The size of generating sets of powers

Dmitriy Zhuk zhuk.dmitriy@gmail.com

Department of Mathematics and Mechanics Moscow State University

Arbeitstagung Allgemeine Algebra 90th Workshop on General Algebra Novi Sad, Serbia, June 5-7, 2015

Dmitriy Zhuk_zhuk.dmitriy@gmail.co

PGP vs EGP

Let $\mathbb{A} = (A; F)$ be a finite algebra. What can be the size of a generating set for \mathbb{A}^n ? Let $\mathbb{A} = (A; F)$ be a finite algebra. What can be the size of a generating set for \mathbb{A}^n ? For $X \subseteq A$ by $\langle X \rangle$ we denote the subalgebra generated by X.

Let $\mathbb{A} = (A; F)$ be a finite algebra. What can be the size of a generating set for \mathbb{A}^n ? For $X \subseteq A$ by $\langle X \rangle$ we denote the algebra, generated by X.

Example 2: $A = (\{0, 1\}; x + 1)$

We need at least 2^{n-1} tuples to generate \mathbb{A}^n .

Let $\mathbb{A} = (A; F)$ be a finite algebra. What can be the size of a generating set for \mathbb{A}^n ?

For $X \subseteq A$ by $\langle X \rangle$ we denote the algebra, generated by X.

Example 2: $A = (\{0, 1\}; x + 1)$

We need at least 2^{n-1} tuples to generate \mathbb{A}^n .

Example 3:
$$\mathbb{A} = (\{0, 1, 2\}; s)$$
, where $s(x, y) = \begin{cases} 0, & \text{if } x \neq y \\ y, & \text{if } y = y \end{cases}$

We need at least 2^n tuples to generate \mathbb{A}^n .

An algebra \mathbb{A} has the polynomially generated powers (PGP) property if its *n*-th power \mathbb{A}^n has a polynomial-size generating set. That is, there exists a polynomial p such that for every n the *n*-th power \mathbb{A}^n can be generated by at most p(n) tuples.

An algebra \mathbb{A} has the exponentially generated powers (EGP) property if its *n*-th power \mathbb{A}^n has a exponential-size generating set. That is, there exists b > 1 and C > 0 such that for every *n* the *n*-th power \mathbb{A}^n cannot be generated by less than Cb^n tuples. An algebra \mathbb{A} has the polynomially generated powers (PGP) property if its *n*-th power \mathbb{A}^n has a polynomial-size generating set. That is, there exists a polynomial p such that for every n the *n*-th power \mathbb{A}^n can be generated by at most p(n) tuples.

An algebra \mathbb{A} has the exponentially generated powers (EGP) property if its *n*-th power \mathbb{A}^n has a exponential-size generating set. That is, there exists b > 1 and C > 0 such that for every *n* the *n*-th power \mathbb{A}^n cannot be generated by less than Cb^n tuples.

Problems

- Is there anything between PGP property and EGP property?
- When does an algebra have PGP property?
- How to find a polynomial-size generating set?

• Connection with the Quantified Constraint Satisfaction Problem (see the previous talk).

- Connection with the Quantified Constraint Satisfaction Problem (see the previous talk).
- Just a very nice problem!

For a tuple (a_1, \ldots, a_n) we say that $i \in \{1, 2, \ldots, n\}$ is a switch if $a_i \neq a_{i+1}$.

(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2) has 2 switches. (2,2,0,0,0,1,1,1,1,1,1,1,1,0,0,0) has 3 switches. For a tuple (a_1, \ldots, a_n) we say that $i \in \{1, 2, \ldots, n\}$ is a switch if $a_i \neq a_{i+1}$.

(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2) has 2 switches. (2,2,0,0,0,1,1,1,1,1,1,1,1,0,0,0) has 3 switches.

An algebra is called k-switchable if \mathbb{A}^n is generated by all n-tuples with at most k switches. An algebra is called switchable if it is k-switchable for some k.

Lemma (Switchability \Rightarrow PGP property)

Suppose a finite algebra \mathbb{A} is switchable, then it has PGP property.

Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta = A$. An operation is called $\alpha\beta$ -projective if there exists $j \in \{1, 2, ..., n\}$ such that for every $(a_1, ..., a_n) \in A^n$ and $S \in \{\alpha, \beta\}$ we have $f(a_1, ..., a_{j-1}, S, a_{j+1}, ..., a_n) \subseteq S$. Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta = A$. An operation is called $\alpha\beta$ -projective if there exists $j \in \{1, 2, ..., n\}$ such that for every $(a_1, ..., a_n) \in A^n$ and $S \in \{\alpha, \beta\}$ we have $f(a_1, ..., a_{j-1}, S, a_{j+1}, ..., a_n) \subseteq S$. An algebra \mathbb{A} is called $\alpha\beta$ -projective if every operation in \mathbb{A} is $\alpha\beta$ -projective. Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta = A$. An operation is called $\alpha\beta$ -projective if there exists $j \in \{1, 2, ..., n\}$ such that for every $(a_1, ..., a_n) \in A^n$ and $S \in \{\alpha, \beta\}$ we have $f(a_1, ..., a_{j-1}, S, a_{j+1}, ..., a_n) \subseteq S$. An algebra \mathbb{A} is called $\alpha\beta$ -projective if every operation in \mathbb{A} is

lphaeta-projective.

Lemma(Hubie Chen)

Suppose a finite algebra \mathbb{A} is $\alpha\beta$ -projective for some α and β . Then \mathbb{A} has EGP property.

Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta = A$. An operation is called $\alpha\beta$ -projective if there exists $j \in \{1, 2, ..., n\}$ such that for every $(a_1, ..., a_n) \in A^n$ and $S \in \{\alpha, \beta\}$ we have $f(a_1, ..., a_{j-1}, S, a_{j+1}, ..., a_n) \subseteq S$. An algebra \mathbb{A} is called $\alpha\beta$ -projective if every operation in \mathbb{A} is $\alpha\beta$ -projective.

Lemma(Hubie Chen)

Suppose a finite algebra \mathbb{A} is $\alpha\beta$ -projective for some α and β . Then \mathbb{A} has EGP property.

Example

The operation
$$\mathbf{s}(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{0}, & \text{if } \mathbf{x} \neq \mathbf{y} \\ \mathbf{x}, & \text{if } \mathbf{x} = \mathbf{y} \end{cases}$$
 is $\{0,1\}\{0,2\}$ -projective.

Theorem (Hubie Chen)

Suppose A is an idempotent finite algebra not having a G-set on 3 elements. Then either A is switchable, or A is $\alpha\beta$ -projective.

Corollary

Suppose \mathbb{A} is an idempotent finite algebra not having a G-set on 3 elements. Then either it has PGP property, or it has EGP property.

Suppose a finite algebra A is not switchable, then it has EGP property.

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Corollary

Suppose A is a finite algebra. Then either it has PGP property, or it has EGP property.

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Corollary

Suppose A is a finite algebra. Then either it has PGP property, or it has EGP property.

Theorem

Suppose A is a finite idempotent algebra. Then either A is switchable, or A is $\alpha\beta$ -projective.

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Suppose a finite algebra A is not switchable, then it has EGP property.

Not Switchable \Rightarrow Not *k*-switchable for every *k*

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Not Switchable \Rightarrow Not k-switchable for every kThere exists n > k such that \mathbb{A}^n is not generated by all n-tuples with at most k switches.

By σ we denote the relation generated by all such tuples.

Suppose a finite algebra A is not switchable, then it has EGP property.

Not Switchable \Rightarrow Not k-switchable for every kThere exists n > k such that \mathbb{A}^n is not generated by all n-tuples with at most k switches.

By σ we denote the relation generated by all such tuples.

Let α be a tuple from $A^n \setminus \sigma$ with the minimal number of switches.

$$\alpha = (\underbrace{a_1, \ldots, a_1}_{n_1}, \underbrace{a_2, \ldots, a_2}_{n_2}, \ldots, \underbrace{a_m, \ldots, a_m}_{n_m}).$$

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Not Switchable \Rightarrow Not k-switchable for every kThere exists n > k such that \mathbb{A}^n is not generated by all n-tuples with at most k switches.

By σ we denote the relation generated by all such tuples. Let α be a tuple from $A^n \setminus \sigma$ with the minimal number of switches.

• ρ is an invariant of \mathbb{A} , $\rho \neq A^m$.

