The size of generating sets of powers

Dmitriy Zhuk
zhuk.dmitriy@gmail.com
Department of Mathematics and Mechanics Moscow State University
Arbeitstagung Allgemeine Algebra 90th Workshop on General Algebra
Novi Sad, Serbia, June 5-7, 2015

Outline

(1) Introduction
(2) Main Result
(3) Proof
(4) Open Problems

Powers of an algebra

Let $\mathbb{A}=(A ; F)$ be a finite algebra.
What can be the size of a generating set for \mathbb{A}^{n} ?

Powers of an algebra

Let $\mathbb{A}=(A ; F)$ be a finite algebra.
What can be the size of a generating set for \mathbb{A}^{n} ?
For $X \subseteq A$ by $\langle X\rangle$ we denote the subalgebra generated by X.
Example 1: $\mathbb{A}=(\{0,1\} ; \vee)$

$$
\left.\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right\rangle=\mathbb{A}^{n}
$$

We need only $n+1$ tuples to generate \mathbb{A}^{n}.

Powers of an algebra

Let $\mathbb{A}=(A ; F)$ be a finite algebra.
What can be the size of a generating set for \mathbb{A}^{n} ?
For $X \subseteq A$ by $\langle X\rangle$ we denote the algebra, generated by X.
Example 2: $\mathbb{A}=(\{0,1\} ; x+1)$
We need at least 2^{n-1} tuples to generate \mathbb{A}^{n}.

Powers of an algebra

Let $\mathbb{A}=(A ; F)$ be a finite algebra.
What can be the size of a generating set for \mathbb{A}^{n} ?
For $X \subseteq A$ by $\langle X\rangle$ we denote the algebra, generated by X.
Example 2: $\mathbb{A}=(\{0,1\} ; x+1)$
We need at least 2^{n-1} tuples to generate \mathbb{A}^{n}.

Example 3: $\mathbb{A}=(\{0,1,2\} ; s)$, where $s(x, y)= \begin{cases}0, & \text { if } x \neq y \\ x, & \text { if } x=y\end{cases}$
We need at least 2^{n} tuples to generate \mathbb{A}^{n}.

PGP vs EGP

> An algebra \mathbb{A} has the polynomially generated powers (PGP) property if its n-th power \mathbb{A}^{n} has a polynomial-size generating set. That is, there exists a polynomial p such that for every n the n-th power \mathbb{A}^{n} can be generated by at most $p(n)$ tuples.

An algebra \mathbb{A} has the exponentially generated powers (EGP) property if its n-th power \mathbb{A}^{n} has a exponential-size generating set. That is, there exists $b>1$ and $C>0$ such that for every n the n-th power \mathbb{A}^{n} cannot be generated by less than $C b^{n}$ tuples.

PGP vs EGP

An algebra \mathbb{A} has the polynomially generated powers (PGP) property if its n-th power \mathbb{A}^{n} has a polynomial-size generating set.
That is, there exists a polynomial p such that for every n the n-th power \mathbb{A}^{n} can be generated by at most $p(n)$ tuples.

An algebra \mathbb{A} has the exponentially generated powers (EGP) property if its n-th power \mathbb{A}^{n} has a exponential-size generating set.
That is, there exists $b>1$ and $C>0$ such that for every n the n-th power \mathbb{A}^{n} cannot be generated by less than $C b^{n}$ tuples.

Problems

- Is there anything between PGP property and EGP property?
- When does an algebra have PGP property?
- How to find a polynomial-size generating set?

Motivation

- Connection with the Quantified Constraint Satisfaction Problem (see the previous talk).

Motivation

- Connection with the Quantified Constraint Satisfaction Problem (see the previous talk).
- Just a very nice problem!

Switchability

For a tuple $\left(a_{1}, \ldots, a_{n}\right)$ we say that $i \in\{1,2, \ldots, n\}$ is a switch if $a_{i} \neq a_{i+1}$.
$(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2)$ has 2 switches.
$(2,2,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0)$ has 3 switches.

Switchability

For a tuple $\left(a_{1}, \ldots, a_{n}\right)$ we say that $i \in\{1,2, \ldots, n\}$ is a switch if $a_{i} \neq a_{i+1}$.
$(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2)$ has 2 switches.
$(2,2,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0)$ has 3 switches.

An algebra is called k-switchable if \mathbb{A}^{n} is generated by all n-tuples with at most k switches.
An algebra is called switchable if it is k-switchable for some k.

