DIVISIBILITY IN THE STONE-ČECH COMPACTIFICATION

Boris Šobot

Department of Mathematics and Informatics, Faculty of Sciences, Novi Sad

AAA90

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

1 / 17

1 A P 1 3 5 1

The Stone-Čech compactification

N - discrete topological space on the set of natural numbers Ultrafilter: nonempty $p \subseteq P(N)$ such that: (1) $A, B \in p \Rightarrow A \cap B \in p$; (2) $A \in p, A \subseteq B \Rightarrow B \in p$; (3) $A \subseteq N \Rightarrow A \in p \lor A^c \in p$. βN - the set of ultrafilters on NBase sets for topology on βN : $\overline{A} = \{p \in \beta N : A \in p\}$ for $A \subseteq N$

・ロト ・ 同ト ・ ヨト ・ ヨト

N - discrete topological space on the set of natural numbers Ultrafilter: nonempty $p\subseteq P(N)$ such that:

(1)
$$A, B \in p \Rightarrow A \cap B \in p;$$

$$(2) A \in p, A \subseteq B \Rightarrow B \in p;$$

$$(3) A \subseteq N \Rightarrow A \in p \lor A^c \in p.$$

 βN - the set of ultrafilters on NBase sets for topology on βN : $\overline{A} = \{p \in \beta N : A \in p\}$ for $A \subseteq N$

・ロト ・ 同ト ・ ヨト ・ ヨ

N - discrete topological space on the set of natural numbers Ultrafilter: nonempty $p\subseteq P(N)$ such that:

(1)
$$A, B \in p \Rightarrow A \cap B \in p;$$

- (2) $A \in p, A \subseteq B \Rightarrow B \in p;$
- $(3) \ A \subseteq N \Rightarrow A \in p \lor A^c \in p.$
- βN the set of ultrafilters on N

Base sets for topology on βN : $\overline{A} = \{p \in \beta N : A \in p\}$ for $A \subseteq N$

N - discrete topological space on the set of natural numbers Ultrafilter: nonempty $p\subseteq P(N)$ such that:

(1)
$$A, B \in p \Rightarrow A \cap B \in p;$$

(2)
$$A \in p, A \subseteq B \Rightarrow B \in p;$$

$$(3) A \subseteq N \Rightarrow A \in p \lor A^c \in p.$$

 βN - the set of ultrafilters on N

Base sets for topology on βN : $\overline{A} = \{p \in \beta N : A \in p\}$ for $A \subseteq N$

・ロト ・ 同ト ・ ヨト ・ ヨト

The Stone-Čech compactification (continued)

Principal ultrafilters $\{A\subseteq N:n\in A\}$ are identified with respective elements $n\in N$

 $N^* = \beta N \setminus N$ If C is a compact topological space, every (continuous) function $f: N \to C$ can be extended uniquely to $\tilde{f}: \beta N \to C$ In particular, every function $f: N \to N$ can be extended uniquely to $\tilde{f}: \beta N \to \beta N$

The Stone-Čech compactification (continued)

Principal ultrafilters $\{A \subseteq N : n \in A\}$ are identified with respective elements $n \in N$ $N^* = \beta N \setminus N$ If C is a compact topological space, every (continuous) function

 $f:N\to C$ can be extended uniquely to $\tilde{f}:\beta N\to C$ In particular, every function $f:N\to N$ can be extended uniquely to $\tilde{f}:\beta N\to\beta N$

Principal ultrafilters $\{A \subseteq N : n \in A\}$ are identified with respective elements $n \in N$ $N^* = \beta N \setminus N$ If C is a compact topological space, every (continuous) function $f: N \to C$ can be extended uniquely to $\tilde{f}: \beta N \to C$ In particular, every function $f: N \to N$ can be extended uniquely to $\tilde{f}: \beta N \to \beta N$

<ロト (四) (三) (三) (三) (三)

Principal ultrafilters $\{A \subseteq N : n \in A\}$ are identified with respective elements $n \in N$ $N^* = \beta N \setminus N$ If C is a compact topological space, every (continuous) function $f : N \to C$ can be extended uniquely to $\tilde{f} : \beta N \to C$ In particular, every function $f : N \to N$ can be extended uniquely to $\tilde{f} : \beta N \to \beta N$

(N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$A/n = \{m \in N : mn \in A\} = \left\{\frac{a}{n} : a \in A, n \mid a\right\}$$

