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Abstract

We describe unary polynomial functions on finite groups G that are
semidirect products of an elementary abelian group of exponent p
and a cyclic group of prime order g, p # gq.

This is a joint work with prof. Kalle Kaarli (University of Tartu).



Definition

Given an algebraic structure A, an n-ary polynomial function on
A is a mapping A" — A that can be presented as a compostition of
fundamental operations of A, projection maps and constant maps.

Note
We consider only unary polynomial functions.



Examples

Example 1

Polynomial functions on a commutative ring R are precisely the
usual polynomial functions, that is, the functions f : R — R that
can be defined by the formula

f(x) = ap + arx + apx® + ... + asx®
where ag, a1,...,as € R.

Example 2

If Ais a left module over a ring R then a function f : A — Alis a
polynomial function on A if and only if there exist re Rand a € A
such that f(x) = rx 4 a for each x € A.



Examples

Example 3

Let (G;+) be a group. Then a function f : G — G is a polynomial
function if and only if there are a1, as,...asy1 € G and
€1,€,...,6s11 € Z, such that for each x € G

f(x)=a1+ex+a+ex+...+as+ ex+ asti1.

Example 4
If G is a finite group, any function f € P(G) has the following
form:

f(x)=(a1+x—a1)+(ax+x—ax)+...+(as—1+x—as—1) + as.



Studied cases

The size of P(G) is known
» for all groups with |G| < 100
» all simple groups
» all abelian groups
> the symmetric groups S,
» dihedral and generalized dihedral groups
» generalized quaternion groups
» dicyclic groups
» certain subdirectly irreducible groups (including the nonabelian
groups of order gp)

» general linear groups



The group in consideration

Our aim is to describe P(G) in case when G is a semidirect
product of an elementary abelian group of exponent p and a cyclic
group of prime order q, g # p.

Definition

Suppose that we are given two groups A and B, and a
homomorphism « : B — Aut A. The external semidirect product
G = A X, B is defined as the direct product of sets A x B with the
group operation

(31, bl) + (32, bg) = (31 + a(bl)(az), b1 + bz).



The group in consideration

We shall identify every a € A with (a,0) € G and every b € B with
(0,b) € G.
After such identifiction

» Ais a normal subgroup of G (A< G)

» B is a subgroup of G (B < G)

» b+a—b=a(b)(a) forallac A,bec B



Given finite G = A X, B natural homomorphism G — G/A induces
the surjective group homomorphism ¢ : P(G) — P(G/A).

K:=Ker® ={pe P(G) | p(G) C A}.

Let T be a transversal of cosets of K in P(G). Then each
polynomial of G has a unique representation in the form of
sum f +gwhere f € T, g € K.

Let \B|:q, B:{OZbQ,...7bq_1} and K,-:{p|b,.+A|p€K},
i=0,1,...,9— 1

Obviously, every p € K determines a g-tuple
(PlbotAs- -5 Plbg_1+4). Hence, we have a one-to-one mapping

V:K— Kox- - xKg_1.



Theorem 1 (E. Aichinger)

Let G =A<, Bandlet K, Ko,...,Kq—1, V be as defined above.
Assume that the homomorphism « is one-to-one and all

automorphisms a(b), b # 0, are fixed-point-free. Then the mapping
WV is bijective.

Clearly the mapping x; : Ki — Ko, f — g, where g(x) = f(b; + x),
i=0,...,9—1, is a bijection.

It follows that under assumptions of Theorem 1, in order to
understand the polynomials of G it suffices to know polynomials of
G/A and polynomials f € P(G) such that f(A) C A. In particular,
the following formula holds:

P(G)| = [P(G/A) - |Ko| Pl



Structure of the group G

In what follows G = A x,, B, where A = Z,’;, B = Zgq with p and g
distinct primes and « a non-trivial group homomorphism, that is,
la(B)| > 1.

Clearly
a(B) = {1,6,¢%....07 1},
where o(1) = ¢ € Aut(A) \ {1}.

Let S be the subring of End A generated by ¢. Then A has a
natural structure of an S-module.



The homomorphism « can be considered as a GF(p)-representation
of the group Zg. Since (g, p) = 1, the Maschke's Theorem implies
that « is completely reducible.

Maschke's Theorem

Let G be a finite group and let F be a field whose characteristic
does not divide the order of G. Then every F-representation of G is
completely reducible.



So
A:Al—I—AQ—I-...—I—Ak

where A;, i =1,..., k, are irreducible S-modules.
Let ¢; be the restriction of ¢ to A;, i =1,...,k.

