\lor -irreducibles (in particular atoms) of ${\mathcal E}$

Coatoms of \mathcal{E} 0000000

Atoms and coatoms in the lattices of congruence lattices of algebras on a (finite) set

Danica Jakubíková-Studenovská Reinhard Pöschel Sándor Radeleczki

P.J. Šafárik University Košice Technische Universität Dresden Miskolci Egyetem (University of Miskolc)

AAA90

Arbeitstagung Allgemeine Algebra Workshop on General Algebra Novi Sad 6.6.2015

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of ${\mathcal E}$

Coatoms of *E* 0000000

Outline

Notions and notations

\lor -irreducibles (in particular atoms) of $\mathcal E$

Coatoms of $\ensuremath{\mathcal{E}}$

AAA90, Novi Sad, June, 2015

Notions and notations $_{\odot \odot}$

V-irreducibles (in particular atoms) of ${\mathcal E}$

Coatoms of *E* 0000000

Outline

Notions and notations

\lor -irreducibles (in particular atoms) of $\mathcal E$

Coatoms of $\ensuremath{\mathcal{E}}$

AAA90, Novi Sad, June, 2015

Notions and notations $\bullet \circ$

V-irreducibles (in particular atoms) of ${\cal E}$ 00

Coatoms of \mathcal{E} 0000000

Compatible relations — congruences, quasiorders

$\langle A, F \rangle$ universal algebra

compatible (invariant) relation q ⊆ A × A: For each f ∈ F (*n*-ary) we have f ⊳ q (f preserves q), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(\operatorname{Con}(A, F), \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(\operatorname{Eq}(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{Con\langle A, F
angle \mid F \text{ set of operations on } A\}, \subseteq)$

AAA90, Novi Sad, June, 2015

Compatible relations — congruences, quasiorders $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$:

 $(Con(A, F), \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Eq(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{Con\langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq)$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(\operatorname{Con}(A, F), \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(\operatorname{Eq}(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{Con \langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq)$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

Compatible relations — congruences, quasiorders $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e. $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$ Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric)

Problem

Describe the lattice $\mathcal{E} := (\{Con\langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq)$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and $Con\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(\operatorname{Con}\langle A, F\rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(\operatorname{Eq}(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{Con\langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq)$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and $Con\langle A, F \rangle$:

Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(\operatorname{Con}\langle A, F \rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(\operatorname{Eq}(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{ \operatorname{Con} \langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq)$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and $Con\langle A, F \rangle$:

Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Con\langle A, F \rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Eq(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{ Con \langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq).$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Con(A, F) compatible equivalence relations = congruences Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and $Con\langle A, F \rangle$:

Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Con\langle A, F \rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Eq(A), \subseteq)$ of all equivalence relations on A.

Problem

Describe the lattice $\mathcal{E} := (\{Con\langle A, F \rangle \mid F \text{ set of operations on } A\}, \subseteq).$ (in particular atoms and coatoms)

AAA90, Novi Sad, June, 2015

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). It is well-known that

$$\operatorname{Con}\langle A, F \rangle = \operatorname{Con}\langle A, H \rangle$$
$$\operatorname{Con}\langle A, H \rangle = \bigcap_{f \in H} \operatorname{Con}\langle A, f \rangle.$$

Thus
$$\mathcal{E} = (\{ \mathsf{Con}\langle A, H \rangle \mid H \leq A^A \}, \subseteq).$$

Description of \mathcal{E} : look for \lor - and \land -irreducible elements, here only atoms and coatoms.

Remark: End – Con is a Galois connection (induced by \triangleright).

AAA90, Novi Sad, June, 2015

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). It is well-known that

$$\operatorname{Con}\langle A, F \rangle = \operatorname{Con}\langle A, H \rangle$$
$$\operatorname{Con}\langle A, H \rangle = \bigcap_{f \in H} \operatorname{Con}\langle A, f \rangle.$$

Thus $\mathcal{E} = (\{ \mathsf{Con} \langle A, H \rangle \mid H \leq A^A \}, \subseteq).$

Description of \mathcal{E} : look for \lor - and \land -irreducible elements, here only atoms and coatoms.