Lemma (Switchability \Rightarrow PGP property)

Suppose a finite algebra \mathbb{A} is switchable, then it has PGP property.

$\alpha \beta$-projectiveness

Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta=A$.
An operation is called $\alpha \beta$-projective if there exists $j \in\{1,2, \ldots, n\}$ such that for every $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ and $S \in\{\alpha, \beta\}$ we have $f\left(a_{1}, \ldots, a_{j-1}, S, a_{j+1}, \ldots, a_{n}\right) \subseteq S$.

$\alpha \beta$-projectiveness

Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta=A$.
An operation is called $\alpha \beta$-projective if there exists $j \in\{1,2, \ldots, n\}$ such that for every $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ and $S \in\{\alpha, \beta\}$ we have $f\left(a_{1}, \ldots, a_{j-1}, S, a_{j+1}, \ldots, a_{n}\right) \subseteq S$. An algebra \mathbb{A} is called $\alpha \beta$-projective if every operation in \mathbb{A} is $\alpha \beta$-projective.

$\alpha \beta$-projectiveness

Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta=A$.
An operation is called $\alpha \beta$-projective if there exists $j \in\{1,2, \ldots, n\}$ such that for every $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ and $S \in\{\alpha, \beta\}$ we have $f\left(a_{1}, \ldots, a_{j-1}, S, a_{j+1}, \ldots, a_{n}\right) \subseteq S$.
An algebra \mathbb{A} is called $\alpha \beta$-projective if every operation in \mathbb{A} is $\alpha \beta$-projective.

Lemma(Hubie Chen)

Suppose a finite algebra \mathbb{A} is $\alpha \beta$-projective for some α and β. Then \mathbb{A} has EGP property.

$\alpha \beta$-projectiveness

Suppose $\alpha, \beta \subsetneq A, \alpha \cup \beta=A$.
An operation is called $\alpha \beta$-projective if there exists $j \in\{1,2, \ldots, n\}$ such that for every $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ and $S \in\{\alpha, \beta\}$ we have $f\left(a_{1}, \ldots, a_{j-1}, S, a_{j+1}, \ldots, a_{n}\right) \subseteq S$.
An algebra \mathbb{A} is called $\alpha \beta$-projective if every operation in \mathbb{A} is $\alpha \beta$-projective.

Lemma(Hubie Chen)

Suppose a finite algebra \mathbb{A} is $\alpha \beta$-projective for some α and β. Then \mathbb{A} has EGP property.

Example

The operation $s(x, y)=\left\{\begin{array}{ll}0, & \text { if } x \neq y \\ x, & \text { if } x=y\end{array}\right.$ is $\{0,1\}\{0,2\}$-projective.

Partial Results

Theorem (Hubie Chen)

Suppose \mathbb{A} is an idempotent finite algebra not having a G-set on 3 elements. Then either \mathbb{A} is switchable, or \mathbb{A} is $\alpha \beta$-projective.

Corollary

Suppose \mathbb{A} is an idempotent finite algebra not having a G-set on 3 elements. Then either it has PGP property, or it has EGP property.

Main Result

Theorem : Non Switchable \Rightarrow EGP property

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Main Result

Theorem : Non Switchable \Rightarrow EGP property

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.
Corollary
Suppose \mathbb{A} is a finite algebra. Then either it has PGP property, or it has EGP property.

Main Result

Theorem : Non Switchable \Rightarrow EGP property

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Corollary

Suppose \mathbb{A} is a finite algebra. Then either it has PGP property, or it has EGP property.

Theorem

Suppose \mathbb{A} is a finite idempotent algebra. Then either \mathbb{A} is switchable, or \mathbb{A} is $\alpha \beta$-projective.

Proof

Theorem : Not Switchable \Rightarrow EGP property
 Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Proof

Theorem : Not Switchable \Rightarrow EGP property
 Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.

Not Switchable \Rightarrow Not k-switchable for every k

Proof

Theorem : Not Switchable \Rightarrow EGP property
Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.
Not Switchable \Rightarrow Not k-switchable for every k There exists $n>k$ such that \mathbb{A}^{n} is not generated by all n-tuples with at most k switches.
By σ we denote the relation generated by all such tuples.

