Přemysl Jedlička¹, Agata Pilitowska² David Stanovský³, Anna Zamojska-Dzienio²

¹ Faculty of Engineering, Czech University of Life Sciences ²Faculty of Mathematics and Information Science, Warsaw University of Technology ³ Faculty of Mathematics and Physics, Charles University & IITU, Almaty, Kazakhstan

> AAA90 Novi Sad, June 4-7, 2015

Quasi-affine algebras

Definition

A is **quasi-affine** \Leftrightarrow A is a subreduct (a subalgebra of a reduct) of a module.

Quasi-affine algebras

Definition

A is **quasi-affine** \Leftrightarrow A is a subreduct (a subalgebra of a reduct) of a module.

Definition

A is **abelian** (diagonally normal) $\Leftrightarrow \{(a, a) \mid a \in A\}$ is a block of a congruence of $\mathbf{A} \times \mathbf{A} \Leftrightarrow$ A satisfies

$$t(x, u_1, \ldots, u_k) = t(x, v_1, \ldots, v_k) \quad \Rightarrow \quad t(y, u_1, \ldots, u_k) = t(y, v_1, \ldots, v_k)$$

for every term t.

Quasi-affine algebras

Definition

A is **quasi-affine** \Leftrightarrow A is a subreduct (a subalgebra of a reduct) of a module.

Definition

A is **abelian** (diagonally normal) $\Leftrightarrow \{(a, a) \mid a \in A\}$ is a block of a congruence of $\mathbf{A} \times \mathbf{A} \Leftrightarrow$ A satisfies

$$t(x, u_1, \ldots, u_k) = t(x, v_1, \ldots, v_k) \quad \Rightarrow \quad t(y, u_1, \ldots, u_k) = t(y, v_1, \ldots, v_k)$$

for every term t.

Remark

Quasi-affine algebras A are abelian.

Definition

- an operation is central, if it commutes with all basic operations of A
- A is entropic if all basic operations are central

Definition

- an operation is central, if it commutes with all basic operations of A
- A is entropic if all basic operations are central

medial groupoid = entropic groupoid: (xy)(uv) = (xu)(yv)

Definition

- an operation is central, if it commutes with all basic operations of A
- A is entropic if all basic operations are central

medial groupoid = entropic groupoid: (xy)(uv) = (xu)(yv)

Theorem

• (K.Kearnes) An abelian algebra A has a central cancellative binary polynomial operation ⇒ A is quasi-affine.

Abelian ⇔ quasi-affine

Definition

- an operation is central, if it commutes with all basic operations of A
- A is entropic if all basic operations are central

medial groupoid = entropic groupoid: (xy)(uv) = (xu)(yv)

Theorem

- (K.Kearnes) An abelian algebra A has a central cancellative binary polynomial operation ⇒ A is quasi-affine.
- (M.Stronkowski, D.Stanovský) An abelian algebra A (without nullary basic operations) has a commutative cancellative binary polynomial operation ⇒ A is quasi-affine.

Abelian ⇔ quasi-affine

Definition

- an operation is central, if it commutes with all basic operations of A
- A is entropic if all basic operations are central

medial groupoid = entropic groupoid: (xy)(uv) = (xu)(yv)

Theorem

- (K.Kearnes) An abelian algebra A has a central cancellative binary polynomial operation ⇒ A is quasi-affine.
- (M.Stronkowski, D.Stanovský) An abelian algebra A (without nullary basic operations) has a commutative cancellative binary polynomial operation ⇒ A is quasi-affine.
- (K.Kearnes) A is an abelian, simple, idempotent algebra ⇒ A is quasi-affine.

Open problem

Is it true that every idempotent abelian algebra is quasi-affine?

Open problem

Is it true that every idempotent abelian algebra is quasi-affine?

Theorem

• (A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent and entropic algebra) is a subreduct of a module over a commutative ring.

Open problem

Is it true that every idempotent abelian algebra is quasi-affine?

Theorem

- (A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent and entropic algebra) is a subreduct of a module over a commutative ring.
- (D.Stanovský) Abelian differential modes are quasi-affine.

