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Example

The partial derivatives of the Boolean sum
f (x1, x2) = x1 ⊕ x2 = x1 + x2 − 2x1x2 are

∆1f (x1, x2) = f (1, x2) − f (0, x2) = 1− 2x2,

∆2f (x1, x2) = f (x1, 1) − f (x1, 0) = 1− 2x1.
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Monotonicity

f is isotone (positive, order-preserving, nondecreasing) in xk if

∆k f (x) ≥ 0 for all x ∈ {0, 1}n .

f is antitone (negative, order-reversing, nonincreasing) in xk if

∆k f (x) ≤ 0 for all x ∈ {0, 1}n .

f is monotone in xk if it is either isotone or antitone in xk , i.e.,
if ∆k f (x) does not change sign.

f is monotone (isotone, antitione) if
it is monotone (isotone, antitone) in all of its variables.

All unary functions are monotone.

The only non-monotone binary Boolean functions are x1 ⊕ x2 and
x1 ⊕ x2 ⊕ 1.
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We say that f : {0, 1}n → R is p-locally monotone if, for every k ∈ [n]
and every x, y ∈ {0, 1}n, we have

∑
i∈[n]\{k}

|xi − yi | < p ⇒ ∆k f (x)∆k f (y) ≥ 0.

p-local monotonicity implies (p − 1)-local monotonicity.

An n-ary function is n-locally monotone iff it is monotone.

Every function is 1-locally monotone.

Theorem

A Boolean function f : {0, 1}n → {0, 1} is 2-locally monotone iff

∣
∣∆k f (x) − ∆k f (y)

∣
∣ ≤ ∑

i∈[n]\{k}

|xi − yi |.
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Example

The lattice derivatives of the Boolean sum f (x1, x2) = x1 ⊕ x2 are

∧1f (x1, x2) = f (1, x2) ∧ f (0, x2) = (1⊕ x2) ∧ x2 = 0,

∨1f (x1, x2) = f (1, x2) ∨ f (0, x2) = (1⊕ x2) ∨ x2 = 1.

The second-order lattice derivatives are

∨2 ∧1 f (x1, x2) = ∨20 = 0,

∧1 ∨2 f (x1, x2) = ∧11 = 1.
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Ok1
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f

holds for every p-element set {k1, . . . , kp} ⊆ {1, . . . , n}, for all operators
Oki

∈ {∧ki
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} and for every permutation π ∈ Sp.

Theorem

If a function has p-permutable lattice derivatives, then it has

(p − 1)-permutable lattice derivatives.
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Theorem

If a function is p-locally monotone, then it has p-permutable lattice
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Example

Let f : {0, 1}n → {0, 1} be the function that takes the value 0 on all
tuples of the form

(

m
︷ ︸︸ ︷
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Theorem

For symmetric functions, p-local monotonicity is equivalent to

p-permutability of lattice derivatives.
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Corollary

A function is nice iff none of the minimal ugly functions appear among its

sections.
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Forbidden sections

Theorem

A Boolean function is isotone iff x1 ⊕ 1 does not appear among its

sections.

Theorem

A Boolean function is 2-locally monotone iff neither x1 ⊕ x2 nor

x1 ⊕ x2 ⊕ 1 appears among its sections.

Conjecture

A Boolean function has permutable lattice derivatives iff none of the
following functions appear among its sections:
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