Remark: End – Con is a Galois connection (induced by \triangleright).

AAA90, Novi Sad, June, 2015

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). It is well-known that

$$\operatorname{Con}\langle A, F \rangle = \operatorname{Con}\langle A, H \rangle$$
$$\operatorname{Con}\langle A, H \rangle = \bigcap_{f \in H} \operatorname{Con}\langle A, f \rangle.$$

Thus
$$\mathcal{E} = ({Con\langle A, H \rangle \mid H \leq A^A}, \subseteq).$$

Description of \mathcal{E} : look for \lor - and \land -irreducible elements, here only atoms and coatoms.

Remark: End – Con is a Galois connection (induced by \triangleright).

AAA90, Novi Sad, June, 2015

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). It is well-known that

$$\operatorname{Con}\langle A, F \rangle = \operatorname{Con}\langle A, H \rangle$$
$$\operatorname{Con}\langle A, H \rangle = \bigcap_{f \in H} \operatorname{Con}\langle A, f \rangle.$$

Thus
$$\mathcal{E} = ({Con\langle A, H \rangle \mid H \leq A^A}, \subseteq).$$

Description of \mathcal{E} : look for \lor - and \land -irreducible elements, here only atoms and coatoms.

Remark: End – Con is a Galois connection (induced by \triangleright).

AAA90, Novi Sad, June, 2015

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). It is well-known that

$$\operatorname{Con}\langle A, F \rangle = \operatorname{Con}\langle A, H \rangle$$
$$\operatorname{Con}\langle A, H \rangle = \bigcap_{f \in H} \operatorname{Con}\langle A, f \rangle.$$

Thus
$$\mathcal{E} = ({Con\langle A, H \rangle \mid H \leq A^A}, \subseteq).$$

Description of \mathcal{E} : look for \lor - and \land -irreducible elements, here only atoms and coatoms.

Remark: End – Con is a Galois connection (induced by \triangleright).

AAA90, Novi Sad, June, 2015

V-irreducibles (in particular atoms) of $\mathcal{E}_{\odot \odot}$

Outline

Coatoms of *E* 0000000

Notions and notations

\lor -irreducibles (in particular atoms) of $\mathcal E$

Coatoms of $\ensuremath{\mathcal{E}}$

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of $\mathcal{E}_{\bullet \circ}$

Coatoms of \mathcal{E} 0000000

What are the \lor -irreducibles?

 $\varkappa \in L := \operatorname{Con}(A, H) \implies H \subseteq \operatorname{End} \varkappa \implies$ $\operatorname{Con}(A, H) \supseteq \operatorname{Con}(A, \operatorname{End} \varkappa) \implies L = \bigcup_{\varkappa \in L} \operatorname{Con}(A, \operatorname{End} \varkappa).$ Thus each \lor -irreducible element $L = \operatorname{Con}(A, H)$ in \mathcal{E} is of the form

 $L_{\varkappa} := \operatorname{Con}(A, \operatorname{End} \varkappa)$ for some $\varkappa \in \operatorname{Con}(A)$.

Question: Which \varkappa yield \lor -irreducibles?

Answer: Every nontrivial ×

Proof: By a result of Pöschel/Radeleczki 2007:

Quord(A, End \varkappa) = { $\Delta, \varkappa, \nabla$ } for $\varkappa \in Eq(A)$.

Thus $L_{\varkappa} = \text{Con}(A, \text{End } \varkappa) = \{\Delta, \varkappa, \nabla\}$ is an atom (since $\{\Delta, \nabla\}$ is the only proper sublattice), in particular it is \vee -irreducible.

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of $\mathcal{E}_{\bullet \circ}$

Coatoms of \mathcal{E} 0000000

What are the ∨-irreducibles?

