On the minimal arity of near-unanimity term operations for finite algebras

Dmitriy Zhuk ${ }^{1}$ Alexandr Kazda ${ }^{2}$

${ }^{1}$ Moscow State University
${ }^{2}$ Vanderbilt University
Arbeitstagung Allgemeine Algebra 90th Workshop on General Algebra
Novi Sad, Serbia, June 5-7, 2015

Outline

(1) Introduction
(2) Main Results
(3) Proof

4 Open Problems

Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$
f(x, \ldots, x, y)=f(x, \ldots, x, y, x)=\cdots=f(y, x, \ldots, x)=x
$$

Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$
f(x, \ldots, x, y)=f(x, \ldots, x, y, x)=\cdots=f(y, x, \ldots, x)=x
$$

Problem

Given a finite algebra $\mathbb{A}=(A ; F)$. Decide whether there exists a near-unanimity term operation in \mathbb{A}.

Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$
f(x, \ldots, x, y)=f(x, \ldots, x, y, x)=\cdots=f(y, x, \ldots, x)=x
$$

Problem

Given a finite algebra $\mathbb{A}=(A ; F)$. Decide whether there exists a near-unanimity term operation in \mathbb{A}.

- For any fixed n we can easily check if an algebra contains a NU term operation of arity n.
- To solve the problem we just need an upper bound on the minimal arity of a NU.

Background

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements
$a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Background

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Theorem (M.Maróti, 2000)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $A \backslash\{a, b\}$.

Background

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements
$a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Theorem (M.Maróti, 2000)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $A \backslash\{a, b\}$.

Theorem (M.Maróti, 2005)

It is decidable for a finite algebra \mathbb{A} whether it has a near-unanimity term operation.

- No upper bound on the minimal arity of NU were found.
- $N U(\mathbb{A})$ denotes the minimal arity of a NU term operation in \mathbb{A}.
$(N U(\mathbb{A})=\infty$ if \mathbb{A} doesn't have a NU term operation).
- $\operatorname{By} \operatorname{ar}(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A}.
- $N U(\mathbb{A})$ denotes the minimal arity of a NU term operation in \mathbb{A}.
$(N U(\mathbb{A})=\infty$ if \mathbb{A} doesn't have a NU term operation).
- $\operatorname{By} \operatorname{ar}(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A}.
- $N U_{A}(m)=\max \{N U(\mathbb{A}) \mid \operatorname{ar}(\mathbb{A}) \leq m, N U(\mathbb{A})<\infty\}$,
- $N U_{A}^{\text {idemp }}(m)$ - the same for idempotent algebras.
- $N U_{A}^{c o n s}(m)$ - the same for conservative algebras.
- $N U(\mathbb{A})$ denotes the minimal arity of a NU term operation in \mathbb{A}.
$(N U(\mathbb{A})=\infty$ if \mathbb{A} doesn't have a NU term operation).
- By $\operatorname{ar}(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A}.
- $N U_{A}(m)=\max \{N U(\mathbb{A}) \mid \operatorname{ar}(\mathbb{A}) \leq m, N U(\mathbb{A})<\infty\}$,
- $N U_{A}^{\text {idemp }}(m)$ - the same for idempotent algebras.
- $N U_{A}^{c o n s}(m)$ - the same for conservative algebras.

Theorem (D.Zhuk, 2013)

(1) $N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.

- $N U(\mathbb{A})$ denotes the minimal arity of a NU term operation in \mathbb{A}.
$(N U(\mathbb{A})=\infty$ if \mathbb{A} doesn't have a $N U$ term operation).
- By $\operatorname{ar}(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A}.
- $N U_{A}(m)=\max \{N U(\mathbb{A}) \mid \operatorname{ar}(\mathbb{A}) \leq m, N U(\mathbb{A})<\infty\}$,
- $N U_{A}^{\text {idemp }}(m)$ - the same for idempotent algebras.
- $N U_{A}^{c o n s}(m)$ - the same for conservative algebras.

Theorem (D.Zhuk, 2013)

(1) $N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) $N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.

- $N U(\mathbb{A})$ denotes the minimal arity of a NU term operation in \mathbb{A}.
$(N U(\mathbb{A})=\infty$ if \mathbb{A} doesn't have a $N U$ term operation).
- By $\operatorname{ar}(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A}.
- $N U_{A}(m)=\max \{N U(\mathbb{A}) \mid \operatorname{ar}(\mathbb{A}) \leq m, N U(\mathbb{A})<\infty\}$,
- $N U_{A}^{\text {idemp }}(m)$ - the same for idempotent algebras.
- $N U_{A}^{c o n s}(m)$ - the same for conservative algebras.