(left, *n*-ary) **differential mode** (A, f):

•
$$f(x, ..., x) = x$$

• $f(f(x, y_2, ..., y_n), z_2, ..., z_n) = f(f(x, z_2, ..., z_n), y_2, ..., y_n)$
• $f(x, f(y_{21}, ..., y_{2n}), ..., f(y_{n1}, ..., y_{nn})) = f(x, y_{21}, ..., y_{n1})$

Open problem

Is it true that every idempotent abelian algebra is quasi-affine?

Theorem

- (A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent and entropic algebra) is a subreduct of a module over a commutative ring.
- (D.Stanovský) Abelian differential modes are quasi-affine.

(left, *n*-ary) **differential mode** (A, f):

•
$$f(x, ..., x) = x$$

• $f(f(x, y_2, ..., y_n), z_2, ..., z_n) = f(f(x, z_2, ..., z_n), y_2, ..., y_n)$
• $f(x, f(y_{21}, ..., y_{2n}), ..., f(y_{n1}, ..., y_{nn})) = f(x, y_{21}, ..., y_{n1})$

Conjecture

All abelian modes are quasi-affine.

Definition

A binary algebra (Q, \cdot) is called a **quandle** if it is:

- left distributive: x(yz) = (xy)(xz) for every $x, y, z \in Q$
- **idempotent**: xx = x for each $x \in Q$
- a left quasigroup: the equation xu = y has a unique solution u ∈ Q for every x, y ∈ Q

Definition

A binary algebra (Q, \cdot) is called a **quandle** if it is:

- left distributive: x(yz) = (xy)(xz) for every $x, y, z \in Q$
- **idempotent**: xx = x for each $x \in Q$
- a left quasigroup: the equation xu = y has a unique solution u ∈ Q for every x, y ∈ Q

Example

•
$$(G, \cdot)$$
 - a group, $g \triangleright h := g^{-1}hg$, $ConjG = (G, \triangleright)$ - a quandle

Definition

A binary algebra (Q, \cdot) is called a **quandle** if it is:

- left distributive: x(yz) = (xy)(xz) for every $x, y, z \in Q$
- **idempotent**: xx = x for each $x \in Q$
- a left quasigroup: the equation xu = y has a unique solution u ∈ Q for every x, y ∈ Q

Example

- (G, \cdot) a group, $g \triangleright h := g^{-1}hg$, $ConjG = (G, \triangleright)$ a quandle
- (A, +) an abelian group, $f \in Aut(A, +)$ Aff(A, f) = (A, *), with a * b = (id - f)(a) + f(b) - affine (Alexander) quandle over A

Definition

A binary algebra (Q, \cdot) is called a **quandle** if it is:

- left distributive: x(yz) = (xy)(xz) for every $x, y, z \in Q$
- **idempotent**: xx = x for each $x \in Q$
- a left quasigroup: the equation xu = y has a unique solution u ∈ Q for every x, y ∈ Q

Example

•
$$(G, \cdot)$$
 - a group, $g \triangleright h := g^{-1}hg$, $ConjG = (G, \triangleright)$ - a quandle

• (A, +) - an abelian group, $f \in Aut(A, +)$ Aff(A, f) = (A, *), with a * b = (id - f)(a) + f(b) - affine (Alexander) quandle over A

Remark

A quandle is quasi-affine if it embeds into an affine quandle.

The **displacement group** - the subgroup of $Aut(Q, \cdot)$:

$$\operatorname{Dis}(Q) = \langle L_a L_b^{-1} \mid a, b \in Q \rangle.$$

For $a \in Q$, $L_a : Q \to Q$, $x \mapsto ax$

The **displacement group** - the subgroup of $Aut(Q, \cdot)$:

$$\operatorname{Dis}(Q) = \langle L_a L_b^{-1} \mid a, b \in Q \rangle.$$

For $a \in Q$, $L_a : Q \to Q$, $x \mapsto ax$

Facts

• For an affine quandle Aff(A, k), $Dis(Q) \simeq Im(id - k)$.

The **displacement group** - the subgroup of $Aut(Q, \cdot)$:

$$\operatorname{Dis}(Q) = \langle L_a L_b^{-1} \mid a, b \in Q \rangle.$$

For $a \in Q$, $L_a : Q \to Q$, $x \mapsto ax$

Facts

- For an affine quandle Aff(A, k), $Dis(Q) \simeq Im(id k)$.
- Affine quandles are medial.