 $\varkappa \in L := \operatorname{Con}(A, H) \implies H \subseteq \operatorname{End} \varkappa \implies$ $\operatorname{Con}(A, H) \supseteq \operatorname{Con}(A, \operatorname{End} \varkappa) \implies L = \bigcup_{\varkappa \in L} \operatorname{Con}(A, \operatorname{End} \varkappa).$ Thus each \lor -irreducible element $L = \operatorname{Con}(A, H)$ in \mathcal{E} is of the form

 $L_{\varkappa} := \operatorname{Con}(A, \operatorname{End} \varkappa)$ for some $\varkappa \in \operatorname{Con}(A)$.

Question: Which \varkappa yield \lor -irreducibles?

Answer: Every nontrivial ×

Proof: By a result of Pöschel/Radeleczki 2007:

Quord(A, End \varkappa) = { Δ , \varkappa , ∇ } for $\varkappa \in Eq(A)$.

Thus $L_{\varkappa} = \text{Con}(A, \text{End } \varkappa) = \{\Delta, \varkappa, \nabla\}$ is an atom (since $\{\Delta, \nabla\}$ is the only proper sublattice), in particular it is \vee -irreducible.

AAA90, Novi Sad, June, 2015

 $\vee\text{-irreducibles}$ (in particular atoms) of $\mathcal E$ $\bullet \circ$

Coatoms of \mathcal{E} 0000000

What are the ∨-irreducibles?

 $\varkappa \in L := \operatorname{Con}(A, H) \implies H \subseteq \operatorname{End} \varkappa \implies$ $\operatorname{Con}(A, H) \supseteq \operatorname{Con}(A, \operatorname{End} \varkappa) \implies L = \bigcup_{\varkappa \in L} \operatorname{Con}(A, \operatorname{End} \varkappa).$ Thus each \lor -irreducible element $L = \operatorname{Con}(A, H)$ in \mathcal{E} is of the form

 $L_{\varkappa} := \operatorname{Con}(A, \operatorname{End} \varkappa)$ for some $\varkappa \in \operatorname{Con}(A)$.

Question: Which \varkappa yield \lor -irreducibles?

Answer: Every nontrivial \varkappa

Proof: By a result of Pöschel/Radeleczki 2007:

Quord(A, End \varkappa) = { Δ , \varkappa , ∇ } for $\varkappa \in Eq(A)$.

Thus $L_{\varkappa} = \text{Con}(A, \text{End } \varkappa) = \{\Delta, \varkappa, \nabla\}$ is an atom (since $\{\Delta, \nabla\}$ is the only proper sublattice), in particular it is \lor -irreducible.

AAA90, Novi Sad, June, 2015

 $\vee\text{-irreducibles}$ (in particular atoms) of $\mathcal E$ $\bullet \circ$

Coatoms of \mathcal{E} 0000000

What are the ∨-irreducibles?

 $\varkappa \in L := \operatorname{Con}(A, H) \implies H \subseteq \operatorname{End} \varkappa \implies$ $\operatorname{Con}(A, H) \supseteq \operatorname{Con}(A, \operatorname{End} \varkappa) \implies L = \bigcup_{\varkappa \in L} \operatorname{Con}(A, \operatorname{End} \varkappa).$ Thus each \lor -irreducible element $L = \operatorname{Con}(A, H)$ in \mathcal{E} is of the form

 $L_{\varkappa} := \operatorname{Con}(A, \operatorname{End} \varkappa)$ for some $\varkappa \in \operatorname{Con}(A)$.

Question: Which \varkappa yield \lor -irreducibles?

Answer: Every nontrivial \varkappa

Proof: By a result of Pöschel/Radeleczki 2007:

Quord(A, End \varkappa) = { Δ , \varkappa , ∇ } for $\varkappa \in Eq(A)$.

Thus $L_{\varkappa} = \text{Con}(A, \text{End } \varkappa) = \{\Delta, \varkappa, \nabla\}$ is an atom (since $\{\Delta, \nabla\}$ is the only proper sublattice), in particular it is \lor -irreducible.

