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Abstract
We describe unary polynomial functions on finite groups G that are
semidirect products of an elementary abelian group of exponent p
and a cyclic group of prime order q, p 6= q.

This is a joint work with prof. Kalle Kaarli (University of Tartu).



Definition
Given an algebraic structure A, an n-ary polynomial function on
A is a mapping An → A that can be presented as a compostition of
fundamental operations of A, projection maps and constant maps.

Note
We consider only unary polynomial functions.



Examples

Example 1
Polynomial functions on a commutative ring R are precisely the
usual polynomial functions, that is, the functions f : R → R that
can be defined by the formula

f (x) = a0 + a1x + a2x2 + . . .+ asx s

where a0, a1, . . . , as ∈ R .

Example 2
If A is a left module over a ring R then a function f : A→ A is a
polynomial function on A if and only if there exist r ∈ R and a ∈ A
such that f (x) = rx + a for each x ∈ A.



Examples

Example 3
Let (G ; +) be a group. Then a function f : G → G is a polynomial
function if and only if there are a1, a2, . . . as+1 ∈ G and
e1, e2, . . . , es+1 ∈ Z, such that for each x ∈ G

f (x) = a1 + e1x + a2 + e2x + . . .+ as + esx + as+1.

Example 4
If G is a finite group, any function f ∈ P(G ) has the following
form:

f (x) = (a1 + x − a1) + (a2 + x − a2) + . . .+ (as−1 + x − as−1) + as .



Studied cases

The size of P(G ) is known
I for all groups with |G | ≤ 100
I all simple groups
I all abelian groups
I the symmetric groups Sn

I dihedral and generalized dihedral groups
I generalized quaternion groups
I dicyclic groups
I certain subdirectly irreducible groups (including the nonabelian

groups of order qp)
I general linear groups



The group in consideration

Our aim is to describe P(G ) in case when G is a semidirect
product of an elementary abelian group of exponent p and a cyclic
group of prime order q, q 6= p.

Definition
Suppose that we are given two groups A and B , and a
homomorphism α : B → Aut A. The external semidirect product
G = Aoα B is defined as the direct product of sets A× B with the
group operation

(a1, b1) + (a2, b2) = (a1 + α(b1)(a2), b1 + b2).



The group in consideration

We shall identify every a ∈ A with (a, 0) ∈ G and every b ∈ B with
(0, b) ∈ G .
After such identifiction

I A is a normal subgroup of G (A E G )
I B is a subgroup of G (B ≤ G )
I b + a − b = α(b)(a) for all a ∈ A, b ∈ B



Given finite G = Aoα B natural homomorphism G → G/A induces
the surjective group homomorphism Φ : P(G )→ P(G/A).

K := KerΦ = {p ∈ P(G ) | p(G ) ⊆ A}.

Let T be a transversal of cosets of K in P(G ). Then each
polynomial of G has a unique representation in the form of
sum f + g where f ∈ T , g ∈ K .

Let |B| = q, B = {0 = b0, . . . , bq−1} and Ki = {p|bi+A | p ∈ K},
i = 0, 1, . . . , q − 1.

Obviously, every p ∈ K determines a q-tuple
(p|b0+A, . . . , p|bq−1+A). Hence, we have a one-to-one mapping

Ψ : K → K0 × · · · × Kq−1 .



Theorem 1 (E. Aichinger)
Let G = A Eα B and let K , K0, . . . ,Kq−1, Ψ be as defined above.
Assume that the homomorphism α is one-to-one and all
automorphisms α(b), b 6= 0, are fixed-point-free. Then the mapping
Ψ is bijective.

Clearly the mapping κi : Ki → K0, f 7→ g , where g(x) = f (bi + x),
i = 0, . . . , q − 1, is a bijection.

It follows that under assumptions of Theorem 1, in order to
understand the polynomials of G it suffices to know polynomials of
G/A and polynomials f ∈ P(G ) such that f (A) ⊆ A. In particular,
the following formula holds:

|P(G )| = |P(G/A)| · |K0||B| .



Structure of the group G

In what follows G = A oα B , where A = Zn
p, B = Zq with p and q

distinct primes and α a non-trivial group homomorphism, that is,
|α(B)| > 1.

Clearly
α(B) = {1, φ, φ2, . . . , φq−1},

where α(1) = φ ∈ Aut(A) \ {1}.

Let S be the subring of End A generated by φ. Then A has a
natural structure of an S-module.



The homomorphism α can be considered as a GF(p)-representation
of the group Zq. Since (q, p) = 1, the Maschke’s Theorem implies
that α is completely reducible.

Maschke’s Theorem
Let G be a finite group and let F be a field whose characteristic
does not divide the order of G . Then every F -representation of G is
completely reducible.



So
A = A1 + A2 + . . .+ Ak

where Ai , i = 1, . . . , k , are irreducible S-modules.

Let φi be the restriction of φ to Ai , i = 1, . . . , k .

Let
A = Ã1 + Ã2 + . . .+ Ãk

where Ãi , i = 1, . . . , k , are homogeneous components of the
S-module A. If there exists i such that φi = 1, then let Ã1 be the
sum of all such Aj that φj = 1.

