DIVISIBILITY IN THE STONE-ČECH COMPACTIFICATION

Boris Šobot

Department of Mathematics and Informatics, Faculty of Sciences, Novi Sad

AAA90

The Stone-Čech compactification

N - discrete topological space on the set of natural numbers
Ultrafilter: nonempty $p \subseteq P(N)$ such that:
(1) $A, B \in p \Rightarrow A \cap B \in p$;
(2) $A \in p, A \subseteq B \Rightarrow B \in p$;
(3) $A \subseteq N \Rightarrow A \in p \underline{\vee} A^{c} \in p$.
βN - the set of ultrafilters on N
Base sets for topology on $\beta N: \bar{A}=\{p \in \beta N: A \in p\}$ for $A \subseteq N$

The Stone-Čech compactification

N - discrete topological space on the set of natural numbers
Ultrafilter: nonempty $p \subseteq P(N)$ such that:
(1) $A, B \in p \Rightarrow A \cap B \in p$;
(2) $A \in p, A \subseteq B \Rightarrow B \in p$;
(3) $A \subseteq N \Rightarrow A \in p \underline{\vee} A^{c} \in p$.

The Stone-Čech compactification

N - discrete topological space on the set of natural numbers
Ultrafilter: nonempty $p \subseteq P(N)$ such that:
(1) $A, B \in p \Rightarrow A \cap B \in p$;
(2) $A \in p, A \subseteq B \Rightarrow B \in p$;
(3) $A \subseteq N \Rightarrow A \in p \underline{\vee} A^{c} \in p$.
βN - the set of ultrafilters on N

The Stone-Čech compactification

N - discrete topological space on the set of natural numbers
Ultrafilter: nonempty $p \subseteq P(N)$ such that:
(1) $A, B \in p \Rightarrow A \cap B \in p$;
(2) $A \in p, A \subseteq B \Rightarrow B \in p$;
(3) $A \subseteq N \Rightarrow A \in p \underline{\vee} A^{c} \in p$.
βN - the set of ultrafilters on N
Base sets for topology on $\beta N: \bar{A}=\{p \in \beta N: A \in p\}$ for $A \subseteq N$

The Stone-Čech compactification (continued)

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$

The Stone-Čech compactification (continued)

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$
$N^{*}=\beta N \backslash N$
If C is a compact topological space, every (continuous) function $f: N \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta N \rightarrow C$ In particular, every function $f: N \rightarrow N$ can be extended uniquely to

The Stone-Čech compactification (continued)

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$
$N^{*}=\beta N \backslash N$
If C is a compact topological space, every (continuous) function $f: N \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta N \rightarrow C$

The Stone-Čech compactification (continued)

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$
$N^{*}=\beta N \backslash N$
If C is a compact topological space, every (continuous) function $f: N \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta N \rightarrow C$ In particular, every function $f: N \rightarrow N$ can be extended uniquely to $\tilde{f}: \beta N \rightarrow \beta N$

Algebra in the Stone-Čech compactification

(N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$
A / n=\{m \in N: m n \in A\}=\left\{\frac{a}{n}: a \in A, n \mid a\right\}
$$

The semigroup operation can be extended to βN as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in N: A / n \in q\} \in p .
$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Algebra in the Stone-Čech compactification

(N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$
A / n=\{m \in N: m n \in A\}=\left\{\frac{a}{n}: a \in A, n \mid a\right\}
$$

The semigroup operation can be extended to βN as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in N: A / n \in q\} \in p
$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Algebra in the Stone-Čech compactification

(N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$
A / n=\{m \in N: m n \in A\}=\left\{\frac{a}{n}: a \in A, n \mid a\right\}
$$

The semigroup operation can be extended to βN as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in N: A / n \in q\} \in p .
$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Algebra in the Stone-Čech compactification

(N, \cdot) - semigroup provided with discrete topology For $A \subseteq N$ and $n \in N$:

$$
A / n=\{m \in N: m n \in A\}=\left\{\frac{a}{n}: a \in A, n \mid a\right\}
$$

The semigroup operation can be extended to βN as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in N: A / n \in q\} \in p .
$$

Then $(\beta N, \cdot)$ is a semigroup, but not commutative.

Extensions of the divisibility relation

Definition
Let $p, q \in \beta N$.

(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s$.
(d) $p \mid q$ if $\forall A \in p \rho[A] \in q$.

Where $\mid[A]=\{m \in N: \exists a \in A a \mid m\}$.

Extensions of the divisibility relation

Definition
Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s . \quad$ (d) $p \mid q$ if $\forall A \in p p[A] \in q$.
Where $\mid[A]=\{m \in N: \exists a \in A a \mid m\}$.

Extensions of the divisibility relation

Definition
Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$. (b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.

