
Universal homogeneous constraint structures
and the hom-equivalence classes of weakly

oligomorphic structures

Christian Pech
Maja Pech

17.03.2012



Weakly oligomorphic structures

Definition
A countable relational structure A is called weakly oligomorphic
if End(A) is oligomorphic. I.e., End(A) has of every arity only
finitely many invariant relations on A.

Examples for weakly oligomorphic structures

I finite structures,
I ω-categorical structures,
I retracts of weakly oligomorphic structures,
I reducts of homomorphism homogeneous structures over a

finite signature



Motivation
Define CSP(A) := {B | B finite, B→ A}
Theorem
If B is weakly oligomorphic and A is a countable structure, then
the following are equivalent:

1. A→ B,
2. Th∃+1 (A) ⊆ Th∃+1 (B),
3. Age(A)→ Age(B),
4. CSP(A) ⊆ CSP(B).

Theorem (Mašulović, MP ’11)
If A is weakly oligomorphic and B is countable and B |= Th(A),
then B is weakly oligomorphic.

Corollary
Let T be the first order theory of a weakly oligomorphic
structure. Then all countable models of T are
homomorphism-equivalent.



Hom-equivalence classes

Definition
Let A be a countable relational structure. Then the
hom-equivalence class E(A) of A is the class of all countable
structures B such that A→ B and B→ A.

We equip E(A) with a quasiorder:
For B,C ∈ E(A) we write B ↪→ C whenever there exists an
embedding from B into C.

We study the structure of (E(A), ↪→),
where A is a weakly oligomorphic structure.
Our first steps are to find (nice) smallest and greatest elements
in E(A).



Smallest elements

Theorem
Every weakly oligomorphic relational structure T is
homomorphism-equivalent to a finite or ℵ0-categorical
substructure C.

Theorem (Bodirsky ’07)
Every ℵ0-categorical relational structure T is
homomorphism-equivalent to a model-complete core C, which
is unique up to isomorphism, and ω-categorical or finite. . . .

Corollary
For a weakly oligomorphic structure A the class E(A) has (up to
isomorphism) a unique model-complete smallest element.



Greatest elements

Theorem
Let R be a countable relational signature, and let T be a
countable R-structure. Then E(T) has a largest element.
Moreover, if R is finite and T is weakly oligomorphic, then E(T)
has an ω-categorical element.

Theorem (Saracino ’73)
Let T be an ℵ0-categorical theory with no finite models. Then T
has a model-companion T ′. Moreover, T ′ is ℵ0-categorical, too.

Corollary
If A is a weakly oligomorphic structure over a finite signature,
then E(A) has (up to isomorphism) a unique model-complete,
ω-categorical largest element.

Observation
The age of a largest element in E(A) is at most CSP(A).



Strict Fraïssé-classes
If C is an age, then C := {A | A countable, Age(A) ⊆ C}.

Definition (Dolinka)
A Fraïssé-class C of relational structures is called strict
Fraïssé-class if every pair of morphisms in (C, ↪→) with the
same domain has a finite pushout in (C,→).

Observation
Note that these pushouts will always be amalgams. Thus the
strict amalgamation property postulates canonical amalgams.

Examples for strict Fraïssé-classes

I free amalgamation classes,
I the class of finite partial orders.

Definition
A sub-Fraïssé-class C of a strict Fraïssé-class U is called free in
U if it is closed with respect to canonical amalgams.



Universal structures

Theorem
Let U be a strict Fraïssé-class of relational structures, and let C
be a Fraïssé-class that is free in U . Let T ∈ U . Then

1. C ∩ CSP(T) has a universal element UC,T,
2. if the Fraïssé-limit of C and T each have an oligomorphic

automorphism group (i.e. each is finite or ω-categorical),
then C ∩ CSP(T) has a universal element UC,T that is finite
or ω-categorical.

If T ∈ C, then UC,T can be chosen as a co-retract of T.

Special case
R is a countable relational signature, T an R-structure, and
U = C is the class of all finite R-structures.



T-colored structures

Given
I a strict Fraïssé-class U ,
I a Fraïssé-class C, that is free in U , and
I T ∈ U .

Definition
A T-colored structure in C is a pair (A,a) such that A ∈ C and
a : A→ T is a homomorphism. The class of all such structures
is denoted by ColC(T).

Note
A countable structure A is in C ∩ CSP(T) if and only if there
exists f : A→ T such that (A,a) is a T-colored structure in C.



Morphisms for T-colored structures
Strong homomorphisms
f : (A,a)→ (B,b) is called a strong homomorphism if f : A→ B
is a homomorphism and b ◦ f = a. Analogously strong
embeddings and strong automorphisms are defined.
sAut(A,a) denotes the group of strong automorphisms.

Weak homomorphisms
A weak homomorphism from (A,a) to (B,b) is a pair (f ,g) such
that f : A→ B, g ∈ Aut(T), b ◦ f = g ◦ a. If f is an embedding
(an automorphism), then (f ,g) is called a weak embedding (a
weak automorphism). Composition is component-wise.
wAut(A,a) denotes the group of weak automorphisms.
cAut(A,a) := {f ∈ Aut(A) | ∃g ∈ Aut(T) : (f ,g) ∈ wAut(A,a)}.