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of $\mathcal{E}_{\bullet \circ}$

Coatoms of \mathcal{E} 0000000

What are the \lor -irreducibles?

 $\varkappa \in L := \operatorname{Con}(A, H) \implies H \subseteq \operatorname{End} \varkappa \implies$ $\operatorname{Con}(A, H) \supseteq \operatorname{Con}(A, \operatorname{End} \varkappa) \implies L = \bigcup_{\varkappa \in L} \operatorname{Con}(A, \operatorname{End} \varkappa).$ Thus each \lor -irreducible element $L = \operatorname{Con}(A, H)$ in \mathcal{E} is of the form

 $L_{\varkappa} := \operatorname{Con}(A, \operatorname{End} \varkappa)$ for some $\varkappa \in \operatorname{Con}(A)$.

Question: Which \varkappa yield \lor -irreducibles?

Answer: Every nontrivial \varkappa

Proof: By a result of Pöschel/Radeleczki 2007:

 $\operatorname{\mathsf{Quord}}(A,\operatorname{\mathsf{End}}\varkappa) = \{\Delta,\varkappa,\nabla\} \text{ for } \varkappa \in \operatorname{\mathsf{Eq}}(A).$

Thus $L_{\varkappa} = \text{Con}(A, \text{End } \varkappa) = \{\Delta, \varkappa, \nabla\}$ is an atom (since $\{\Delta, \nabla\}$ is the only proper sublattice), in particular it is \lor -irreducible.

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of \mathcal{E}

${\ensuremath{\mathcal{E}}}$ is atomistic

Coatoms of *E* 0000000

Summarizing we have (for arbitrary A):

Theorem

The completely \lor -irreducibles of ${\cal E}$ are exactly the congruence lattices of the form

$$L_{\varkappa} := \operatorname{Con}(A, \operatorname{End} \varkappa) = \{\Delta, \varkappa, \nabla\}$$

where $\varkappa \in Eq(A) \setminus \{\Delta, \nabla\}$ is an arbitrary equivalence relation. Moreover, each \lor -irreducible is an atom in \mathcal{E} , i.e. the lattice \mathcal{E} is atomistic.

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of ${\mathcal E}$

Outline

 $\begin{array}{c} \text{Coatoms of } \mathcal{E} \\ \text{occocc} \end{array}$

Notions and notations

\lor -irreducibles (in particular atoms) of $\mathcal E$

Coatoms of $\ensuremath{\mathcal{E}}$

AAA90, Novi Sad, June, 2015

\wedge -irreducibles and coatoms

\wedge -irreducibles, in particular coatoms, are of the form Con(A, f) for some nontrivial $f \in A^A$.

Which f yield coatoms?

Strategy: search for candidates among the coatoms in the lattice \mathcal{L} of quasiorders lattices Quord(A, f) (because these are known).

Why this must work?

Proposition

A lattice L is a coatom in \mathcal{E} only if there exist an operation $f \in A^A$ such that L = Con(A, f) and Quord(A, f) is a coatom in \mathcal{L} .

here $\mathcal{L} := \{ Quord \langle A, F \rangle \mid F \text{ set of operations on } A \}$ is the lattice of quasiorder lattices

AAA90, Novi Sad, June, 2015

$\wedge \text{-irreducibles}$ and coatoms

 \wedge -irreducibles, in particular coatoms, are of the form Con(A, f) for some nontrivial $f \in A^A$.

Which f yield coatoms?

Strategy: search for candidates among the coatoms in the lattice \mathcal{L} of quasiorders lattices Quord(A, f) (because these are known).

Why this must work?

Proposition

A lattice L is a coatom in \mathcal{E} only if there exist an operation $f \in A^A$ such that L = Con(A, f) and Quord(A, f) is a coatom in \mathcal{L} .

here $\mathcal{L} := \{ Quord \langle A, F \rangle \mid F \text{ set of operations on } A \}$ is the lattice of quasiorder lattices

AAA90, Novi Sad, June, 2015

\wedge -irreducibles and coatoms

 \wedge -irreducibles, in particular coatoms, are of the form Con(A, f) for some nontrivial $f \in A^A$.