Theorem (D.Zhuk, 2013)

(1) $N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) $N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) $N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

- $N U(\mathbb{A})$ denotes the minimal arity of a NU term operation in \mathbb{A}.
$(N U(\mathbb{A})=\infty$ if \mathbb{A} doesn't have a $N U$ term operation).
- By $\operatorname{ar}(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A}.
- $N U_{A}(m)=\max \{N U(\mathbb{A}) \mid \operatorname{ar}(\mathbb{A}) \leq m, N U(\mathbb{A})<\infty\}$,
- $N U_{A}^{\text {idemp }}(m)$ - the same for idempotent algebras.
- $N U_{A}^{c o n s}(m)$ - the same for conservative algebras.

Theorem (D.Zhuk, 2013)

(1) $N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) $N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) $N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Idempotent Algebras

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{n}\left(m_{i}-1\right)+1$.

Idempotent Algebras

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{n}\left(m_{i}-1\right)+1$.

Theorem

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$, where $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$, $k=\min (n,|A|(|A|-1) / 2)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{k}\left(m_{i}-1\right)+1$.

Idempotent Algebras

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{n}\left(m_{i}-1\right)+1$.

Theorem

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$, where $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$, $k=\min (n,|A|(|A|-1) / 2)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{k}\left(m_{i}-1\right)+1$.

Theorem

Suppose $m_{1} \geq m_{2} \geq \cdots \geq m_{n}, A$ is a finite set, $k=\min (n,|A|(|A|-1) / 2)$. Then there exists an idempotent algebra $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ of type $\left(m_{1}, \ldots, m_{n}\right)$ such that $N U(\mathbb{A})=\sum_{i=1}^{k}\left(m_{i}-1\right)+1$.

Idempotent algebras

Suppose $m_{1} \geq m_{2} \geq \cdots \geq m_{n}, A=\{0,1, \ldots, r\}$,
$n \leq|A|(|A|-1) / 2$.
Let J_{1}, \ldots, J_{n} be the partition of the set $\{(a, b) \mid a<b\}$.
We define an operations f_{i} of arity m_{i} as follows

$$
f_{i}(b, a, \ldots, a)=f_{i}(a, b, a, \ldots, a)=f_{i}(a, a, \ldots, a, b)=a
$$

for all pairs $(a, b) \in J_{i}$,
otherwise, $f_{i}\left(x_{1}, \ldots, x_{m_{i}}\right)=\max \left(x_{1}, \ldots, x_{m_{i}}\right)$.

Lemma

For $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ we have $N U(\mathbb{A})=\sum_{i=1}^{n}\left(m_{i}-1\right)+1$.

Main Results

Theorem (D.Zhuk 2013)

(1) ??? $\leq N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) ??? $\leq N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) ??? $\leq N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Main Results

Theorem (D.Zhuk 2013)

(1) ??? $\leq N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) ??? $\leq N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) ??? $\leq N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Main Theorem

(1) $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$.

Main Results

Theorem (D.Zhuk 2013)

(1) ??? $\leq N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) ??? $\leq N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) ??? $\leq N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Main Theorem

(1) $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$.
(2) $N U_{A}^{\text {idemp }}(m)=(m-1)|A|(|A|-1) / 2+1$.

Main Results

Theorem (D.Zhuk 2013)

(1) ??? $\leq N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) ??? $\leq N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) ??? $\leq N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Main Theorem

(1) $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$.
(2) $N U_{A}^{\text {idemp }}(m)=(m-1)|A|(|A|-1) / 2+1$.
(3) $N U_{A}^{\text {cons }}(m)=(m-1)|A|(|A|-1) / 2+1$.

Main Results

Theorem (D.Zhuk 2013)

(1) ??? $\leq N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) ??? $\leq N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) ??? $\leq N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Main Theorem

(1) $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$.
(2) $N U_{A}^{\text {idemp }}(m)=(m-1)|A|(|A|-1) / 2+1$.
(3) $N U_{A}^{\text {cons }}(m)=(m-1)|A|(|A|-1) / 2+1$.

Main Results

Theorem (D.Zhuk 2013)

(1) ??? $\leq N U_{A}(m) \leq|A|^{2} \cdot(|A| \cdot m)^{(3|A|)^{|A|}}$.
(2) ??? $\leq N U_{A}^{\text {idemp }}(m) \leq m \cdot|A|^{3}$.
(3) ??? $\leq N U_{A}^{\text {cons }}(m) \leq m \cdot|A|^{2}$.

Main Theorem

(1) $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$.
(2) $N U_{A}^{\text {idemp }}(m)=(m-1)|A|(|A|-1) / 2+1$.
(3) $N U_{A}^{\text {cons }}(m)=(m-1)|A|(|A|-1) / 2+1$.

All bounds hold if instead of $N U(\mathbb{A})$ we consider

- the minimal arity of an Edge term operation (-1).
- the minimal dimension of a Cube term operation.