Proof

Theorem : Not Switchable \Rightarrow EGP property

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.
Not Switchable \Rightarrow Not k-switchable for every k There exists $n>k$ such that \mathbb{A}^{n} is not generated by all n-tuples with at most k switches.
By σ we denote the relation generated by all such tuples.
Let α be a tuple from $A^{n} \backslash \sigma$ with the minimal number of switches.

$$
\alpha=(\underbrace{a_{1}, \ldots, a_{1}}_{n_{1}}, \underbrace{a_{2}, \ldots, a_{2}}_{n_{2}}, \ldots, \underbrace{a_{m}, \ldots, a_{m}}_{n_{m}})
$$

Proof

Theorem : Not Switchable \Rightarrow EGP property

Suppose a finite algebra \mathbb{A} is not switchable, then it has EGP property.
Not Switchable \Rightarrow Not k-switchable for every k
There exists $n>k$ such that \mathbb{A}^{n} is not generated by all n-tuples with at most k switches.
By σ we denote the relation generated by all such tuples.
Let α be a tuple from $A^{n} \backslash \sigma$ with the minimal number of switches.

$$
\alpha=(\underbrace{a_{1}, \ldots, a_{1}}_{n_{1}}, \underbrace{a_{2}, \ldots, a_{2}}_{n_{2}}, \ldots, \underbrace{a_{m}, \ldots, a_{m}}_{n_{m}}) .
$$

Put $\rho\left(x_{1}, \ldots, x_{m}\right)=\sigma(\underbrace{x_{1}, \ldots, x_{1}}_{n_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{n_{2}}, \ldots, \underbrace{x_{m}, \ldots, x_{m}}_{n_{m}})$.

- ρ is an invariant of $\mathbb{A}, \rho \neq A^{m}$.
- $\left(\exists i: c_{i}=c_{i+1}\right) \Rightarrow\left(c_{1}, \ldots, c_{m}\right) \in \rho$.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2 n^{2}$ such

- ρ is an invariant of $\mathbb{A},(a, b, a, b, a, b, a, b, \ldots, a, b) \notin \rho$.
- $\exists i: c_{i}=d_{i} \Rightarrow\left(c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{n^{2}}, d_{n^{2}}\right) \in \rho$.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2 n^{2}$ such

- ρ is an invariant of $\mathbb{A},(a, b, a, b, a, b, a, b, \ldots, a, b) \notin \rho$.
- $\exists i: c_{i}=d_{i} \Rightarrow\left(c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{n^{2}}, d_{n^{2}}\right) \in \rho$.

Put $\delta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=$
$\rho\left(x_{1}, y_{1}, x_{1}, y_{2}, x_{1}, y_{3}, \ldots, x_{1}, y_{n}, x_{2}, y_{1}, \ldots, x_{n}, y_{n}\right)$.

- δ is an invariant of $\mathbb{A},(\underbrace{a, a, \ldots, a}_{n}, \underbrace{b, b, \ldots, b}_{n}) \notin \delta$.
- $\exists i, j: c_{i}=d_{j} \Rightarrow\left(c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n}\right) \in \delta$.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2 n^{2}$ such

- ρ is an invariant of $\mathbb{A},(a, b, a, b, a, b, a, b, \ldots, a, b) \notin \rho$.
- $\exists i: c_{i}=d_{i} \Rightarrow\left(c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{n^{2}}, d_{n^{2}}\right) \in \rho$.

Put $\delta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=$
$\rho\left(x_{1}, y_{1}, x_{1}, y_{2}, x_{1}, y_{3}, \ldots, x_{1}, y_{n}, x_{2}, y_{1}, \ldots, x_{n}, y_{n}\right)$.

- δ is an invariant of $\mathbb{A},(\underbrace{a, a, \ldots, a}_{n}, \underbrace{b, b, \ldots, b}_{n}) \notin \delta$.
- $\exists i, j: c_{i}=d_{j} \Rightarrow\left(c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n}\right) \in \delta$.

Final step

We consider $2 n$! relations obtained from δ by a permutation of variables.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2 n^{2}$ such

- ρ is an invariant of $\mathbb{A},(a, b, a, b, a, b, a, b, \ldots, a, b) \notin \rho$.
- $\exists i: c_{i}=d_{i} \Rightarrow\left(c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{n^{2}}, d_{n^{2}}\right) \in \rho$.

Put $\delta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=$
$\rho\left(x_{1}, y_{1}, x_{1}, y_{2}, x_{1}, y_{3}, \ldots, x_{1}, y_{n}, x_{2}, y_{1}, \ldots, x_{n}, y_{n}\right)$.

- δ is an invariant of $\mathbb{A},(\underbrace{a, a, \ldots, a}_{n}, \underbrace{b, b, \ldots, b}_{n}) \notin \delta$.
- $\exists i, j: c_{i}=d_{j} \Rightarrow\left(c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n}\right) \in \delta$.