In the latter case we put C = Ã1 and D = Ã2 + · · ·+ Ãl . Obviously
A = C ⊕ D and it follows easily from the multiplication law that C
is the center of the group G . If there is no i with φi = 1, we put
C = {0} and D = A.



Normal subgroups of the group G

Proposition 1
The group G is direct product of normal subgroups C and D o B .
Every normal subgroup of G is the sum of two normal subgroups of
G , one contained in C and the other in D o B .

The direct product C × (D o B) has no skew congruences.



Polynomial functions on the group G

From Proposition 1 we have that the mapping

χ : P(G )→ P(C )× P(D o B), χ(p) = (p|C , p|DoB)

is one-to-one. In fact, given x = y + z ∈ G where x ∈ C ,
y ∈ D o B , we have

p(x) = p|C (y) + p|DoB(z).

Due to the result of Kaarli and Mayr [1], Proposition 1 also implies
that χ is surjective. Hence the problem of characterization of
polynomials of G reduces to the same problem for groups C and
D o B .

[1] K. Kaarli, P. Mayr, Polynomial functions on subdirect products,
Monatsh. Math. 159 (2010), 341–359.



Since for the abelian group C the problem is trivial, we have to deal
only with group D o B . In this situation Theorem 1 applies.

It follows that in order to describe polynomials of G one has to
describe polynomials of P(G/A) and the polynomials of G that
map A to A. The first problem is trivial because G/A ' Zq and
polynomials of Zq have the form f (x) = kx + u with k , u ∈ Zq. In
particular, |P(G/A)| = q2.

It remains to describe the polynomials of G that map A to A. As
above, let K0 = {p|A | p ∈ P(G ), p(A) ⊆ A}.



Lemma 1
The set K0 consists of all functions f : A→ A of the form
f (x) = s(x) + a where s ∈ S , a ∈ A. In particular,

|K0| = |S | · |A| .

It turns out that S is direct sum of Galois fields and these direct
summands Sj are in one-to-one correspondence with the
homogenous components Ãj , j = 1, . . . , l . Moreover, Sj ' GF(pmi )
where mi is the dimension of any Ai over GF(p) in Ãj .



Theorem 2
Let G = A oα B where A = Zn

p and B = Zq where p and q are
distinct primes. Assume that the center of G is trivial (equivalently,
α(1) is fixed-point-free). Let S be the subring of End A generated
by α(1) and let A1, . . . ,Al be a complete list of pairwise
non-isomorphic irreducible S-submodules of A. Denote |Ai | = pmi ,
i = 1, . . . , l . Then

|P(G )| = q2pq(m1+···+ml+n) .



Example 1

Let G = A o B where A = Z3
5, B = Z2, and let

φ =

1 0 0
0 1 0
0 0 4

 .

Then G = C × (D o B) where C = Z2
5 is the center of the group

G , D = Z5, φ|C =

(
1 0
0 1

)
, and φ|D =

(
4
)
is fixed-point-free.

Each polynomial function p on G is of the form
p(x) = p|C (y) + p|DoB(z), x = y + z ∈ G , y ∈ C , z ∈ D o B .
Since D is a S-module, S ∼= GF(5), we get using Theorem 2 that

|P(G )| = |P(C )||P(D o B)| = 53 · 22 · 52(1+3) = 22 · 511.



Example 2

Let G = A o B where A = Z3
5, B = Z2, and let

φ =

1 0 0
0 4 0
0 0 4

 .

Then G = C × (D o B) where C = Z5 is the center of the group

G , D = Z2
5, φ|C =

(
1
)
, φ|D =

(
4 0
0 4

)
is fixed-point-free. Each

polynomial function p on G is of the form
p(x) = p|C (y) + p|DoB(z), x = y + z ∈ G , y ∈ C , z ∈ D o B .
Since D is a (S1 × S2)-module, S ∼= S1 × S2, S1 ∼= GF(5),
S2 ∼= GF(5), we get using Theorem 2 that

|P(G )| = |P(C )||P(D o B)| = 52 · 22 · 52(1+1+3) = 22 · 512.



Example 3 (There’s a mistake in it)

Let G = A o B where A = Z3
7, B = Z3, and let

φ =

2 0 0
0 3 2
0 2 · 2 3

 .

Since the characteristic polynomial of φ is . . ., S is direct sum
S1 × S2 where S1 ∼= GF(7), S2 ∼= GF(72). So the center of G is
trivial and φ is fixed-point-free. Using Theorem 2 we get that

|P(G )| = 32 · 73(1+2+3) = 32 · 718.



Example 4

Let G = A o B where A = Z3
23, B = Z7, and let

φ =

0 0 1
1 0 14
0 1 13

 .

Since the characteristic polynomial of φ is x3 + 10x2 + 9x + 22, i.e.
irreducible cubic, A is simple S-module and S ∼= GF(233). So the
center of G is trivial and φ is fixed-point-free. Using Theorem 2 we
get that

|P(G )| = 72 · 237(3+3) = 72 · 2342.



Thank you!


