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An email from Attila

12th of August 2013 at 08:34:

[. . . ]

So, all I need is a subsemigroup chain where the order
difference between consecutive elements is as little as possible.
In other words, I’m looking for the longest subsemigroup
chains. What do you know about these?

Eastie thinks that you may have done some work on this.
Most probably for Tn.

[. . . ]
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A reply
30th of August 2013 at 12:55:

sorry for the delay in replying.

I somehow came across the reference below while replying to
another email this morning

P. J. Cameron, R. Solomon, and A. Turull, Chains of
subgroups in symmetric groups, J. Algebra 127 1989.

Apparently, the largest chain of subgroups in the symmetric
group on n-elements is:⌈

3n

2

⌉
− b(n)− 1

where b(n) is the number of ones in the binary expansion of n
(!!).
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The length of a semigroup

Let S be a semigroup. A collection of subsemigroups of S is called a
chain if it is totally ordered with respect to inclusion. For example, if

T1 ≤ T2 ≤ · · · ≤ S,

then (T1, T2, . . .) is a chain.

The length l(S) of a semigroup S is the largest number of non-empty
subsemigroups of S in a chain minus 1.
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A longest chain
The subsemigroup lattice of T2

[11],[12],[21],[22]

[11],[12],[22]

[12],[22][11],[22] [11],[12] [12],[21]

[11][22] [12]

∅

⇒ l(T2) = 3
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Wait! What?

The largest number of non-empty subsemigroups in a chain minus 1???
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Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1.

Pros:

• same as the definition of the length of a group in the literature

• some of the things later in this talk are simpler

Cons:

• if S is a null semigroup (xy = 0 for all x, y ∈ S), then

l(S) = |S| − 1

• l(∅) = −1 /
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The symmetric group

Theorem (Cameron-Solomon-Turull ’89)

The length of the longest chain of subgroups in the symmetric group Sn
is ⌈

3n

2

⌉
− b(n)− 1

where b(n) is the number of ones in the base 2 representation of n.

The b(n) suggests how to find a longest chain:

• If n = 2t1 + 2t2 + · · ·+ 2tb(n) with t1 > t2 > · · · > tb(n) ≥ 1, then

Sn > S
2t1+2t2+···+2

tb(n)−1 × S2tb(n) > · · ·
> S2t1 × S2t2 × · · · × S2tb(n)−1 × S2tb(n)

in b(n)− 1 steps

• S2t > S2t−1 o S2 > S2t−1 × S2t−1 > · · · > 1 for t > 0

• Then do the bookkeeping.
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The symmetric group

Theorem (Cameron-Solomon-Turull ’89)

The length of the longest chain of subgroups in the symmetric group Sn
is ⌈

3n

2

⌉
− bn − 1

where bn is the number of ones in the base 2 representation of n.

The Classification of Finite Simple Groups is needed to show that
there is no longer chain.

For some values of n (e.g. 15), there are other chains of the same
length.
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Subgroup length

The length l(G) of a group G is the largest number of subgroups in a
chain minus 1.

If G is a permutation group on a set X, then a base for G is a sequence
of points (x1, . . . , xn) in X whose pointwise stabiliser is trivial, and
where no xi is fixed by the pointwise stabiliser of (x1, . . . , xi−1).

Another interpretation: l(G) is the maximum over all permutation
actions of G of the size of a base.

The question of finding l(Sn) was first raised by László Babai in the
context of computational group theory.
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Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then l(G) = l(N) + l(G/N).

Suppose
G = G0 . G1 . G2 . · · · . Gn = 1

is a composition series for G. Then

l(G) =

n∑
i=0

l

(
Gi−1
Gi

)
and since Gi−1/Gi is simple for all i, it suffices to know the length of
the simple groups.

Solomon and Turull, with various co-authors, have worked out exact
values or good bounds for all the finite simple groups.

We regard a formula containing l(G) for some group G as “known”.
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Semigroups

If G is a group, then l(G) is at most log2(|G|) by Lagrange’s Theorem.

No such bound exists for semigroups.