The semigroup operation can be extended to βN as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in N : A/n \in q\} \in p.$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

4 / 17

 (N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$A/n = \{m \in N : mn \in A\} = \left\{\frac{a}{n} : a \in A, n \mid a\right\}$$

The semigroup operation can be extended to βN as follows:

 $A \in p \cdot q \Leftrightarrow \{n \in N : A/n \in q\} \in p.$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

4 / 17

 (N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$A/n = \{m \in N : mn \in A\} = \left\{\frac{a}{n} : a \in A, n \mid a\right\}$$

The semigroup operation can be extended to βN as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in N : A/n \in q\} \in p.$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

4 / 17

 (N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$A/n = \{m \in N : mn \in A\} = \left\{\frac{a}{n} : a \in A, n \mid a\right\}$$

The semigroup operation can be extended to βN as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in N : A/n \in q\} \in p.$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ June 7th 2015

Definition

Let $p, q \in \beta N$.

(a) q is left-divisible by p, p |_L q, if there is r ∈ βN such that q = rp.
(b) q is right-divisible by p, p |_R q, if there is r ∈ βN such that q = pr.
(c) q is mid-divisible by p, p |_M q, if there are r, s ∈ βN such that q = rps.
(d) p | q if ∀A ∈ p ρ[A] ∈ q.

Where $| [A] = \{m \in N : \exists a \in A \ a \mid m\}.$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

5/17

Definition

Let $p, q \in \beta N$.

(a) q is left-divisible by p, p $|_L q$, if there is $r \in \beta N$ such that q = rp.

(b) q is right-divisible by p, $p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by p, $p \mid_M q$, if there are $r, s \in \beta N$ such that

(d) $p \mid q$ if $\forall A \in p \ \rho[A] \in q$.

Where $| [A] = \{m \in N : \exists a \in A \ a \mid m\}.$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

5/17

Definition

Let $p, q \in \beta N$.

(a) q is left-divisible by p, p $|_L q$, if there is $r \in \beta N$ such that q = rp.

(b) q is right-divisible by p, p $|_R q$, if there is $r \in \beta N$ such that q = pr.

(c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that

q = r ps.

(d) $p \mid q$ if $\forall A \in p \ \rho[A] \in q$.

Where $| [A] = \{m \in N : \exists a \in A \ a \mid m\}.$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

5/17

Definition

Let $p, q \in \beta N$.

- (a) q is left-divisible by p, $p \mid_L q$, if there is $r \in \beta N$ such that q = rp.
- (b) q is right-divisible by p, p $|_R q$, if there is $r \in \beta N$ such that q = pr.
- (c) q is mid-divisible by p, p $|_M q$, if there are $r, s \in \beta N$ such that

q = rps.

(d) $p \mid q$ if $\forall A \in p \ \rho[A] \in q$.

Where $\mid [A] = \{m \in N : \exists a \in A \ a \mid m\}.$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

5/17

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

Let $p, q \in \beta N$.

(a) q is left-divisible by p, $p \mid_L q$, if there is $r \in \beta N$ such that q = rp.

(b) q is right-divisible by p, p $|_R q$, if there is $r \in \beta N$ such that q = pr.

(c) q is mid-divisible by p, p $|_M q$, if there are $r, s \in \beta N$ such that

q = rps.(d) $p \mid q$ if $\forall A \in p \ \rho[A] \in q.$

Where $| [A] = \{m \in N : \exists a \in A \ a \mid m\}.$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

5/17

Definition

Let $p, q \in \beta N$.

(a) q is left-divisible by p, $p \mid_L q$, if there is $r \in \beta N$ such that q = rp.

(b) q is right-divisible by p, p $|_R q$, if there is $r \in \beta N$ such that q = pr.

(c) q is mid-divisible by p, $p \mid_M q$, if there are $r, s \in \beta N$ such that

$$\begin{array}{l} q = rps. \\ (d) \ p \mid q \ \text{if} \ \forall A \in p \ \rho[A] \in q. \end{array}$$

Where $\mid [A] = \{m \in N : \exists a \in A \ a \mid m\}.$

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps. (d) $p \mid q$ if $\forall A \in p \mid [A] \in q$.

 $p \mid_{L} q \text{ iff } \beta Nq \subseteq \beta Np.$ $p \mid_{R} q \text{ iff } q\beta N \subseteq p\beta N.$ $p \mid_{M} q \text{ iff } \beta Nq\beta N \subseteq \beta Np\beta N.$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

イロト イボト イヨト イヨト 一日

June 7th 2015

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps. (d) $p \mid q$ if $\forall A \in p \mid [A] \in q$.