The **displacement group** - the subgroup of $Aut(Q, \cdot)$:

$$\operatorname{Dis}(Q) = \langle L_a L_b^{-1} \mid a, b \in Q \rangle.$$

For $a \in Q$, $L_a : Q \to Q$, $x \mapsto ax$

Facts

- For an affine quandle Aff(A, k), $Dis(Q) \simeq Im(id k)$.
- Affine quandles are medial.
- A quandle (Q, \cdot) is medial if and only if Dis(Q) is commutative.

Theorem (K.Kearnes)

An idempotent and abelian groupoid is medial.

Theorem (K.Kearnes)

An idempotent and abelian groupoid is medial.

Remark

Each abelian quandle is medial.

Theorem (K.Kearnes)

An idempotent and abelian groupoid is medial.

Remark

Each abelian quandle is medial.

Theorem (JPSZ)

A quandle Q is abelian iff

- Dis(Q) is commutative
- the only mapping from Dis(Q) with a fixed point is the identity mapping

affine mesh = triple $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ indexed by *I* where

- A_i are abelian groups
- $\varphi_{i,j}: A_i \to A_j$ homomorphisms
- $c_{i,j} \in A_j$ constants

such that for every $i, j, j', k \in I$

• id $-\varphi_{i,i}$ is an automorphism of A_i

•
$$c_{i,i} = 0$$

• $\varphi_{j,k}\varphi_{i,j} = \varphi_{j',k}\varphi_{i,j'}$ (they commute naturally)

•
$$\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$$

affine mesh = triple $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ indexed by *I* where

- A_i are abelian groups
- $\varphi_{i,j}: A_i \to A_j$ homomorphisms
- $c_{i,j} \in A_j$ constants

such that for every $i, j, j', k \in I$

• id $-\varphi_{i,i}$ is an automorphism of A_i

•
$$c_{i,i} = 0$$

• $\varphi_{j,k}\varphi_{i,j} = \varphi_{j',k}\varphi_{i,j'}$ (they commute naturally)

•
$$\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$$

sum of an affine mesh = disjoint union of A_i , for $a \in A_i$, $b \in A_j$

$$a * b = c_{i,j} + \varphi_{i,j}(a) + (\mathrm{id} - \varphi_{j,j})(b)$$

affine mesh = triple $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ indexed by *I* where

- A_i are abelian groups
- $\varphi_{i,j}: A_i \to A_j$ homomorphisms
- $c_{i,j} \in A_j$ constants

such that for every $i, j, j', k \in I$

• id $-\varphi_{i,i}$ is an automorphism of A_i

•
$$c_{i,i} = 0$$

• $\varphi_{j,k}\varphi_{i,j} = \varphi_{j',k}\varphi_{i,j'}$ (they commute naturally)

•
$$\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$$

sum of an affine mesh = disjoint union of A_i , for $a \in A_i$, $b \in A_j$

$$a * b = c_{i,j} + \varphi_{i,j}(a) + (\mathrm{id} - \varphi_{j,j})(b)$$

 $(A_i, *)$ = affine quandle Aff $(A_i, id - \varphi_{i,i})$

affine mesh = triple $((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})$ indexed by *I* where

- A_i are abelian groups
- $\varphi_{i,j}: A_i \to A_j$ homomorphisms
- $c_{i,j} \in A_j$ constants

such that for every $i, j, j', k \in I$

• id $-\varphi_{i,i}$ is an automorphism of A_i

•
$$c_{i,i} = 0$$

• $\varphi_{j,k}\varphi_{i,j} = \varphi_{j',k}\varphi_{i,j'}$ (they commute naturally)

•
$$\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})$$

sum of an affine mesh = disjoint union of A_i , for $a \in A_i$, $b \in A_j$

$$a * b = c_{i,j} + \varphi_{i,j}(a) + (\mathrm{id} - \varphi_{j,j})(b)$$

 $(A_i, *)$ = affine quandle Aff $(A_i, id - \varphi_{i,i})$

Theorem (JPSZ)

An algebra is a medial quandle if and only if it is the sum of an affine mesh.