The extreme case is that of the null semigroups S where l(S) = |S|−1.

Can we calculate the maximum length of a chain in some
naturally-occurring semigroups, such as:

• Tn the full transformation monoid of all maps from {1, . . . , n} to
itself?

• In the symmetric inverse monoid of all bijections between subsets
of {1, . . . , n}?

Analogues of Cayley’s theorem states that every finite semigroup is
isomorphic to a subsemigroup of some Tn, and that every finite inverse
semigroup is isomorphic to an inverse subsemigroup of some In.

J. D. Mitchell (St Andrews) 5th of June, 2015 12 / 63



Semigroups

If G is a group, then l(G) is at most log2(|G|) by Lagrange’s Theorem.

No such bound exists for semigroups.

The extreme case is that of the null semigroups S where l(S) = |S|−1.

Can we calculate the maximum length of a chain in some
naturally-occurring semigroups, such as:

• Tn the full transformation monoid of all maps from {1, . . . , n} to
itself?

• In the symmetric inverse monoid of all bijections between subsets
of {1, . . . , n}?

Analogues of Cayley’s theorem states that every finite semigroup is
isomorphic to a subsemigroup of some Tn, and that every finite inverse
semigroup is isomorphic to an inverse subsemigroup of some In.
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Subsemigroups and quotients

If T is a subsemigroup of a semigroup S, then

l(T ) ≤ l(S).

Quotients are slightly more difficult: the kernel of a group
homomorphism is a special kind of subgroup.

The kernel of a semigroup homomorphism is a congruence (a partition
of S compatible with the multiplication).

If ρ is a congruence on S, then l(S/ρ) ≤ l(S).

None of these facts is very useful for us!
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Semigroup ideals

An ideal of a semigroup S is a subset I which is closed under left and
right multiplication by elements of S. It is a subsemigroup.

The Rees quotient of S by I is defined as follows: the elements are
(S \ I) ∪ {0} and the multiplication is defined by

x ∗ y =

{
xy if x, y, xy ∈ S \ I
0 otherwise.

Proposition (cf. Ganyushkin-Livinsky ’11)

Let S be a semigroup and let I be an ideal of S. Then

l(S) = l(I) + l(S/I).
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Green’s relations

If S is a semigroup and x, y ∈ S, then we write

• xL y if S1x = S1y

• xRy if xS1 = yS1

• xJ y if S1xS1 = S1yS1

• xH y if xL y and xRy

These relations are equivalences called Green’s relations, and their
classes are Green’s classes.
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Monogenic semigroups

Let S be a semigroup generated by a single element s
where 5 and 7 are the least numbers such that s5+7 = s5.
The J -classes of S ordered by containment of ideals
look like −→

Proposition

Let S be a semigroup generated by a single element s and
let m,n ∈ N be the least numbers such that sm+n = sm.
Then l(S) = m+ Ω(n)− 1, where Ω(n) is the number of
prime power divisors of n.

Proof

Repeatedly apply the l(S) = l(I) + l(S/I) lemma:
l(S) = m+ l(Cn)− 1 and l(Cn) = Ω(n).

So, in the example, l(S) = 5 + 1− 1 = 5.
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Principal factors

The principal factor J∗ of a J -class J is the set J ∪ {0} with
multiplication

x ∗ y =

{
xy if x, y, xy ∈ J
0 otherwise.

A semigroup S is regular if for every x ∈ S there exists y ∈ S such that
xyx = x.

Lemma

Let S be a finite regular semigroup and let J1, J2, . . . , Jm be the
J -classes of S. Then

l(S) = l(J∗1 ) + l(J∗2 ) + · · ·+ l(J∗m)− 1.
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Inverse semigroups

An inverse semigroup is a semigroup S such that for all x ∈ S, there
exists a unique x−1 ∈ S where xx−1x = x and x−1xx−1 = x−1.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with J -classes J1, . . . , Jm. If
ni ∈ N denotes the number of L - and R-classes in Ji, and Gi is any
maximal subgroup of S contained in Ji, then

l(S) = −1 +
m∑
i=1

l(J∗i )

= −1 +
m∑
i=1

ni(l(Gi) + 1) +
ni(ni − 1)

2
|Gi|+ (ni − 1).
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The symmetric inverse monoid, part I
The symmetric inverse monoid In consists of all bijections between
subsets of X = {1, . . . , n}.

