovsky (2008)). Thus, there
exist non-commutative semigroups that have the
generalized entropic property but are not entropic.
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f(Al,...,An) = {f(al,...,an)|a1 eAl,...,a,,EA,,}

of its (nonempty) subalgebras A;, ..., A, is again a subalgebra.
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f(Al,...,An) = {f(al,...,an)|a1 GAl,...,anEAn}

of its (nonempty) subalgebras A;, ..., A, is again a subalgebra.

Theorem (Adaricheva, Pilitowska, Stanovsky (2008))

Let V be a variety of algebras. Then each algebra in V has the
subalgebras property if and only if each algebra in V' has the
generalized entropic property.
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Subalgebras property and generalized entropy

Definition
An algebra A = (A; F) is said to have the subalgebras property
if, for each n-ary operation f € F, the complex product

f(Al,...,An) = {f(al,...,an)|a1 GAl,...,anEAn}

of its (nonempty) subalgebras A;, ..., A, is again a subalgebra.

Theorem (Adaricheva, Pilitowska, Stanovsky (2008))

Let V be a variety of algebras. Then each algebra in V has the
subalgebras property if and only if each algebra in V' has the
generalized entropic property.

N.B. For an algebra, the subalgebras property does not
necessarily imply generalized entropy.



Neutral elements

Generalized .
entropy in Definition
algebras with ) : .
neutral An element e € A is neutral for an operation f: A" — A, if
element and
in inverse

semigroups f(a,e’.”,e):f(e’a’e,...,e):---:f(e,...,e,a):a

E. Lehtonen

for every a € A.
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for every a € A.

Definition
An element e € A is neutral for an algebra (A; F) if e is neutral
for each operation f € F.
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for every a € A.

Definition
An element e € A is neutral for an algebra (A; F) if e is neutral
for each operation f € F.

m Every e € A is neutral for the identity map on A; this is the
only unary operation that has a neutral element.

m Nullary operations do not have neutral elements.

m If e is neutral for an algebra (A; F), then {e} is a
subalgebra of (A; F).



Generalized entropy in algebras with a neutral

element

Generalized

entropy in
algebras with

heutral Theorem (Adaricheva, Pilitowska, Stanovsky (2008))
element and

in inverse

ULl Let (A; F) be an algebra with a neutral element. Then (A; F)
AN has the generalized entropic property if and only if it is entropic.
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ULl Let (A; F) be an algebra with a neutral element. Then (A; F)
AN has the generalized entropic property if and only if it is entropic.

Let A = (A; F) be an algebra of type T with a neutral element
e. Then A has the generalized entropic property (or,
equivalently, A is entropic), if and only if there exists a
commutative monoid (A; f,e) such that A is the T-algebra
derived from f.
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Dl Let f: A" — A n>1. For £ >0, define the operation f(©) of

in inverse

semigroups arity N(e) = K(n — 1) =+ 1 rchrSiVely as
E. Lehtonen u f(o) = |dA,

m for £ >0, let

f(ZJrl)(al, coan(e1)) =
f(f(g)(al, cee aN(g)), AN(L)+15 - -+ aN(ZJrl))?

for all a1,. .., an(e41) € A.
Note that f(1) = £.
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An algebra (A; (f;)ics) of type 7 = (nj)ic is the T-algebra
derived from f, if for every i € I, there exists an integer ¢; > 0
such that n; = N(¢;) and f; = F().
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CRIERE  An inverse semigroup is an algebra A = (A4;-, 1) of type (2,1)
that satisfies the following identities:

mx-(y-z)=~(x-y)-z (associativity),

IX'X_1~X%X,

1 1. .1

X XX TRX
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m Idempotents commute.

m Elements of the form xx~1 and x~!x are idempotent.

m (x Dt xx
—1 -1, -1
B (xy) PRy ixTh
B xxKxK =~ xk and xkxkx—* ~ x=* for any natural

number k.
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Proof
Assume first that A = (A; -, 7!
m - L -, because (xy) - (

) is commutative. We have:
v) = (xu) - (yv);
m - |71 because (xy) 7t A (yx) Tt e xTly T
m 1L L trivially.
We conclude that A is entropic.

Assume then that A is entropic. Then (xy)~! ~ x~1y~!. On
the other hand, we have (xy)~! ~ y~1x~1. This implies that
Xy & yx, i.e., A is commutative. O
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An inverse semigroup has the generalized entropic property if
and only if it is commutative.
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X PxIx™",

where 0 < p<gq,0<r<gq, g>0. (Convention: x% is an

empty symbol.) The canonical form of the product
(Xfplehxffl)(Xfpzxqzxffz)

r

is X Px9x~", where

p=p1+n+p—min{q,n +p},
g=q1+n+p2+g—min{gr, rn + p2} + min{qg2, 1 + p2},
r=ri+p2+nrn—min{qg,n+p}.
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ti(x) =x"PxBIx" N, b(y)=y PyPy "

forsome0<p; <q #0,0<r<q,0<p2<q2#0,
0 < rn < go. Assume that A satisfies the identity

(xy) ! = t1(x)ta(y)-

Then there exist positive integers a and b such that A satisfies
the identity xy ~ y?x?.
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For example, consider the case when g1 = r; and p; =0, i.e.,

t;(x) = x%x~9. By the idempotency of x 1x we obtain
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x7H s (x(x X)) T &t (x) ta(x T Ix) R x XX

Since x91x~% is an idempotent, too, this implies that x 1 is a
product of idempotents and is hence itself an idempotent. Thus
every element of A is idempotent. Since idempotents of an
inverse semigroup commute, this implies that A is
commutative, i.e., A satisfies xy ~ yx.
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Mhsua  The proof is a lengthy case analysis, according to whether strict

n inverse. inequality or equality holds in each of the inequalities involving
P1, 91, 11, P2, g2, 2.

For example, consider the case when g1 = r; and p; =0, i.e.,

t;(x) = x%x~9. By the idempotency of x 1x we obtain
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x7H s (x(x X)) T &t (x) ta(x T Ix) R x XX

Since x91x~% is an idempotent, too, this implies that x 1 is a
product of idempotents and is hence itself an idempotent. Thus
every element of A is idempotent. Since idempotents of an
inverse semigroup commute, this implies that A is
commutative, i.e., A satisfies xy ~ yx.

Several other cases ... ]
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x3tL g x2 g xbHL
2

7

xIx? &~ x & x2x7 1,



Inverse semigroups with generalized entropic
property

Generalized
entropy in Lemma
algebras with o o .
neutral Let A be an inverse semigroup that satisfies xy ~ y®x? for
element and 0.0 o 5 o
in inverse some positive integers a and b. Then A satisfies:

semigroups

xIxt & x 2 xPHIxT,
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Xa+1 ~ X2 ~ Xb+1,

x—1x2 25 x m5 x2x—1

x & x(x71x) & (x 1x)Px? & xIxx? & xIxHL
x & (xx Hx = xP(xx 1) & xPxx ! & xPTLx

x XX 1x5"“1 x3atL
b+1

X2~ Xb+1

Follows immediately from (1) and (2). O

~
~
~
~

N

XNX
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Let A be an inverse semigroup that satisfies xy ~ y?x? for
some positive integers a and b. Then A is commutative.
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Let A be an inverse semigroup that satisfies xy ~ y?x? for
some positive integers a and b. Then A is commutative.

Proof.

Xy ~ ybxa ~ yb—lyXXa—l ~ yb—1y2y—1X—1X2Xa—1 ~

yb+1y—1X—1Xa+1 A yX. ]
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Thank you for your attention!