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh $\mathcal{A} = ((A, A, ...); \varphi; (c_{i,j})_{i,j \in I})$ over a non-empty set I and $A \simeq \text{Dis}(Q)$.

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh $\mathcal{A} = ((A, A, ...); \varphi; (c_{i,j})_{i,j \in I})$ over a non-empty set I and $A \simeq \text{Dis}(Q)$.

• **Case 1.** $\varphi \in Aut(A)$. All orbits are quasigroups: Aff $(A, id - \varphi)$.

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh $\mathcal{A} = ((A, A, ...); \varphi; (c_{i,j})_{i,j \in I})$ over a non-empty set I and $A \simeq \text{Dis}(Q)$.

• Case 1. $\varphi \in Aut(A)$. All orbits are quasigroups: Aff $(A, id - \varphi)$.

• Case 2. $\varphi \notin Aut(A)$. None of the orbits is a quasigroup.

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh $\mathcal{A} = ((A, A, ...); \varphi; (c_{i,j})_{i,j \in I})$ over a non-empty set I and $A \simeq \text{Dis}(Q)$.

• Case 1. $\varphi \in Aut(A)$. All orbits are quasigroups: Aff $(A, id - \varphi)$.

$$Q \simeq \operatorname{Aff}(A, \operatorname{id} - \varphi) \times \operatorname{Aff}(I, \operatorname{id})$$

• Case 2. $\varphi \notin Aut(A)$. None of the orbits is a quasigroup.

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh $\mathcal{A} = ((A, A, ...); \varphi; (c_{i,j})_{i,j \in I})$ over a non-empty set I and $A \simeq \text{Dis}(Q)$.

• **Case 1.** $\varphi \in Aut(A)$. All orbits are quasigroups: Aff $(A, id - \varphi)$.

$$Q \simeq \operatorname{Aff}(A, \operatorname{id} - \varphi) \times \operatorname{Aff}(I, \operatorname{id})$$

Q is an affine quandle.

• Case 2. $\varphi \notin Aut(A)$. None of the orbits is a quasigroup.

Not all abelian quandles are affine quandles.

Example

Q - the sum of the affine mesh: $((Z_3, Z_3); \varphi = 0; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$

*	0	1	2	3	4	5
0	0	1	2	4	5	3
1	0	1	2	4	5	3
2	0	1	2	4	5	3
3	1	2	0	3	4	5
4	1	2	0	3	4	5
5	1	2	0	3	4	5

Q is not an affine quandle.

Main theorem

Theorem (JPSZ) Each abelian quandel is quasi-affine.

Main theorem

Theorem (JPSZ)

Each abelian quandel is quasi-affine.

Proof.

Idea: To verify the axioms of quasi-affine algebras presented by M.Stronkowski and D.Stanovský in *Embedding general algebras into modules*, Proc. Amer. Math. Soc. 138/8 (2010).

Q - a quandle, $e \in Q, R_e : Q \to Q; x \mapsto xe$

 $S \subseteq Q$ - a transwersal of the partition by the relation ker R_e

Q - a quandle, $e \in Q$, $R_e : Q \to Q$; $x \mapsto xe$ $S \subseteq Q$ - a transwersal of the partition by the relation ker R_e

$$\operatorname{Dis}(Q) = \{ L_s L_e^{-1} \mid s \in S \}$$
(1)

Q - a quandle, $e \in Q$, $R_e : Q \to Q$; $x \mapsto xe$ $S \subseteq Q$ - a transwersal of the partition by the relation ker R_e

$$\operatorname{Dis}(Q) = \{L_s L_e^{-1} \mid s \in S\}$$
(1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

 $(xy)y \approx y.$

Q - a quandle, $e \in Q$, $R_e : Q \to Q$; $x \mapsto xe$ $S \subseteq Q$ - a transwersal of the partition by the relation ker R_e

$$\operatorname{Dis}(Q) = \{L_s L_e^{-1} \mid s \in S\}$$
(1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

 $(xy)y \approx y.$

Theorem (JPSZ)

A non 2-reductive abelian quandle is affine iff it satisfies the condition (1).

Thank you for your attention!