Which f yield coatoms?

Strategy: search for candidates among the coatoms in the lattice \mathcal{L} of quasiorders lattices Quord(A, f) (because these are known).

Why this must work?

Proposition

A lattice L is a coatom in \mathcal{E} only if there exist an operation $f \in A^A$ such that L = Con(A, f) and Quord(A, f) is a coatom in \mathcal{L} .

here $\mathcal{L} := \{ Quord \langle A, F \rangle \mid F \text{ set of operations on } A \}$ is the lattice of quasiorder lattices

AAA90, Novi Sad, June, 2015

\wedge -irreducibles and coatoms

 \wedge -irreducibles, in particular coatoms, are of the form Con(A, f) for some nontrivial $f \in A^A$.

Which f yield coatoms?

Strategy: search for candidates among the coatoms in the lattice \mathcal{L} of quasiorders lattices Quord(A, f) (because these are known).

Why this must work?

Proposition

A lattice L is a coatom in \mathcal{E} only if there exist an operation $f \in A^A$ such that L = Con(A, f) and Quord(A, f) is a coatom in \mathcal{L} .

here $\mathcal{L} := \{ Quord \langle A, F \rangle \mid F \text{ set of operations on } A \}$ is the lattice of quasiorder lattices

AAA90, Novi Sad, June, 2015

$\wedge \text{-irreducibles}$ and coatoms

 \wedge -irreducibles, in particular coatoms, are of the form Con(A, f) for some nontrivial $f \in A^A$.

Which f yield coatoms?

Strategy: search for candidates among the coatoms in the lattice \mathcal{L} of quasiorders lattices Quord(A, f) (because these are known).

Why this must work?

Proposition

A lattice L is a coatom in \mathcal{E} only if there exist an operation $f \in A^A$ such that L = Con(A, f) and Quord(A, f) is a coatom in \mathcal{L} .

here $\mathcal{L}:=\{\mathsf{Quord}\langle A,F\rangle\mid F\text{ set of operations on }A\}$ is the lattice of quasiorder lattices

AAA90, Novi Sad, June, 2015

$\wedge \text{-irreducibles}$ and coatoms

 \wedge -irreducibles, in particular coatoms, are of the form Con(A, f) for some nontrivial $f \in A^A$.

Which f yield coatoms?

Strategy: search for candidates among the coatoms in the lattice \mathcal{L} of quasiorders lattices Quord(A, f) (because these are known).

Why this must work?

Proposition

A lattice L is a coatom in \mathcal{E} if and only if there exist an operation $f \in A^A$ such that L = Con(A, f) and Quord(A, f) is a coatom in \mathcal{L} .

here $\mathcal{L}:=\{\mathsf{Quord}\langle A,F\rangle\mid F\text{ set of operations on }A\}$ is the lattice of quasiorder lattices

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of ${\mathcal E}$

Coatoms of \mathcal{E} 000000

 $\begin{array}{c} \mathsf{Proof} \mbox{ (``only if'' part)} \\ \texttt{to show: } L \mbox{ coatom of } \mathcal{E} \implies L = \mathsf{Con}(A, f) \mbox{ for some } f \mbox{ with } \mathsf{Quord}(A, f) \\ \texttt{coatom in } \mathcal{L}. \\ \textit{Proof. Let } L = \mathsf{Con}(A, g) \mbox{ be a coatom in } \mathcal{E}. \end{array}$