Let B B B
A=A +A + ...+ Ak

where A;, i =1,..., k, are homogeneous components othhe
S-module A. If there exists i such that ¢; = 1, then let A; be the
sum of all such A; that ¢; = 1.

In the latter case we put C = A; and D = A, + - - - + A;. Obviously
A= C® D and it follows easily from the multiplication law that C
is the center of the group G. If there is no i with ¢; = 1, we put
C=1{0}and D = A.



Normal subgroups of the group G

Proposition 1

The group G is direct product of normal subgroups C and D x B.
Every normal subgroup of G is the sum of two normal subgroups of
G, one contained in C and the other in D x B.

The direct product C x (D x B) has no skew congruences.



Polynomial functions on the group G

From Proposition 1 we have that the mapping

x : P(G) = P(C) x P(D x B), x(p) = (plc, PlpxB)

is one-to-one. In fact, given x = y + z € G where x € C,
y € D x B, we have

p(x) = plc(y) + plpxs(2).

Due to the result of Kaarli and Mayr [1], Proposition 1 also implies
that x is surjective. Hence the problem of characterization of
polynomials of G reduces to the same problem for groups C and

D x B.

[1] K. Kaarli, P. Mayr, Polynomial functions on subdirect products,
Monatsh. Math. 159 (2010), 341-359.



Since for the abelian group C the problem is trivial, we have to deal
only with group D x B. In this situation Theorem 1 applies.

It follows that in order to describe polynomials of G one has to
describe polynomials of P(G/A) and the polynomials of G that
map A to A. The first problem is trivial because G/A ~ Z4 and
polynomials of Z have the form f(x) = kx + u with k,u € Zgq. In
particular, |[P(G/A)| = ¢°.

It remains to describe the polynomials of G that map A to A. As
above, let Ko = {pla|p € P(G). p(A) C A}.



Lemma 1
The set Ky consists of all functions f : A — A of the form
f(x) = s(x)+ awhere s € S, a € A. In particular,

[Kol = IS]- |A[.

It turns out that S is direct sum of Galois fields and these direct
summands S; are in one-to-one correspondence with the
homogenous components /Z\J-, Jj=1,...,1. Moreover, S; ~ GF(p™)
where m; is the dimension of any A; over GF(p) in A;.



Theorem 2

Let G = A X, B where A=7Z7 and B = Z, where p and q are
distinct primes. Assume that the center of G is trivial (equivalently,
a(1) is fixed-point-free). Let S be the subring of End A generated
by (1) and let A;,...,A; be a complete list of pairwise
non-isomorphic irreducible S-submodules of A. Denote |A;| = p™,
i=1,...,]. Then

|P(G)| = g?palmyttmitn)



Example 1

Let G=AX BwhereA:Zg, B = Z», and let

Then G = C x (D x B) where C = Z2 is the center of the group

G, D=17s, ¢|c = (é (1)> and ¢|p = (4) is fixed-point-free.
Each polynomial function p on G is of the form

p(x) = plc(y) + plpxB(2), x=y+2z€ G ye C,ze DxB.
Since D is a S-module, S = GF(5), we get using Theorem 2 that

IP(G)| = |P(C)||P(D x B)| =53%.22.52(1+3) — 22 . 511,



Example 2

Let G = A x BwhereA:Zg, B = Zo, and let

Then G = C x (D x B) where C = Zs is the center of the group
G, D= Z%, dlc = (1) dlp = <g 2) is fixed-point-free. Each

polynomial function p on G is of the form

p(x) =plc(y)+ ploxe(z), x=y+z€ G, ye C,ze D xB.
Since D is a (51 x Sp)-module, S = 51 x S, §1 = GF(5),

S> 22 GF(5), we get using Theorem 2 that

|P(G)| = |P(C)||P(D x B)| = 5% 2% . 52(1F143) = 22 512,



Example 3 (There's a mistake in it)

Let G = A x B where A=73, B =173, and let

0 0
¢ = 3 2.
2.2 3

Since the characteristic polynomial of ¢ is ..., S is direct sum
S1 x Sy where S; = GF(7), S» = GF(72). So the center of G is
trivial and ¢ is fixed-point-free. Using Theorem 2 we get that

O O N

|P(G)‘ — 32 . 73(1+2+3) — 32 . 718.



Example 4

Let G = A x B where A = 233, B = Z7, and let

00 1
o=[1 0 14
0 1 13
Since the characteristic polynomial of ¢ is x3 + 10x? 4 9x + 22, i.e.
irreducible cubic, A is simple S-module and S = GF(233%). So the

center of G is trivial and ¢ is fixed-point-free. Using Theorem 2 we
get that

|P(G)| = 77 -2373+3) = 72. 2342,



Thank youl!



