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Compatible Functions on Groups

Definition
Let G = 〈G, ◦〉 be a group. A function f : Gn → G is compatible or
congruence preserving if

∀g1, . . . ,gn,h1, . . . ,hn ∈ G :

f (g1, . . . ,gn)−1 ◦ f (h1, . . . ,hn) ∈ 〈g−1
1 ◦ h1, . . . ,g−1

n ◦ hn〉.

Compn(G) = {f : Gn → G | f is compatible}.

Definition

π
(n)
i : (x1, . . . , xn) 7→ xi ,

ḡ : (x1, . . . , xn) 7→ g,

Poln(G) = subgrp. of GGn
gen. by {π(n)i | i ∈ {1, . . . ,n}} ∪ {ḡ | g ∈ G}.
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Near-Rings associated with Groups

Definition
Let G = 〈G,+〉 be a group, not necessarily abelian.

C0(G) = 〈C0(G),+, ◦〉 is the near-ring of all unary zero-symmetric
compatible functions.

P0(G) = 〈P0(G),+, ◦〉 is the near-ring of all unary zero-symmetric
polynomial functions.

I(G) = P0(G) is the near-ring generated by all inner-automorphisms.

G is 1-affine complete if C0(G) = I(G).
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Inner-Automorphism Near-Ring

Theorem (A. John Chandy, 1971)
G a group. The inner-automorphism near-ring I(G) is a ring iff
G � [x , [x , y ]] = 1.

These groups are called 2-Engel groups. Every 2-nilpotent group is a
2-Engel group.

Corollary (A. John Chandy, 1971)
If the group G is 2-nilpotent then the inner-automorphism ring is
commutative.

gap> G:=AbelianGroup([8,2]);; #C8 x C2
gap> I:=InnerAutomorphismNearRing(G);;
gap> IsDistributiveNearRing(I);
true
gap> IsCommutative(G);
true
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Zero-Symmetric Compatible Functions

Problem
Given a group G. When is C0(G) a ring?

For example C0(G) is a ring for:
1 1-affine complete 2-Engel groups and
2 1-affine complete abelian groups.

gap> G:=SmallGroup(16,3);; #(C4 x C2) : C2
gap> Co:=ZeroSymmetricCompatibleFunctionNearRing(G);;
gap> I:=InnerAutomorphismNearRing(G);;
gap> Size(Co)=Size(I);
false
gap> IsDistributiveNearRing(Co);
true
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Properties of Lattices

We will now investigate congruence lattices.

Definition
(δ, ε) ∈ L2 is a splitting pair of the lattice L if δ < 1, ε > 0 and for all
α ∈ L, we have α ≤ δ or α ≥ ε.

The lattice L splits if it has a splitting pair.

Definition
β ∈ L is a cutting element of the lattice L if β < 1, β > 0 and for all
α ∈ L we have α ≤ β or α ≥ β.

The lattice L cuts if it has a cutting element.
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Properties of Lattices

(a) M3 does not split

ε

δ

(b) splits

β

(c) cuts
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Necessary Conditions for C0(G) to be a ring

Theorem (FS)
If G is abelian and C0(G) is a ring, then G is 1-affine complete.

Since every abelian group is also a 2-Engel group, we immediately get:

Corollary
If G is abelian then C0(G) is a ring iff G is 1-affine complete.

The 1-affine completeness of abelian groups has been characterized
by Lausch and Nöbauer in 1973.

Theorem (FS)
If Con (G) cuts then C0(G) is not a ring.
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Necessary Conditions for C0(G) to be a ring

Theorem (FS)

Let G be a group such that C0(G) is a ring. Let (δ, ε) ∈ Con (G)2 be a
splitting pair of Con (G). Then we have that G/δ ∼= Zn

2 and ε ∼= Zm
2

Corollary
If Con (G) splits and 2 - |G| then C0(G) is not a ring.