 $\implies \operatorname{Con}(A,g) \neq \operatorname{Eq}(A) \implies \operatorname{Quord}(A,g) \neq \operatorname{Quord}(A)$ $\implies \exists \operatorname{coatom} \operatorname{Quord}(A,f) \text{ in } \mathcal{L} : \operatorname{Quord}(A,g) \subseteq \operatorname{Quord}(A,f)$ $\implies \operatorname{Con}(A,g) = \operatorname{Eq}(A) \cap \operatorname{Quord}(A,g) \subseteq \operatorname{Eq}(A) \cap \operatorname{Quord}(A,f) = \operatorname{Con}(A,f)$

Con(A, g) is a coatom

 \implies Con(A, g) = Con(A, f) (q.e.d.)

or $\operatorname{Con}(A, f) = \operatorname{Eq}(A)$

the latter is impossible since it would give

 ${id_A} = End Eq(A) = End Con(A, f) ⊇ End Quord(A, f)$ ⇒ Quord(A, f) = Quord End Quord(A, f) = Quord ${id_A} = Quord(A)$, a contradiction!

AAA90, Novi Sad, June, 2015

Coatoms of \mathcal{E} 000000

$\frac{\text{Proof}(\text{``only if'' part})}{\text{to show: } L \text{ coatom of } \mathcal{E} \implies L = \text{Con}(A, f) \text{ for some } f \text{ with } \text{Quord}(A, f) \text{ coatom in } \mathcal{L}.$ Proof. Let L = Con(A, g) be a coatom in \mathcal{E} .

 $F(\mathcal{O}). \quad \text{Let } \mathcal{L} = \operatorname{Con}(\mathcal{A}, g) \text{ be a coatom in } \mathcal{L}.$

$$\implies$$
 Con $(A,g) \neq$ Eq $(A) \implies$ Quord $(A,g) \neq$ Quord (A)

 $\implies \exists \text{ coatom } Quord(A, f) \text{ in } \mathcal{L} : Quord(A, g) \subseteq Quord(A, f)$

 \implies Con(A, g) =Eq $(A) \cap$ Quord $(A, g) \subseteq$ Eq $(A) \cap$ Quord(A, f) = Con(A, f)

Con(A, g) is a coatom

$$\implies$$
 Con $(A,g) =$ Con (A,f) (q.e.d.)

or
$$Con(A, f) = Eq(A)$$

the latter is impossible since it would give

 ${id_A} = End Eq(A) = End Con(A, f) ⊇ End Quord(A, f)$ ⇒ Quord(A, f) = Quord End Quord(A, f) = Quord ${id_A} = Quord(A)$, a contradiction!

AAA90, Novi Sad, June, 2015

Proof ("only if" part) to show: L coatom of $\mathcal{E} \implies L = \text{Con}(A, f)$ for some f with Quord(A, f) coatom in \mathcal{L} .

Proof. Let L = Con(A, g) be a coatom in \mathcal{E} .

$$\implies$$
 Con $(A,g) \neq$ Eq $(A) \implies$ Quord $(A,g) \neq$ Quord (A)

- $\implies \exists \text{ coatom } Quord(A, f) \text{ in } \mathcal{L} : Quord(A, g) \subseteq Quord(A, f)$
- \implies Con(A,g) = Eq $(A) \cap$ Quord $(A,g) \subseteq$ Eq $(A) \cap$ Quord(A,f) = Con(A,f)

Con(A, g) is a coatom

$$\implies \operatorname{Con}(A,g) = \operatorname{Con}(A,f) (q.e.d.)$$

or $\operatorname{Con}(A, f) = \operatorname{Eq}(A)$

the latter is impossible since it would give

 ${id_A} = End Eq(A) = End Con(A, f) ⊇ End Quord(A, f)$ ⇒ Quord(A, f) = Quord End Quord(A, f) = Quord ${id_A} = Quord(A)$, a contradiction!

AAA90, Novi Sad, June, 2015

Coatoms of \mathcal{E} 000000

Proof ("only if" part) to show: L coatom of $\mathcal{E} \implies L = \text{Con}(A, f)$ for some f with Quord(A, f)coatom in \mathcal{L} .