If f ∈ In, then we define:

dom(f) = { x ∈ X : (x)f is defined }
im(f) = { (x)f ∈ X : x ∈ dom(f) }.

If f, g ∈ In, then

• fL g if and only if im(f) = im(g);

• fRg if and only if dom(f) = dom(g);

• fJ g if and only if | dom(f)| = |dom(g)|.

If Ji is the J -class of In consisting of elements f with | dom(f)| = i,
then the number of L - and R-classes in Ji is

(
n
i

)
. Thus

l(In) = −1 +

n∑
i=1

(
n

i

)
(l(Si) + 1) +

(
n
i

)
(
(
n
i

)
− 1)

2
|Si|+

(
n

i

)
− 1.
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The symmetric inverse monoid, part II

n 1 2 3 4 5 6 7 8

|In| 2 7 34 209 1 546 13327 130 922 1 441 729

l(In) 1 6 25 116 722 5 956 59 243 667 500

We used the formula in the previous theorem to show that:

Theorem

l(In)/|In| → 1/2 as n→∞.

The same limit holds for various other well-known inverse semigroups:
the dual symmetric inverse monoid, the semigroup of partial
order-preserving injective mappings, and so on.
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The full transformation monoid

Our results are much less precise for Tn. Recall that |Tn| = nn.

Theorem

l(Tn) ≥ a(n) = e−2nn − 2e−2(1− e−1)nn−1/3 − o(nn−1/3).

Here are the first few values:

n 2 3 4 5 6 7 8

nn 4 27 256 3 125 46 656 823 543 16 777 216

a(n) 0 0 7 110 1 921 37 795 835 290

We don’t know if l(Tn)/|Tn| tends to a limit as n→∞.
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Number of subsemigroups
The number of subgroups of the symmetric group Sn is at least roughly
2n

2/16.

Pyber found an upper bound of the form 2cn
2

for the number of
subgroups.

In the extreme case of the null semigroup, the number of
subsemigroups can be within a constant factor of 2|S|.

Theorem

The number of subsemigroups of Tn is at least 2cn
n−1/2

where

c =
e−2

3
√

3(e−1 − 2e−2)
.

Note that this is a bit less that 2c|Tn| (because of the −1/2 in the
exponent).
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Minimum number of generators

Theorem

The smallest number d(n) such that any subsemigroup of Tn can be
generated by d(n) elements is at least (c− o(1))nn−1/2 where c is the
constant in the previous theorem.

The corresponding parameter for Sn is much smaller.

Theorem (A. McIver and P. Neumann)

If G is any subgroup of the symmetric group Sn, then

d(G) ≤ max
{

2,
⌈n

2

⌉}
.

Jerrum gave a weaker bound of n− 1 but with an algorithmic proof.
Given a sequence of elements of Sn there is a polynomial time
algorithm that produces at most n− 1 elements generating the same
group.
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An (impractical) algorithm for finding the length
The principal factor J∗ of a J -class J is the set J ∪ {0} with
multiplication

x ∗ y =

{
xy if x, y, xy ∈ J
0 otherwise.

If S is a semigroup and T is a subsemigroup of S, then T is maximal if
it is not contained in any other proper subsemigroups.

Suppose that S is a finite regular semigroup. If the J -classes of S are
J1, J2, . . . , Jm, then

l(S) = −1 +
m∑
i=1

l(J∗i )

= −1 +
m∑
i=1

max{ l(T ) : T ≤ J∗i , T maximal }+ 1.
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The Rees Theorem

If G is a group, I and J are sets, and P = (pj,i)j∈J,i∈I , then the Rees
0-matrix semigroup M0[I,G, J ;P ] is the set (I ×G× J) ∪ {0} with
multiplication:

(i, g, j)(k, h, l) =

{
(i, gpj,kh, l) if pj,k 6= 0

0 otherwise.