•
$$(\exists i: c_i = c_{i+1}) \Rightarrow (c_1, \ldots, c_m) \in \rho.$$

Proof

(ALMOST TRUE) for every \boldsymbol{n} we can get a relation ρ of arity $2\boldsymbol{n}^2$ such

- ρ is an invariant of \mathbb{A} , $(a, b, a, b, a, b, a, b, \dots, a, b) \notin \rho$.
- $\exists i: c_i = d_i \Rightarrow (c_1, d_1, c_2, d_2, \dots, c_{n^2}, d_{n^2}) \in \rho.$

\mathbf{Proof}

(ALMOST TRUE) for every \boldsymbol{n} we can get a relation ρ of arity $2\boldsymbol{n}^2$ such

- ρ is an invariant of \mathbb{A} , $(a, b, a, b, a, b, a, b, \dots, a, b) \notin \rho$.
- $\exists i: c_i = d_i \Rightarrow (c_1, d_1, c_2, d_2, \dots, c_{n^2}, d_{n^2}) \in \rho.$

Put
$$\delta(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{y}_1,\ldots,\mathbf{y}_n) = \rho(\mathbf{x}_1,\mathbf{y}_1,\mathbf{x}_1,\mathbf{y}_2,\mathbf{x}_1,\mathbf{y}_3,\ldots,\mathbf{x}_1,\mathbf{y}_n,\mathbf{x}_2,\mathbf{y}_1,\ldots,\mathbf{x}_n,\mathbf{y}_n).$$

•
$$\delta$$
 is an invariant of \mathbb{A} , $(\underbrace{a, a, \dots, a}_{n}, \underbrace{b, b, \dots, b}_{n}) \notin \delta$.
• $\exists i, j: c_i = d_j \Rightarrow (c_1, \dots, c_n, d_1, \dots, d_n) \in \delta$.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2n^2$ such

- ρ is an invariant of \mathbb{A} , $(a, b, a, b, a, b, a, b, \dots, a, b) \notin \rho$.
- $\exists i: c_i = d_i \Rightarrow (c_1, d_1, c_2, d_2, \dots, c_{n^2}, d_{n^2}) \in \rho.$

Put
$$\delta(x_1, ..., x_n, y_1, ..., y_n) = \rho(x_1, y_1, x_1, y_2, x_1, y_3, ..., x_1, y_n, x_2, y_1, ..., x_n, y_n)$$

•
$$\delta$$
 is an invariant of \mathbb{A} , $(\underbrace{a, a, \dots, a}_{n}, \underbrace{b, b, \dots, b}_{n}) \notin \delta$.
• $\exists i, j: c_i = d_j \Rightarrow (c_1, \dots, c_n, d_1, \dots, d_n) \in \delta$.

Final step

We consider 2n! relations obtained from δ by a permutation of variables.

\mathbf{Proof}

(ALMOST TRUE) for every \boldsymbol{n} we can get a relation ρ of arity $2\boldsymbol{n}^2$ such

- ρ is an invariant of \mathbb{A} , $(a, b, a, b, a, b, a, b, \dots, a, b) \notin \rho$.
- $\exists i: c_i = d_i \Rightarrow (c_1, d_1, c_2, d_2, \dots, c_{n^2}, d_{n^2}) \in \rho.$

Put
$$\delta(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{y}_1,\ldots,\mathbf{y}_n) = \rho(\mathbf{x}_1,\mathbf{y}_1,\mathbf{x}_1,\mathbf{y}_2,\mathbf{x}_1,\mathbf{y}_3,\ldots,\mathbf{x}_1,\mathbf{y}_n,\mathbf{x}_2,\mathbf{y}_1,\ldots,\mathbf{x}_n,\mathbf{y}_n).$$

•
$$\delta$$
 is an invariant of \mathbb{A} , $(\underbrace{a, a, \dots, a}_{n}, \underbrace{b, b, \dots, b}_{n}) \notin \delta$.
• $\exists i, j: c_i = d_j \Rightarrow (c_1, \dots, c_n, d_1, \dots, d_n) \in \delta$.

Final step

We consider 2n! relations obtained from δ by a permutation of variables. Any 2n-tuple omits at most $2^{|A|} \cdot (n!)^2$ relations.