Extensions of the divisibility relation

Definition
Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that $q=r p s$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s$.
(d) $p \mid q$ if $\forall A \in p \rho[A] \in q$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s$.
(d) $p \mid q$ if $\forall A \in p \rho[A] \in q$.

Where $\mid[A]=\{m \in N: \exists a \in A a \mid m\}$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s$.
(d) $p \widetilde{\mid} q$ if $\forall A \in p \mid[A] \in q$.
$\left.p\right|_{L} q$ iff $\beta N q \subseteq \beta N p$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that $q=r p s$.
(d) $p \mid q$ if $\forall A \in p \mid[A] \in q$.
$\left.p\right|_{L} q$ iff $\beta N q \subseteq \beta N p$.
$\left.p\right|_{R} q$ iff $q \beta N \subseteq p \beta N$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s$.
(d) $p \widetilde{\mid} q$ if $\forall A \in p \mid[A] \in q$.
$\left.p\right|_{L} q$ iff $\beta N q \subseteq \beta N p$.
$\left.p\right|_{R} q$ iff $q \beta N \subseteq p \beta N$.
$\left.p\right|_{M} q$ iff $\beta N q \beta N \subseteq \beta N p \beta N$.

Extensions of the divisibility relation

Definition
Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that
$q=r p s$.
(d) $p \mid q$ if $\forall A \in p \mid[A] \in q$.

These are preorders on βN so we view them as orders on equivalence classes of Green relations.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that $q=r p s$.
(d) $p \mid q$ if $\forall A \in p \rho[A] \in q$.

$$
\left.{ }_{\left.\right|_{R}}^{{ }_{C}} \subset\right|_{M} \subset \tilde{1}
$$

Divisibility by elements of N

$n N=\{n m: m \in N\}$
Lemma
If $n \in N$, each of the statements: (i) $\left.n\right|_{L} p$, (ii) $\left.n\right|_{R} p$, (iii) $\left.n\right|_{M} p$, (iv) $n \widetilde{\mid} p$ and (v) $n N \in p$ are equivalent.

Theorem
Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Divisibility by elements of N

$n N=\{n m: m \in N\}$
Lemma
If $n \in N$, each of the statements: (i) $\left.n\right|_{L} p$, (ii) $\left.n\right|_{R} p$, (iii) $\left.n\right|_{M} p$, (iv) $n \widetilde{\mid} p$ and (v) $n N \in p$ are equivalent.

Theorem
Let $A \subseteq N$ be downward closed for \mid and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Divisibility of elements of N

Proposition
N^{*} is an ideal of βN.
For $n \in N$ and $p \in N^{*}$ each of $\left.p\right|_{L} n,\left.p\right|_{R} n,\left.p\right|_{M} n, p \mid q$ is impossible.

Divisibility of elements of N

Proposition
N^{*} is an ideal of βN.
For $n \in N$ and $p \in N^{*}$ each of $\left.p\right|_{L} n,\left.p\right|_{R} n,\left.p\right|_{M} n, p \widetilde{\mid} q$ is impossible.

Equivalent conditions for divisibility

For $p \in \beta N$:
$C(p)=\{A \subseteq N: \forall n \in N A / n \in p\}$
$C(p)$ is a filter and $C(p) \subseteq p$
Theorem
The following conditions are equivalent:

Equivalent conditions for divisibility

For $p \in \beta N$:
$C(p)=\{A \subseteq N: \forall n \in N A / n \in p\}$
$C(p)$ is a filter and $C(p) \subseteq p$

Equivalent conditions for divisibility

For $p \in \beta N$:
$C(p)=\{A \subseteq N: \forall n \in N A / n \in p\}$
$C(p)$ is a filter and $C(p) \subseteq p$
Theorem
The following conditions are equivalent:
(i) $\left.p\right|_{L} q$;
(ii) $C(p) \subseteq q$;
(iii) $C(p) \subseteq C(q)$.

Equivalent conditions for divisibility

For $p \in \beta N$:
$D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$
$D(p)$ is a filter and $D(p) \subseteq p$
$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$
Theorem
The following conditions are equivalent:
(i) $p \mid q$, i.e. for all $A \subseteq N, A \in p$ implies $\mid[A] \in q$;
(ii) $p \cap \mathcal{U} \subseteq q \cap \mathcal{U}$;
(iii) $D(p) \subseteq D(q)$;
(iv) $D(p) \subseteq q$.