Proof. Let L = Con(A, g) be a coatom in \mathcal{E} .

$$\implies \operatorname{Con}(A,g) \neq \operatorname{Eq}(A) \implies \operatorname{Quord}(A,g) \neq \operatorname{Quord}(A)$$
$$\implies \exists \operatorname{coatom} \operatorname{Quord}(A,f) \text{ in } \mathcal{L} : \operatorname{Quord}(A,g) \subseteq \operatorname{Quord}(A,f)$$
$$\implies \operatorname{Con}(A,g) = \operatorname{Eq}(A) \cap \operatorname{Quord}(A,g) \subset \operatorname{Eq}(A) \cap \operatorname{Quord}(A,f) = \operatorname{Con}(A,f)$$

Con(A,g) is a coatom

$$\implies \operatorname{Con}(A,g) = \operatorname{Con}(A,f) \text{ (q.e.d.)}$$

or $\operatorname{Con}(A,f) = \operatorname{Eq}(A)$

the latter is impossible since it would give

 ${id_A} = End Eq(A) = End Con(A, f) \supseteq End Quord(A, f)$ \implies Quord(A, f) = Quord End Quord(A, f) = Quord ${id_A} = Quord(A)$, a contradiction!

AAA90, Novi Sad, June, 2015

Coatoms of \mathcal{E} 000000

Proof ("only if" part) to show: L coatom of $\mathcal{E} \implies L = \text{Con}(A, f)$ for some f with Quord(A, f) coatom in \mathcal{L}

Proof. Let L = Con(A, g) be a coatom in \mathcal{E} .

$$\implies \operatorname{Con}(A,g) \neq \operatorname{Eq}(A) \implies \operatorname{Quord}(A,g) \neq \operatorname{Quord}(A)$$
$$\implies \exists \operatorname{coatom} \operatorname{Quord}(A,f) \text{ in } \mathcal{L} : \operatorname{Quord}(A,g) \subseteq \operatorname{Quord}(A,f)$$
$$\implies \operatorname{Con}(A,g) = \operatorname{Eq}(A) \cap \operatorname{Quord}(A,g) \subseteq \operatorname{Eq}(A) \cap \operatorname{Quord}(A,f) = \operatorname{Con}(A,f)$$

Con(A, g) is a coatom

$$\implies \operatorname{Con}(A,g) = \operatorname{Con}(A,f) \text{ (q.e.d.)}$$

or $\operatorname{Con}(A,f) = \operatorname{Eq}(A)$

the latter is impossible since it would give

 $\{id_A\} = End Eq(A) = End Con(A, f) \supseteq End Quord(A, f)$ \implies Quord(A, f) = Quord End Quord(A, f) = Quord $\{id_A\} = Quord(A)$, a contradiction!

AAA90, Novi Sad, June, 2015

Coatoms of \mathcal{E} 000000

Proof ("only if" part) to show: L coatom of $\mathcal{E} \implies L = \text{Con}(A, f)$ for some f with Quord(A, f) coatom in \mathcal{L} .

Proof. Let L = Con(A, g) be a coatom in \mathcal{E} .

$$\implies \mathsf{Con}(A,g) \neq \mathsf{Eq}(A) \implies \mathsf{Quord}(A,g) \neq \mathsf{Quord}(A)$$
$$\implies \exists \ \mathsf{coatom} \ \mathsf{Quord}(A,f) \ \mathsf{in} \ \mathcal{L} : \mathsf{Quord}(A,g) \subseteq \mathsf{Quord}(A,f)$$
$$\implies \mathsf{Con}(A,g) = \mathsf{Eq}(A) \cap \mathsf{Quord}(A,g) \subseteq \mathsf{Eq}(A) \cap \mathsf{Quord}(A,f) = \mathsf{Con}(A,f)$$

Con(A, g) is a coatom

$$\implies \operatorname{Con}(A,g) = \operatorname{Con}(A,f) \text{ (q.e.d.)}$$

or $\operatorname{Con}(A,f) = \operatorname{Eq}(A)$

the latter is impossible since it would give

 ${id_A} = End Eq(A) = End Con(A, f) ⊇ End Quord(A, f)$ ⇒ Quord(A, f) = Quord End Quord(A, f) = Quord ${id_A} = Quord(A)$, a contradiction!

