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What and why?

What and why?

Motivation Shorten and fasten proofs by adding “short-cuts”.

But we don’t want to have new theorems.

admissible Such a rule is called admissible.
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R-Mingle

RM Relevance logic R with Mingle

Mingle p → (p → p)

RMt RM with additional constant t

Language Lt = {∧,∨,→, ·,¬, t}
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Definition

rules are denoted by Γ/ϕ for finite Γ ∪ {ϕ} ⊂ FmL
Γ/ϕ is derivable in a logic L if Γ `L ϕ
Γ/ϕ is admissible in a logic L if for all substitutions
(homomorphisms) σ : FmL → FmL:

`L σ(ψ) for all ψ ∈ Γ ⇒ `L σ(ϕ)

{Γ/ϕ | Γ/ϕ is admissible in L} =: |∼L

Let R be a set of rules.

L +R = smallest logic containing L ∪R

R is a basis for the admissible rules of L if
L +R = |∼L
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Corresponding algebraic semantics

Z◦ = 〈Z \ {0},min,max,→, ·,−, 1〉

→ x → y :=

{
max{−x, y} if x ≤ y

min{−x, y} if x > y

· x · y :=


min{x, y} if |x | = |y |
y if |x | < |y |
x if |x | > |y |

Z2n = 〈{−n, . . . ,−1, 1, . . . , n},min,max,→, ·,−, 1〉

Z2n+1 = 〈{−n, . . . ,−1, 0, 1, . . . , n},min,max,→, ·,−, 1〉
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Sugihara Monoids

SM = V(Z◦) the variety of Sugihara Monoids generated by
Z◦.
SM provides an equivalent algebraic semantics for
RMt

{ψ ≈ |ψ| | ψ ∈ Γ} �SM ϕ ≈ |ϕ| ⇔: Γ �SM ϕ

⇔ Γ `RMt ϕ

for any rule Γ/ϕ.
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This talk

Bases for admissible rules of the fragments of RMt

with the following languages

L1 = {→, t}

L2 = {→, ·, t}

Lm = {→,¬, t} = {→, ·,¬, t} multiplicative fragment.

SM � Li algebraic semantics corresponding to the
Li -fragment of RMt , i ∈ {1, 2,m}

Remark
Raftery,

Olson

RMt � {∧,→, t} has empty basis (= it is
structurally complete).
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Idea of how to find the bases

Recall SM = V(SM) = V(Z◦)

Lemma S. V(SM � Li) = V(Z4 � Li), i ∈ {1, 2,m}
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Idea of how to find the bases

Recall that for two varieties V1 and V2 we have:
V1 = V2 iff (`V1 ϕ ⇔ `V2 ϕ for all formulas ϕ).

A rule is admissible in RMt � Li

⇔ it is admissible in SM � Li

⇔ it is admissible in Z4 � Li

Interested in algebras s.t. admissibility in Z4 � Li

corresponds to validity in these algebras.

Then: Axiomatize the quasivarieties generated by
these algebras to get an axiomatization of the
admissible rules of our fragments.
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Finding the bases

Theorem Let B be an algebra and FB(ω) the free algebra of
V(B) on countably infinite many generators. Then

Γ/ϕ is B-admissible ⇔ Γ �FB(ω) ϕ.
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Finding the bases

Lemma The following are equivalent:

(i) Γ/ϕ is B-admissible ⇔ Γ �A ϕ

(ii) Q(A) = Q(FB(ω))

So we want to find A which is “easy” to axiomatize
- but how?

Lemma A ⊆ FB(ω),B ∈ H(A) ⇒ Q(A) = Q(FB(ω))
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The algebras in our case
Lemma S. Let Z′4 ⊂ (Z2 × Z3) � L1,

Z′′4 ⊂ (Z2 × Z3) � L2,
(Z2 × Z3) � Lm be the algebras pictured. Then

(i) Q(FZ4�L1(ω)) = Q(Z′4)

(ii) Q(FZ4�L2(ω)) = Q(Z′′4)

(iii) Q(FZ4�Lm(ω)) = Q((Z2 × Z3) � Lm)

Figure: Z′4 and Z′′4
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Definition

|ψ| := ψ → ψ

ϕ⇒ ψ := (ϕ→ |ψ|)→ (ϕ→ ψ)

{p, p ⇒ q}/q (A)

ϕ↔ ψ := (ϕ→ ψ) · (ψ → ϕ)

{¬(|p1| ↔ . . .↔ |pn|)}/q (Rn), n ∈
N.
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The Bases
Lemma S. We have the following axiomatizations:

(i) RMt � L1 + (A) has equivalent q.v. Q(Z′4)

(ii) RMt � L2 + (A) has equivalent q.v. Q(Z′′4)

(iii) RMt � Lm + (A) + {(Rn)}n∈N has eq. q.v.

Q((Z2 × Z3) � Lm)

Theorem S. Then as a Corollary of this lemma

(i) {(A)} is a basis for the {→, t}- and

{→, ·, t}-fragment of RMt.

(ii) {(A)} ∪ {(Rn)}n∈N is a basis for RMt � {→,¬, t}.
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