Equivalent conditions for divisibility

For $p \in \beta N$:
$D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$ $D(p)$ is a filter and $D(p) \subseteq p$

The following conditions are equivalent:

Equivalent conditions for divisibility

For $p \in \beta N$:
$D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$ $D(p)$ is a filter and $D(p) \subseteq p$
$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$

Equivalent conditions for divisibility

For $p \in \beta N$:
$D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$
$D(p)$ is a filter and $D(p) \subseteq p$
$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$
Theorem
The following conditions are equivalent:
(i) $p \mid q$, i.e. for all $A \subseteq N, A \in p$ implies $\mid[A] \in q$;
(ii) $p \cap \mathcal{U} \subseteq q \cap \mathcal{U}$;
(iii) $D(p) \subseteq D(q)$;
(iv) $D(p) \subseteq q$.

Applications?

The idea: translate problems of infinite character in elementary number theory to $(\beta N, \cdot)$

Example 1
Problem: are there infinitely many perfect numbers?
If the answer is "yes", then there is $p \in N^{*}$ such that $\{n \in N: \sigma(n)=2 n\} \in p$, so $\widetilde{\sigma}(p)=2 p$.

Applications?

The idea: translate problems of infinite character in elementary number theory to ($\beta N, \cdot$)

Example 1
Problem: are there infinitely many perfect numbers?
If the answer is "yes", then there is $p \in N^{*}$ such that
$\{n \in N: \sigma(n)=2 n\} \in p$, so $\widetilde{\sigma}(p)=2 p$.

Applications?

The idea: translate problems of infinite character in elementary number theory to ($\beta N, \cdot$)

Example 1
Problem: are there infinitely many perfect numbers?
If the answer is "yes", then there is $p \in N^{*}$ such that $\{n \in N: \sigma(n)=2 n\} \in p$, so $\widetilde{\sigma}(p)=2 p$.

Applications?

Example 1
Problem: are there infinitely many perfect numbers?
$f: N \rightarrow N$ is quasimultiplicative if $f(m n)=f(m) f(n)$ for relatively prime $m, n \in N$.

Theorem
If $f: N \rightarrow N$ is (quasi) multiplicative, then so is \tilde{f}.

Applications?

Example 1
Problem: are there infinitely many perfect numbers?
$f: N \rightarrow N$ is quasimultiplicative if $f(m n)=f(m) f(n)$ for relatively prime $m, n \in N$.
$p, q \in \beta N$ are relatively prime if there is no $r \neq 1$ such that $r \widetilde{\|} p$ and $r \widetilde{\mid} q$.

Applications?

Example 1
Problem: are there infinitely many perfect numbers?
$f: N \rightarrow N$ is quasimultiplicative if $f(m n)=f(m) f(n)$ for relatively prime $m, n \in N$.
$p, q \in \beta N$ are relatively prime if there is no $r \neq 1$ such that $r \widetilde{\|} p$ and $r \widetilde{\mid} q$.

Theorem
If $f: N \rightarrow N$ is (quasi)multiplicative, then so is \widetilde{f}.

Applications?

Example 2
Problem: are there infinitely many Wieferich primes?
p is a Wieferich prime if $p^{2} \mid 2^{p-1}-1$.
Theorem
Let $f: N \rightarrow N$ and $g: N \rightarrow N$ be functions. If $p \in \beta N$ and the set
$S=\{m \in N: f(m) \mid g(m)\}$ belongs to p, then $f(p) \mid \widetilde{g}(p)$.

Applications?

Example 2
Problem: are there infinitely many Wieferich primes?
p is a Wieferich prime if $p^{2} \mid 2^{p-1}-1$.
Theorem

Applications?

Example 2
Problem: are there infinitely many Wieferich primes?
p is a Wieferich prime if $p^{2} \mid 2^{p-1}-1$.
Theorem
Let $f: N \rightarrow N$ and $g: N \rightarrow N$ be functions. If $p \in \beta N$ and the set $S=\{m \in N: f(m) \mid g(m)\}$ belongs to p, then $\widetilde{f}(p) \mid \widetilde{g}(p)$.

Applications?

Example 2
Problem: are there infinitely many Wieferich primes?
p is a Wieferich prime if $p^{2} \mid 2^{p-1}-1$.
Theorem
Let $f: N \rightarrow N$ and $g: N \rightarrow N$ be functions. If $p \in \beta N$ and the set $S=\{m \in N: f(m) \mid g(m)\}$ belongs to p, then $\widetilde{f}(p) \mid \widetilde{g}(p)$.

If the answer is "yes", $\underset{\sim}{f}(n)=n^{2}$ and $g(n)=2^{n-1}-1$, then there is $p \in N^{*}$ such that $\widetilde{f}(p) \widetilde{\mid} \widetilde{g}(p)$.

References

R. C. Walker: The Stone-Čech compactification W. W. Comfort, S. Negrepontis: The theory of ultrafilters N. Hindman, D. Strauss: Algebra in the Stone-Čech compactification, theory and applications
B. Šobot: Divisibility in the Stone-Čech compactification, submitted B. Šobot: Divisibility orders in the Stone-Čech compactification, in preparation

Thank you for your attention!