Theorem (Rees’ Theorem)

Let S be a finite semigroup and let J be a regular J -class of S. Then
J∗ ∼=M0[I,G, J ;P ] where I, J are finite sets, G is a finite group, P is
a |J | × |I| matrix with entries in G ∪ {0}, and every row and column of
P contains a non-zero entry.
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Maximal subsemigroups

Theorem (Graham-Graham-Rhodes ’68)

Let S =M0[I,G, J ;P ] be a finite regular Rees 0-matrix semigroup, and
let M be a maximal subsemigroup of S.

Then M (except for some
trivial cases) is of the form:

(a) M0[I,H, J ;P ] where H is a maximal subgroup of G;

(b) M0[I \ {i}, G, J ;P ] for every i ∈ I s.t. this semigroup is regular;

(c) M0[I,G, J \ {j};P ] for every j ∈ J s.t. this semigroup is regular;

(d) M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.
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An example

M0[I \ {i}, G, J ;P ] for some i ∈ I

* * * *

* * * *

* * * *

* * * *

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 27 / 63



Remove a row

M0[I \ {i}, G, J ;P ] for some i ∈ I

* * * *

* * * *

* * * *

* * * *

* * * *

*
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Remove a row
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* * * *

* * * *
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Remove a column

M0[I,G, J \ {j};P ] for some j ∈ J

* * * *

* * * *

* * * *

* * * *

* * * *

*
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Maximal rectangles of zeros

X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*
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Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*
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Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*

* * *

* * *

* * *

* * *

      

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 35 / 63



Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*

* * *

* * *

* * *

* * *

      

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 35 / 63



Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*

* * *

* * *

* * *

* * *

      

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 36 / 63



Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*

* * *

* * *

* * *

* * *

      

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 36 / 63



Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*

* *

* *

* *

   

   

* * * *

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 37 / 63



Maximal subsemigroups from maximal rectangles

M0[I,G, J ;P ] \ (I ′ ×G× J ′) for some I ′ = I \X, J ′ = J \ Y , and
X × Y is a maximal “rectangle” of zeros.

* * * *

* * * *

* * * *

* * * *

* * * *

*

* *

* *

* *

   

   

* * * *

* * * *

*

J. D. Mitchell (St Andrews) 5th of June, 2015 37 / 63



Principal factors of inverse semigroups
If G is a group, and n ∈ N, then define B(G,n) to be
{1, . . . , n} ×G× {1, . . . , n} where

(i, g, j)(k, h, l) =

{
(i, gh, l) if j = k

0 otherwise.

Such a B(G,n) is called a Brandt semigroup.

In an inverse semigroup S, every principal factor J∗ ∼= B(G,n) where G
is a group and n is the number of L - and R-classes in the J -class J .

Theorem (Graham-Graham-Rhodes ’68)

Let S = B(G,n) be a finite Brandt semigroup, and let M be a maximal
subsemigroup of S. Then M is of the form:

(a) B(H,n) where H is a maximal subgroup of G;

(b) B(G,n) \ (I ′ ×G× I ′′) for some I ′ = I \X, I ′′ = I \ Y , and X × Y
is a maximal “rectangle” of zeros.
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Maximal rectangles of zeros
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The length of the symmetric inverse monoid

To find the length of the symmetric inverse monoid it suffices to show
that

l(B(G,n)) = n(l(G) + 1) +
n(n− 1)

2
|G|+ (n− 1).

From Graham-Graham-Rhodes either

l(B(G,n)) = 1 + l(B(H,n))

for some maximal subgroup H of G, or

l(B(G,n)) = 1 + l(B(G,n) \ (J ×G×K))

where J and K partition I.

It turns out that the latter exceeds the former.
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What is a “rectangle” of zeros?

The image of a transformation f is the set

im(f) = { x : ∃y, x = (y)f }.

The kernel of a transformation f is the partition

ker (f) = { (x, y) : (x)f = (y)f }.