Is there any difference between idempotent and nonidempotent cases?

Is there any difference between idempotent and nonidempotent cases?

Example

Let $m, k \in \mathbb{N}, A=\left\{0,1, a_{1}, \ldots, a_{k}\right\}$. Put

- $h_{i}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in\left\{1, a_{i}\right\} \\ 0, & \text { otherwise }\end{array}\right.$ for $i \in\{1,2, \ldots, k\}$
- $h(\underbrace{0,0, \ldots, 0}_{k})=0, h(\underbrace{0,0, \ldots, 0,1}_{i}, 0, \ldots, 0)=a_{i}$, otherwise h returns 1.
- $f(\underbrace{0,0, \ldots, 0}_{m})=0, f\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right)=0$, otherwise f
returns 1.

Is there any difference between idempotent and nonidempotent cases?

Example

Let $m, k \in \mathbb{N}, A=\left\{0,1, a_{1}, \ldots, a_{k}\right\}$. Put

- $h_{i}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in\left\{1, a_{i}\right\} \\ 0, & \text { otherwise }\end{array}\right.$ for $i \in\{1,2, \ldots, k\}$
- $h(\underbrace{0,0, \ldots, 0}_{k})=0, h(\underbrace{0,0, \ldots, 0,1}_{i}, 0, \ldots, 0)=a_{i}$, otherwise h returns 1 .
- $f(\underbrace{0,0, \ldots, 0}_{m})=0, f\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right)=0$, otherwise f returns 1.

Lemma

For $\mathbb{A}=\left(A ; f, h, h_{1}, \ldots, h_{k}\right)$ we have $N U(\mathbb{A})=k \cdot m$.

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{n}\left(m_{i}-1\right)+1$.

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A}=\left(A ; f_{1}, \ldots, f_{n}\right)$ is a finite idempotent algebra of type $\left(m_{1}, \ldots, m_{n}\right)$. Then $N U(\mathbb{A})=\infty$ or $N U(\mathbb{A}) \leq \sum_{i=1}^{n}\left(m_{i}-1\right)+1$.

- if \mathbb{A} was idempotent then $N U(\mathbb{A})$ would be less than $m-1+k-1+1=m+k-1$.

Lemma

For $\mathbb{A}=\left(A ; f, h, h_{1}, \ldots, h_{k}\right)$ we have $N U(\mathbb{A})=k \cdot m$.

The idea of the proof

Main Theorem

$N U_{A}(m) \leq m|A|^{3} / 2$.

The idea of the proof

Main Theorem

$N U_{A}(m) \leq m|A|^{3} / 2$.
For $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$ the relation generated by $\left(\left\{a_{1}, b_{1}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}\right) \backslash\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$ we denote by $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$.

The idea of the proof

Main Theorem

$N U_{A}(m) \leq m|A|^{3} / 2$.
For $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$ the relation generated by $\left(\left\{a_{1}, b_{1}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}\right) \backslash\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$ we denote by $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$.

Lemma

Suppose $N U(\mathbb{A})=n+1$, then there exist $\mathbf{a}, \mathbf{b} \in A^{n}$ such that the tuple $\mathbf{a} \notin \operatorname{Gen}(\mathbf{a}, \mathbf{b})$.

The idea of the proof

Main Theorem

$$
N U_{A}(m) \leq m|A|^{3} / 2
$$

For $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$ the relation generated by $\left(\left\{a_{1}, b_{1}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}\right) \backslash\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$ we denote by $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$.

Lemma

Suppose $N U(\mathbb{A})=n+1$, then there exist $\mathbf{a}, \mathbf{b} \in A^{n}$ such that the tuple $\mathbf{a} \notin \operatorname{Gen}(\mathbf{a}, \mathbf{b})$.

Lemma

Suppose an algebra \mathbb{A} has a cube term of dimension $n+1$ and doesn't have a cube term of dimension n, then there exist $\mathbf{a}, \mathbf{b} \in A^{n}$ such that the tuple $\mathbf{a} \notin \operatorname{Gen}(\mathbf{a}, \mathbf{b})$.

For $C_{1}, D_{1}, \ldots, C_{m}, D_{m} \subseteq A, n_{1}, \ldots, n_{m} \in \mathbb{N}$ denote
$\operatorname{Blob}\left(C_{1}, D_{1}, n_{1}, \ldots, C_{m}, D_{m}, n_{m}\right)=$

$$
\left\{\mathbf{v} \in D_{1}^{n_{1}} \times D_{2}^{n_{2}} \cdots \times D_{m}^{m_{n}} \mid \forall j: C_{j}=\left\{v_{n_{j}-1}, \ldots, v_{n_{j}}\right\}\right\}
$$

The tuple $\left(n_{1}, \ldots, n_{m}\right)$ is called a type of a blob. The union of blobs of the same type is called a sponge.