Final step

We consider $2 n$! relations obtained from δ by a permutation of variables. Any $2 n$-tuple omits at most $2^{|A|} \cdot(n!)^{2}$ relations.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2 n^{2}$ such

- ρ is an invariant of $\mathbb{A},(a, b, a, b, a, b, a, b, \ldots, a, b) \notin \rho$.
- $\exists i: c_{i}=d_{i} \Rightarrow\left(c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{n^{2}}, d_{n^{2}}\right) \in \rho$.

Put $\delta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=$
$\rho\left(x_{1}, y_{1}, x_{1}, y_{2}, x_{1}, y_{3}, \ldots, x_{1}, y_{n}, x_{2}, y_{1}, \ldots, x_{n}, y_{n}\right)$.

- δ is an invariant of $\mathbb{A},(\underbrace{a, a, \ldots, a}_{n}, \underbrace{b, b, \ldots, b}_{n}) \notin \delta$.
- $\exists i, j: c_{i}=d_{j} \Rightarrow\left(c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n}\right) \in \delta$.

Final step

We consider $2 n$! relations obtained from δ by a permutation of variables. Any $2 n$-tuple omits at most $2^{|A|} \cdot(n!)^{2}$ relations. To generate $\mathbb{A}^{2 n}$ we need at least $(2 n!) /\left(2^{|A|} \cdot(n!)^{2}\right)>2^{n-|A|}$ tuples.

Proof

(ALMOST TRUE) for every n we can get a relation ρ of arity $2 n^{2}$ such

- ρ is an invariant of $\mathbb{A},(a, b, a, b, a, b, a, b, \ldots, a, b) \notin \rho$.
- $\exists i: c_{i}=d_{i} \Rightarrow\left(c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{n^{2}}, d_{n^{2}}\right) \in \rho$.

Put $\delta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=$
$\rho\left(x_{1}, y_{1}, x_{1}, y_{2}, x_{1}, y_{3}, \ldots, x_{1}, y_{n}, x_{2}, y_{1}, \ldots, x_{n}, y_{n}\right)$.

- δ is an invariant of $\mathbb{A},(\underbrace{a, a, \ldots, a}_{n}, \underbrace{b, b, \ldots, b}_{n}) \notin \delta$.
- $\exists i, j: c_{i}=d_{j} \Rightarrow\left(c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n}\right) \in \delta$.

Final step

We consider $2 n$! relations obtained from δ by a permutation of variables. Any 2 n -tuple omits at most $2^{|A|} \cdot(n!)^{2}$ relations. To generate $\mathbb{A}^{2 n}$ we need at least $(2 n!) /\left(2^{|A|} \cdot(n!)^{2}\right)>2^{n-|A|}$ tuples. Success.

Open Problems

An algebra \mathbb{A} is called k-collapsible, if \mathbb{A}^{n} is generated by all the tuples where at least $(n-k)$ elements are equal. An algebra \mathbb{A} is collapsible, if it is k-collapsible for some k.

Open Problems

An algebra \mathbb{A} is called k-collapsible, if \mathbb{A}^{n} is generated by all the tuples where at least $(n-k)$ elements are equal. An algebra \mathbb{A} is collapsible, if it is k-collapsible for some k. Lemma (Hubie Chen)
Collapsibility \Rightarrow Switchability. Switchability \nRightarrow Collapsibility.

Open Problems

An algebra \mathbb{A} is called k-collapsible, if \mathbb{A}^{n} is generated by all the tuples where at least $(n-k)$ elements are equal.
An algebra \mathbb{A} is collapsible, if it is k-collapsible for some k.
Lemma (Hubie Chen)
Collapsibility \Rightarrow Switchability.
Switchability \nRightarrow Collapsibility.

Conjecture (Barnaby Martin)

Suppose \mathbb{A} is a finitely related algebra. Then Switchability \Leftrightarrow Collapsibility.

Open Problems

An algebra \mathbb{A} is called k-collapsible, if \mathbb{A}^{n} is generated by all the tuples where at least $(n-k)$ elements are equal.
An algebra \mathbb{A} is collapsible, if it is k-collapsible for some k.
Lemma (Hubie Chen)
Collapsibility \Rightarrow Switchability.
Switchability \nRightarrow Collapsibility.

Conjecture (Barnaby Martin)

Suppose \mathbb{A} is a finitely related algebra. Then Switchability \Leftrightarrow Collapsibility.

Almost Theorem

The conjecture holds for idempotent algebras on 3 elements.

Thank you for your attention