 $p \mid_{L} q \text{ iff } \beta Nq \subseteq \beta Np.$ $p \mid_{R} q \text{ iff } q\beta N \subseteq p\beta N.$ $p \mid_{M} q \text{ iff } \beta Nq\beta N \subseteq \beta Np\beta N.$

イロト イボト イヨト イヨト 一日

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps. (d) $p \mid q$ if $\forall A \in p \mid [A] \in q$.

 $p \mid_{L} q \text{ iff } \beta Nq \subseteq \beta Np.$ $p \mid_{R} q \text{ iff } q\beta N \subseteq p\beta N.$ $p \mid_{M} q \text{ iff } \beta Nq\beta N \subseteq \beta Np\beta N.$

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps. (d) $p \mid q$ if $\forall A \in p \mid [A] \in q$.

These are preorders on βN so we view them as orders on equivalence classes of Green relations.

Boris Šobot (Nov<u>i Sad</u>)

DIVISIBILITY IN βN

June 7th 2015

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps. (d) $p \mid q$ if $\forall A \in p \ \rho[A] \in q$.

$$|L \\ C \\ |M \subset \widetilde{|} M \subset \widetilde{|}$$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

8 / 17

Divisibility by elements of N

$$nN = \{nm : m \in N\}$$

Lemma

If $n \in N$, each of the statements: (i) $n \mid_L p$, (ii) $n \mid_R p$, (iii) $n \mid_M p$, (iv) $n \mid_P p$ and (v) $nN \in p$ are equivalent.

Theorem

Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Divisibility by elements of N

$$nN = \{nm : m \in N\}$$

Lemma

If $n \in N$, each of the statements: (i) $n \mid_L p$, (ii) $n \mid_R p$, (iii) $n \mid_M p$, (iv) $n \mid_P p$ and (v) $nN \in p$ are equivalent.

Theorem

Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Divisibility of elements of N

Proposition

 N^* is an ideal of βN .

For $n \in N$ and $p \in N^*$ each of $p \mid_L n, p \mid_R n, p \mid_M n, p \mid q$ is impossible.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

э.

10 / 17

・ロト ・ 同ト ・ ヨト ・ ヨト

Divisibility of elements of N

Proposition

 N^* is an ideal of βN .

For $n \in N$ and $p \in N^*$ each of $p \mid_L n, p \mid_R n, p \mid_M n, p \mid_M q$ is impossible.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

★ ∃ ►

3

10 / 17

```
For p \in \beta N:

C(p) = \{A \subseteq N : \forall n \in N \ A/n \in p\}

C(p) is a filter and C(p) \subseteq p
```

Theorem

The following conditions are equivalent:

(i) $p \mid_L q;$ (ii) $C(p) \subseteq q;$ (iii) $C(p) \subseteq C(q).$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

3

11 / 17

イロト イヨト イヨト イヨト

For $p \in \beta N$: $C(p) = \{A \subseteq N : \forall n \in N \ A/n \in p\}$ C(p) is a filter and $C(p) \subseteq p$

Theorem

The following conditions are equivalent: (i) $p \mid_L q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq q$;

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

3

11 / 17

(日) (四) (日) (日) (日)

For
$$p \in \beta N$$
:
 $C(p) = \{A \subseteq N : \forall n \in N \ A/n \in p\}$
 $C(p)$ is a filter and $C(p) \subseteq p$

Theorem

The following conditions are equivalent:

(i) $p \mid_L q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

æ

11 / 17

(4月) キョン キョン

For $p \in \beta N$: $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$ D(p) is a filter and $D(p) \subseteq p$ $\mathcal{U} = \{S \subseteq N : S \text{ is upward closed for } |\}$

Theorem

The following conditions are equivalent: (i) $p \mid q$, i.e. for all $A \subseteq N$, $A \in p$ implies $\mid [A] \in q$; (ii) $p \cap U \subseteq q \cap U$; (iii) $D(p) \subseteq D(q)$; (iv) $D(p) \subseteq q$.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

12 / 17

《曰》 《問》 《曰》 《曰》 曰

For $p \in \beta N$: $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$ D(p) is a filter and $D(p) \subseteq p$