Proof

(ALMOST TRUE) for every \boldsymbol{n} we can get a relation ρ of arity $2\boldsymbol{n}^2$ such

- ρ is an invariant of \mathbb{A} , $(a, b, a, b, a, b, a, b, \dots, a, b) \notin \rho$.
- $\exists i: c_i = d_i \Rightarrow (c_1, d_1, c_2, d_2, \dots, c_{n^2}, d_{n^2}) \in \rho.$

Put
$$\delta(x_1, ..., x_n, y_1, ..., y_n) = \rho(x_1, y_1, x_1, y_2, x_1, y_3, ..., x_1, y_n, x_2, y_1, ..., x_n, y_n)$$

•
$$\delta$$
 is an invariant of \mathbb{A} , $(\underbrace{a, a, \dots, a}_{n}, \underbrace{b, b, \dots, b}_{n}) \notin \delta$.
• $\exists i, j: c_i = d_j \Rightarrow (c_1, \dots, c_n, d_1, \dots, d_n) \in \delta$.

Final step

We consider 2n! relations obtained from δ by a permutation of variables. Any 2n-tuple omits at most $2^{|A|} \cdot (n!)^2$ relations. To generate \mathbb{A}^{2n} we need at least $(2n!)/(2^{|A|} \cdot (n!)^2) > 2^{n-|A|}$ tuples.

Proof

(ALMOST TRUE) for every \boldsymbol{n} we can get a relation ρ of arity $2\boldsymbol{n}^2$ such

- ρ is an invariant of \mathbb{A} , $(a, b, a, b, a, b, a, b, \dots, a, b) \notin \rho$.
- $\exists i: c_i = d_i \Rightarrow (c_1, d_1, c_2, d_2, \dots, c_{n^2}, d_{n^2}) \in \rho.$

Put
$$\delta(x_1, ..., x_n, y_1, ..., y_n) = \rho(x_1, y_1, x_1, y_2, x_1, y_3, ..., x_1, y_n, x_2, y_1, ..., x_n, y_n)$$

•
$$\delta$$
 is an invariant of \mathbb{A} , $(\underbrace{a, a, \dots, a}_{n}, \underbrace{b, b, \dots, b}_{n}) \notin \delta$.
• $\exists i, j: c_i = d_j \Rightarrow (c_1, \dots, c_n, d_1, \dots, d_n) \in \delta$.

Final step

We consider 2n! relations obtained from δ by a permutation of variables. Any 2n-tuple omits at most $2^{|A|} \cdot (n!)^2$ relations. To generate \mathbb{A}^{2n} we need at least $(2n!)/(2^{|A|} \cdot (n!)^2) > 2^{n-|A|}$ tuples. Success.

An algebra \mathbb{A} is called *k*-collapsible, if \mathbb{A}^n is generated by all the tuples where at least (n-k) elements are equal.

An algebra \mathbb{A} is collapsible, if it is k-collapsible for some k.

An algebra \mathbb{A} is called *k*-collapsible, if \mathbb{A}^n is generated by all the tuples where at least (n - k) elements are equal. An algebra \mathbb{A} is collapsible, if it is *k*-collapsible for some *k*.

Lemma (Hubie Chen)

Collapsibility \Rightarrow Switchability. Switchability \Rightarrow Collapsibility.

An algebra \mathbb{A} is called *k*-collapsible, if \mathbb{A}^n is generated by all the tuples where at least (n - k) elements are equal. An algebra \mathbb{A} is collapsible, if it is *k*-collapsible for some *k*.

Lemma (Hubie Chen)

Collapsibility \Rightarrow Switchability. Switchability \Rightarrow Collapsibility.

Conjecture (Barnaby Martin)

Suppose \mathbb{A} is a finitely related algebra. Then Switchability \Leftrightarrow Collapsibility.

An algebra \mathbb{A} is called *k*-collapsible, if \mathbb{A}^n is generated by all the tuples where at least (n - k) elements are equal. An algebra \mathbb{A} is collapsible, if it is *k*-collapsible for some *k*.

Lemma (Hubie Chen)

Collapsibility \Rightarrow Switchability. Switchability \Rightarrow Collapsibility.

Conjecture (Barnaby Martin)

Suppose \mathbb{A} is a finitely related algebra. Then Switchability \Leftrightarrow Collapsibility.

Almost Theorem

The conjecture holds for idempotent algebras on 3 elements.

Thank you for your attention