Especially for every odd prime p and for every p-group such that
Con (G) splits, C0(G) is not a ring.
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Affine Complete Groups

Definition
G is n-affine complete if Compn(G) = Poln(G) and G is affine complete
if G is n-affine complete for all n ∈ N.

Theory to determine affine completeness exists for the following
classes of groups:

1 abelian groups [Lausch, Nöbauer, 1973]
2 groups with APMI [Aichinger, Mudrinski, 2009]
3 groups with splitting congruce lattice [Aichinger 2002]
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Affine Complete Groups

The theory covers all groups of order up to 100 except for the following
1 (Z2 × Z2 × D4) oα1 Z2 and
2 (Z4 × Z2) oα2 Q8.

Both groups have a non-splitting normal subgroup lattice and are of
nilpotency class 2.
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Normal Subgroup Lattice
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Affine Complete Groups

Theorem (E. Aichinger, J. Ecker)
Let H be a group of nilpotency class k. If H is (k + 1)-affine complete,
then H is affine complete.

Since G is 2-nilpotent it suffices to check if G is 3-affine complete.

1-affine completeness:

gap> G:=SmallGroup(64,73);;
gap> StructureDescription(G);
"(C2 x C2 x D8) : C2"
gap> Comp:=CompatibleFunctionNearRing(G);;
gap> Pol:=PolynomialNearRing(G);;
gap> Size(Pol);Size(Comp);
2048
2048
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Affine Complete Groups

Let V be a finite expanded group, n ∈ N0 and let

an(V) := log2(|{p ∈ Poln(V)|p is absorbing}|)
pn(V) := log2(|Poln(V)|).

Theorem (Higman, Berman, Blok)
Let V be a finite expanded group. Then for each n ∈ N0, we have

pn(V) =
n∑

i=0

ai(V)

(
n
i

)
.
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Affine Complete Groups

Let Ḡ := 〈G,Comp(G)〉.

pn(Ḡ) =
n∑

i=0

ai(Ḡ)

(
n
i

)
.

First one can see that a0(Ḡ) = 6 and p1(Ḡ) = 11. That gives us that
a1(Ḡ) = 5.
Next we show that Ḡ has only 2 absorbing polynomial functions, thus
a2(Ḡ) = 1. Hence p2(Ḡ) = p2(G) = 17, meaning that G is 2-affine
complete.
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Affine Complete Groups

Next we prove a3(Ḡ) = 0. To this end we show that Con (Ḡ) does not
admit a nontrivial ternary commutator operation.

The ternary commutator is defined as [·, ·, ·] : Con(Ḡ)3 → Con(Ḡ).
Proving a3(Ḡ) = 0 we need: ∀α1, α2, α3, β1, β2, β3, γ1, γ2 ∈ Con(G):

1 (HC1) [α1, α2, α3] ≤ α1 ∧ α2 ∧ α3

2 (HC2) if α1 ≤ β1, α2 ≤ β2, α3 ≤ β3 then [α1, α2, α3] ≤ [β1, β2, β3]

3 (HC3) [α1, α2, α3] ≤ [α1, α2]

4 (HC4) [α1, α2, α3] = [ασ(1), ασ(2), ασ(3)] for σ ∈ S3

5 (HC7) [γ1 ∨ γ2, α2, α3] = [γ1, α2, α3] ∨ [γ2, α2, α3].

Since the ternary commutator of Ḡ is trivial we know that a3(Ḡ) = 0.
Thus G has to be 3-affine complete and therefore affine complete.
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Normal Subgroup Lattice
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Affine Complete Groups

G := (Z2 × Z2 × D4) oα1 Z2 :

G is defined in the following way. Take N := Z2 × Z2 × D4 with
N = 〈g1,g2,a,b〉 where ord(a) = 4,ord(b) = 2.
Let β ∈ Aut(N) be defined as follows:

β : N → N
g1 7→ g1

g2 7→ g2

a 7→ g1 ∗ a
b 7→ g2 ∗ b.

Then α1 is defined in the following way:

α1 : Z2 → Aut(N)

1Z2 7→ β.
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