For $C_{1}, D_{1}, \ldots, C_{m}, D_{m} \subseteq A, n_{1}, \ldots, n_{m} \in \mathbb{N}$ denote
$\operatorname{Blob}\left(C_{1}, D_{1}, n_{1}, \ldots, C_{m}, D_{m}, n_{m}\right)=$

$$
\left\{\mathbf{v} \in D_{1}^{n_{1}} \times D_{2}^{n_{2}} \cdots \times D_{m}^{m_{n}} \mid \forall j: C_{j}=\left\{v_{n_{j}-1}, \ldots, v_{n_{j}}\right\}\right\}
$$

The tuple $\left(n_{1}, \ldots, n_{m}\right)$ is called a type of a blob. The union of blobs of the same type is called a sponge.

Lemma

Suppose $\mathbf{a}, \mathbf{b} \in A^{n}$ such that $\mathbf{a} \notin \operatorname{Gen}(\mathbf{a}, \mathbf{b})$ and $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$ is minimal by inclusion. Then $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$ is a sponge.

For $C_{1}, D_{1}, \ldots, C_{m}, D_{m} \subseteq A, n_{1}, \ldots, n_{m} \in \mathbb{N}$ denote
$\operatorname{Blob}\left(C_{1}, D_{1}, n_{1}, \ldots, C_{m}, D_{m}, n_{m}\right)=$

$$
\left\{\mathbf{v} \in D_{1}^{n_{1}} \times D_{2}^{n_{2}} \cdots \times D_{m}^{m_{n}} \mid \forall j: C_{j}=\left\{v_{n_{j}-1}, \ldots, v_{n_{j}}\right\}\right\}
$$

The tuple $\left(n_{1}, \ldots, n_{m}\right)$ is called a type of a blob. The union of blobs of the same type is called a sponge.

Lemma

Suppose $\mathbf{a}, \mathbf{b} \in A^{n}$ such that $\mathbf{a} \notin \operatorname{Gen}(\mathbf{a}, \mathbf{b})$ and $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$ is minimal by inclusion. Then $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$ is a sponge.

Lemma

Suppose a sponge of type $\left(n_{1}, \ldots, n_{m}\right)$ is an invariant of an algebra $\mathbb{A}, \operatorname{ar}(\mathbb{A})<\frac{1}{|A|} \max \left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$. Then

- we can get a bigger sponge that is still an invariant.

For $C_{1}, D_{1}, \ldots, C_{m}, D_{m} \subseteq A, n_{1}, \ldots, n_{m} \in \mathbb{N}$ denote
$\operatorname{Blob}\left(C_{1}, D_{1}, n_{1}, \ldots, C_{m}, D_{m}, n_{m}\right)=$

$$
\left\{\mathbf{v} \in D_{1}^{n_{1}} \times D_{2}^{n_{2}} \cdots \times D_{m}^{m_{n}} \mid \forall j: C_{j}=\left\{v_{n_{j}-1}, \ldots, v_{n_{j}}\right\}\right\}
$$

The tuple $\left(n_{1}, \ldots, n_{m}\right)$ is called a type of a blob. The union of blobs of the same type is called a sponge.

Lemma

Suppose $\mathbf{a}, \mathbf{b} \in A^{n}$ such that $\mathbf{a} \notin \operatorname{Gen}(\mathbf{a}, \mathbf{b})$ and $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$ is minimal by inclusion. Then $\operatorname{Gen}(\mathbf{a}, \mathbf{b})$ is a sponge.

Lemma

Suppose a sponge of type $\left(n_{1}, \ldots, n_{m}\right)$ is an invariant of an algebra $\mathbb{A}, \operatorname{ar}(\mathbb{A})<\frac{1}{|A|} \max \left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$. Then

- we can get a bigger sponge that is still an invariant.
- $N U(\mathbb{A})=\infty$.

Open Problems

Problem 1

Find an exact value for $N U_{A}(m)$
(now we have $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$)

Open Problems

Problem 1

Find an exact value for $N U_{A}(m)$
(now we have $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$)

Problem 2

Suppose $\mathbb{A}=(A ; f)$ and $N U(\mathbb{A})<\infty$. Find a better upper bound on $N U(\mathbb{A})$.
(now we have $\operatorname{ar}(f)|A|^{3} / 2$)

Open Problems

Problem 1

Find an exact value for $N U_{A}(m)$
(now we have $(m-1)|A|(|A|-1) / 2+1 \leq N U_{A}(m) \leq m|A|^{3} / 2$)

Problem 2

Suppose $\mathbb{A}=(A ; f)$ and $N U(\mathbb{A})<\infty$. Find a better upper bound on $N U(\mathbb{A})$.
(now we have $\operatorname{ar}(f)|A|^{3} / 2$)

Thank you for your attention