AAA90, Novi Sad, June, 2015

Coatoms of \mathcal{E} 000000

Proof ("only if" part) to show: L coatom of $\mathcal{E} \implies L = \text{Con}(A, f)$ for some f with Quord(A, f) coatom in \mathcal{L} .

Proof. Let L = Con(A, g) be a coatom in \mathcal{E} .

$$\implies \mathsf{Con}(A,g) \neq \mathsf{Eq}(A) \implies \mathsf{Quord}(A,g) \neq \mathsf{Quord}(A)$$
$$\implies \exists \ \mathsf{coatom} \ \mathsf{Quord}(A,f) \ \mathsf{in} \ \mathcal{L} : \mathsf{Quord}(A,g) \subseteq \mathsf{Quord}(A,f)$$
$$\implies \mathsf{Con}(A,g) = \mathsf{Eq}(A) \cap \mathsf{Quord}(A,g) \subseteq \mathsf{Eq}(A) \cap \mathsf{Quord}(A,f) = \mathsf{Con}(A,f)$$

Con(A, g) is a coatom

$$\implies \operatorname{Con}(A,g) = \operatorname{Con}(A,f) \text{ (q.e.d.)}$$

or $\operatorname{Con}(A,f) = \operatorname{Eq}(A)$

the latter is impossible since it would give

$$\{id_A\} = End Eq(A) = End Con(A, f) \supseteq End Quord(A, f)$$

 \implies Quord(A, f) = Quord End Quord(A, f) = Quord $\{id_A\} = Quord(A)$,
a contradiction!

AAA90, Novi Sad, June, 2015

Coatoms of \mathcal{E} 000000

The coatoms of \mathcal{L}

[JPR 2015] (Algebra Universalis, to appear): The coatoms of \mathcal{L} are of the form Quord(A, f) where $f : A \to A$ is of one of the following types:

 \lor -irreducibles (in particular atoms) of ${\mathcal E}$

Coatoms of \mathcal{E} 0000000

The coatoms of \mathcal{E}

Theorem

The coatoms of \mathcal{E} are exactly the congruence lattices of the form Con(A, f) where $f \in A^A$ is nontrivial (i.e., not constant and not the identity) and satisfies

(I)
$$f^2 = f$$
, or

(II) f^2 is a constant, say 0, and $|[0]_{ker f}| \ge 3$, or

(III) $f^p = id_A$ for some prime p such that the permutation f has at least two cycles of length p.

AAA90, Novi Sad, June, 2015

 \lor -irreducibles (in particular atoms) of ${\mathcal E}$

Coatoms of \mathcal{E} 0000000

References

- D. JAKUBÍKOVÁ-STUDENOVSKÁ, R. PÖSCHEL, AND S. RADELECZKI, *The lattice of quasiorder lattices of algebras on a finite set.* Algebra Universalis, to appear.
- R. PÖSCHEL AND S. RADELECZKI, Endomorphisms of quasiorders and related lattices. In: G. DORFER,
 G. EIGENTHALER, H. KAUTSCHITSCH, W. MORE, AND
 W.B. MÜLLER (Eds.), Contributions to General Algebra 18,
 Verlag Heyn GmbH & Co KG, 2008, pp. 113–128,
 (Proceedings of the Klagenfurt Conference 2007 (AAA73+CYA22), Febr. 2007).

 \lor -irreducibles (in particular atoms) of ${\cal E}$

 $\begin{array}{c} \text{Coatoms of } \mathcal{E} \\ \text{0000000} \end{array}$

AAA90, Novi Sad, June, 2015

 $\begin{array}{c} \text{Coatoms of } \mathcal{E} \\ \text{000000} \bullet \end{array}$