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの June 7th 2015

For $p \in \beta N$: $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$ D(p) is a filter and $D(p) \subseteq p$ $\mathcal{U} = \{ S \subseteq N : S \text{ is upward closed for } | \}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの June 7th 2015

For $p \in \beta N$: $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$ D(p) is a filter and $D(p) \subseteq p$ $\mathcal{U} = \{ S \subseteq N : S \text{ is upward closed for } | \}$

Theorem

The following conditions are equivalent: (i) $p \mid q$, i.e. for all $A \subseteq N$, $A \in p$ implies $\mid [A] \in q$; (*ii*) $p \cap \mathcal{U} \subseteq q \cap \mathcal{U}$; (iii) $D(p) \subseteq D(q)$; (iv) $D(p) \subseteq q$.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへの June 7th 2015

The idea: translate problems of infinite character in elementary number theory to $(\beta N, \cdot)$

Example 1 Problem: are there infinitely many perfect numbers?

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

DIVISIBILITY IN βN

June 7th 2015

13 / 17

(日) (四) (日) (日) (日)

The idea: translate problems of infinite character in elementary number theory to $(\beta N, \cdot)$

Example 1 Problem: are there infinitely many perfect numbers?

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

イロト イポト イヨト イヨト 三臣

The idea: translate problems of infinite character in elementary number theory to $(\beta N, \cdot)$

Example 1 Problem: are there infinitely many perfect numbers?

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

イロト イボト イヨト イヨト 三日

Example 1 Problem: are there infinitely many perfect numbers?

 $f: N \to N$ is quasimultiplicative if f(mn) = f(m)f(n) for relatively prime $m, n \in N$. $p, q \in \beta N$ are relatively prime if there is no $r \neq 1$ such that $r \mid p$ and $r \mid q$.

Theorem

If $f: N \to N$ is (quasi)multiplicative, then so is \widetilde{f} .

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

14 / 17

Example 1 Problem: are there infinitely many perfect numbers?

 $f: N \to N$ is quasimultiplicative if f(mn) = f(m)f(n) for relatively prime $m, n \in N$. $p, q \in \beta N$ are relatively prime if there is no $r \neq 1$ such that $r \mid p$ and $r \mid q$.

Theorem

If $f: N \to N$ is (quasi)multiplicative, then so is \tilde{f} .

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

June 7th 2015

14 / 17

Example 1 Problem: are there infinitely many perfect numbers?

 $f: N \to N$ is quasimultiplicative if f(mn) = f(m)f(n) for relatively prime $m, n \in N$. $p, q \in \beta N$ are relatively prime if there is no $r \neq 1$ such that $r \mid p$ and $r \mid q$.

Theorem

If $f: N \to N$ is (quasi)multiplicative, then so is \tilde{f} .

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

(日) (四) (三) (三) (三)

June 7th 2015

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの June 7th 2015

p is a Wieferich prime if $p^2 \mid 2^{p-1} - 1$.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの June 7th 2015

p is a Wieferich prime if $p^2 \mid 2^{p-1} - 1$.

Theorem

Let $f: N \to N$ and $g: N \to N$ be functions. If $p \in \beta N$ and the set $S = \{m \in N : f(m) \mid g(m)\}$ belongs to p, then $\widetilde{f}(p) \mid \widetilde{g}(p)$.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの June 7th 2015

p is a Wieferich prime if $p^2 \mid 2^{p-1} - 1$.

Theorem

Let $f: N \to N$ and $g: N \to N$ be functions. If $p \in \beta N$ and the set $S = \{m \in N : f(m) \mid q(m)\}$ belongs to p, then $f(p) \mid \tilde{q}(p)$.

If the answer is "yes", $f(n) = n^2$ and $g(n) = 2^{n-1} - 1$, then there is $p \in N^*$ such that $\widetilde{f}(p) \mid \widetilde{q}(p)$.

Boris Šobot (Novi Sad)

DIVISIBILITY IN βN

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの June 7th 2015

- R. C. Walker: The Stone-Čech compactification
- W. W. Comfort, S. Negrepontis: The theory of ultrafilters
- N. Hindman, D. Strauss: Algebra in the Stone-Čech compactification, theory and applications
- B. Šobot: Divisibility in the Stone-Čech compactification, submitted B. Šobot: Divisibility orders in the Stone-Čech compactification, in preparation

Thank you for your attention!

DIVISIBILITY IN βN

June 7th 2015

æ

17 / 17

イロト イヨト イヨト イヨト