A subset A of {1, . . . , n} is a transversal of a partition if every part
contains exactly one element in A.

If f and g are transformations with | im(f)| = | im(g)| = k, then
| im(fg)| = k if and only if im(f) is a transversal of ker (g).

J. D. Mitchell (St Andrews) 5th of June, 2015 55 / 63



What is a “rectangle” of zeros?

The image of a transformation f is the set

im(f) = { x : ∃y, x = (y)f }.

The kernel of a transformation f is the partition

ker (f) = { (x, y) : (x)f = (y)f }.

A subset A of {1, . . . , n} is a transversal of a partition if every part
contains exactly one element in A.

If f and g are transformations with | im(f)| = | im(g)| = k, then
| im(fg)| = k if and only if im(f) is a transversal of ker (g).

J. D. Mitchell (St Andrews) 5th of June, 2015 55 / 63



What is a “rectangle” of zeros?

The image of a transformation f is the set

im(f) = { x : ∃y, x = (y)f }.

The kernel of a transformation f is the partition

ker (f) = { (x, y) : (x)f = (y)f }.

A subset A of {1, . . . , n} is a transversal of a partition if every part
contains exactly one element in A.

If f and g are transformations with | im(f)| = | im(g)| = k, then
| im(fg)| = k if and only if im(f) is a transversal of ker (g).

J. D. Mitchell (St Andrews) 5th of June, 2015 55 / 63



What is a “rectangle” of zeros?

The image of a transformation f is the set

im(f) = { x : ∃y, x = (y)f }.

The kernel of a transformation f is the partition

ker (f) = { (x, y) : (x)f = (y)f }.

A subset A of {1, . . . , n} is a transversal of a partition if every part
contains exactly one element in A.

If f and g are transformations with | im(f)| = | im(g)| = k, then
| im(fg)| = k if and only if im(f) is a transversal of ker (g).

J. D. Mitchell (St Andrews) 5th of June, 2015 55 / 63



Problem?

A “rectangle” of zeros is: a set Pk of k-partitions of {1, . . . , n}, and a
set Sk of k-subsets, with the property that no element of Sk is a
transversal for any element of Pk.

The set of transformations with kernel in Pk and image in Sk is a null
semigroup; this is a rectangle of zeros.

Since (Pk, Sk) corresponds to a null semigroup, it follows that every
subset is a subsemigroup and so

l(Tn) ≥ −1 +
n∑

k=1

|Pk| · |Sk| · k!

Maximise:
|Pk| · |Sk|
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Two strategies

1. Let Pk consist of all k-partitions having n as a singleton, and let Sk
consist of all k-subsets not containing n. Then (Pk, Sk) is a
“rectangle” of zeros and

|Pk| · |Sk| =
(
n− 1

k

)
S(n− 1, k − 1).

2. Let Pk be the set of all k-partitions with 1 and 2 in the same class,
and let Sk be the set of all k-subsets containing 1 and 2. Then
(Pk, Sk) is a “rectangle” of zeros and

|Pk| · |Sk| =
(
n− 2

k − 2

)
S(n− 1, k).

Strategy 1 is better for large k and Strategy 2 for small k.
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Some values

n Total k = 2 3 4 5 6

3 2, 2 1, 1
4 24, 18 3, 3 3, 2
5 330, 326 9, 7 28, 28 6, 6
6 5382, 5130 21, 15 150, 150 125, 125 12, 10
7 98250, 93782 45, 31 760, 620 1350, 1350 390, 390 20, 15

The left hand values are the actual maximum size of a “rectangle” of
zeros as computed using GAP and Minion.

The right hand values are the maximum of the values obtained from
strategies 1 and 2 on the last slide.
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Thanks!

The pictures in this talk were produced automagically using the
Semigroups package for GAP:

J. D. Mitchell et al., Semigroups - GAP package, Version 2.4.1,
May, 2015; http://tinyurl.com/semigroups.

The algorithm for computing maximal subsemigroups of arbitrary
semigroups mentioned above is also implemented in Semigroups.
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