Remark
I We have f : (A,a)→ (B,b) iff (f ,1T) : (A,a)→ (B,b).
I If a is surjective, then cAut(A,a) ∼= wAut(A,a).



Universal homogeneous T-colored structures

Theorem
There exists (U,u) ∈ ColC(T) such that

1. for every (A,a) ∈ ColC(T) there exists an embedding
ι : (A,a) ↪→ (U,u) (universality),

2. for every finite (A,a) ∈ ColC(T), and for all
ι1, ι2 : (A,a) ↪→ (U,u) there exists f ∈ sAut(U,u) such that
f ◦ ι1 = ι2 (homogeneity).

Moreover, all countable universal homogeneous T-colored
structures are mutually isomorphic.

Remark
I If F-Lim(C) is finite or ω-categorical, and if T is finite, then

sAut(U,u) is oligomorphic.
I If T ∈ C, then T is a retract of U.



w-homogeneity

Definition
(U,u) ∈ ColC(T) is called w-homogeneous if for every finite
(A,a) ∈ ColC(T), and for (f1,g2), (f2,g2) : (A,a) ↪→ (U,u) there
exists (f ,g) ∈ wAut(U,u) such that (f ,g) ◦ (f1,g1) = (f2,g2).

Proposition
Let (U,u) ∈ ColC(T) be universal and homogeneous. Then
(U,u) is w-homogeneous, too.

Remark
I If F-Lim(C) is finite or ω-categorical, and if T is finite or
ω-categorical, too, then cAut(U,u) is oligomorphic.



Universal homogeneous objects in categories

Definition
We call a category C a λ-amalgamation category if

1. all morphisms of C are monomorphisms,
2. C is λ-algebroidal,
3. C<λ has the joint embedding property,
4. C<λ has the amalgamation property.

Theorem (Droste, Göbel ’92)
Let λ be a regular cardinal, and let C be a λ-algebroidal
category in which all morphisms are monomorphisms. Then
there exists a C-universal, C<λ-homogeneous object in C if and
only if C is a λ-amalgamation category. Moreover, any two
C-universal, C<λ-homogeneous objects in C are isomorphic.



Amalgamation pairs

Definition
A pair of categories (A, Â) is called a λ-amalgamation pair if

1. A ≤ Â is isomorphism closed,
2. all morphisms of A are monomorphisms,
3. A is λ-algebroidal,
4. A<λ has the free joint embedding property in Â, and
5. A<λ has the free amalgamation property in Â.

Remark
λ-amalgamation pairs are a category-theoretic version of the
idea of free amalgamation classes and of strict amalgamation
classes



Theorem
Let (Â,A) be a λ-amalgamation pair, B be a λ-amalgamation
category, and let C be a category. Let F̂ : Â→ C, G : B→ C
and let F be the restriction of F̂ to A. Further suppose that

1. F̂ preserves weak coproducts and weak pushouts in A<λ,
2. F and G are λ-continuous,
3. F preserves λ-smallness,
4. G preserves monomorphisms,
5. for every A ∈ A<λ and for every B ∈ B<λ there are at most

λ morphisms in C(FA→ GB).
Then (F ↓ G) has a (F ↓ G)-universal,
(F ↓ G)<λ-homogeneous object. Moreover, up to isomorphism
there is just one such object in (F ↓ G).



Definition
A Fraïssé-class C has the Hrushovski property if for every A ∈ C
there exists a B ∈ C such that A ≤ B and such that every
isomorphism between substructures of A extends to an
automorphism of B.

Definition
Let G ≤ Sω. Then G is said to have the small index property if
every subgroup of index less than 2ℵ0 contains the stabilizer of
a finite tuple (i.e. subgroups of small index are open in the
topology of pointwise convergence on G).

Remark
I The Hrushovski-property of a free amalgamation class C

implies the small index property of the automorphism
group of F-Lim(C).

I The Hrushovski-property can straight-forwardly be defined
for Fraïssé-classes of finite constraint structures.



Link-structures
A finite R-structure A is called a link-structure, if either |A| = 1
or there exist a1, . . . ,an ∈ A such that A = {a1, . . . ,an} and for
some % ∈ R(n) we have (a1, . . . ,an) ∈ %A.

Link-type
If L is a set of link-structures, then we say that a structure A
has link type L if every substructure of A that is a link structure,
is isomorphic to some structure from L.

Free monotone amalgamation classes
A free amalgamation class is called monotone if it is a CSP, too.

Definition
Let C be a free monotone amalgamation class, L be a set of
link-structures. By CL we denote the class of all structures from
C whose link-type is L.

Remark
CL is a free amalgamation class, too.



Definition
A finite structure is called sparse if it has only finitely many
non-empty basic relations. A relational structure is called
sparse if all finite substructures are sparse.

Theorem
Let R be any relational signature, let C be a free, monotone
amalgamation class, and let L be a countable set of sparse
link-structures. Let T be any countable R-structure. Then
ColCL(T) has the Hrushovski property. If (U,u) is a universal
homogeneous T-colored structure in CL, then sAut(U,u) has
the small index property.

Remark
I The proof uses an adapted version of a criterion for the

(SIP) due to Herwig (which in turn generalizes
Hrushovski’s ideas from graphs to relational structures).

I If sAut(U,u) is oligomorphic, then it has uncountable
cofinality and the Bergman-property. (Kechris, Rosendal)


