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Introduction Main Results Proof Open Problems

Near-unanimity operation

De�nition

A near unanimity operation (NU) is an operation f satisfying

f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x) = x .

Problem

Given a �nite algebra A = (A;F ). Decide whether there exists a
near-unanimity term operation in A.

For any �xed n we can easily check if an algebra contains a

NU term operation of arity n.
To solve the problem we just need an upper bound on the

minimal arity of a NU.
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Background

Theorem (R.McKenzie, 1997)

It is undecidable for a �nite algebra A and two elements

a,b ∈ A whether A has a term operation that is a

near-unanimity operation on {a,b}.

Theorem (M.Mar�oti, 2000)

It is undecidable for a �nite algebra A and two elements

a,b ∈ A whether A has a term operation that is a

near-unanimity operation on A \ {a,b}.

Theorem (M.Mar�oti, 2005)

It is decidable for a �nite algebra A whether it has a

near-unanimity term operation.

No upper bound on the minimal arity of NU were found.
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NU(A) denotes the minimal arity of a NU term operation

in A.
(NU(A) =∞ if A doesn't have a NU term operation).

By ar(A) we denote the maximal arity of operations in A.

NUA(m) = max{NU(A) | ar(A) ≤ m,NU(A) <∞},
NU idemp

A (m) � the same for idempotent algebras.

NUcons
A (m) � the same for conservative algebras.

Theorem (D.Zhuk, 2013)

1 NUA(m) ≤ |A|2 · (|A| ·m)(3|A|)
|A|
.

2 NU idemp
A (m) ≤ m · |A|3.

3 NUcons
A (m) ≤ m · |A|2.
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Idempotent Algebras

Theorem (Keith Kearnes and �Agnes Szendrei)

Suppose A = (A; f1, . . . , fn) is a �nite idempotent algebra of type

(m1, . . . ,mn). Then NU(A) =∞ or NU(A) ≤
∑n

i=1(mi − 1) + 1.

Theorem

Suppose A = (A; f1, . . . , fn) is a �nite idempotent algebra of type

(m1, . . . ,mn), where m1 ≥ m2 ≥ · · · ≥ mn,

k = min(n, |A|(|A| − 1)/2). Then NU(A) =∞ or

NU(A) ≤
∑k

i=1(mi − 1) + 1.

Theorem

Suppose m1 ≥ m2 ≥ · · · ≥ mn, A is a �nite set,

k = min(n, |A|(|A| − 1)/2). Then there exists an idempotent

algebra A = (A; f1, . . . , fn) of type (m1, . . . ,mn) such that

NU(A) =
∑k

i=1(mi − 1) + 1.
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Idempotent algebras

Suppose m1 ≥ m2 ≥ · · · ≥ mn, A = {0,1, . . . , r},
n ≤ |A|(|A| − 1)/2.
Let J1, . . . , Jn be the partition of the set {(a,b) | a < b}.
We de�ne an operations fi of arity mi as follows

fi(b,a, . . . ,a) = fi(a,b,a, . . . ,a) = fi(a,a, . . . ,a,b) = a

for all pairs (a,b) ∈ Ji ,

otherwise, fi(x1, . . . , xmi ) = max(x1, . . . , xmi ).

Lemma

For A = (A; f1, . . . , fn) we have NU(A) =
∑n

i=1(mi − 1) + 1.
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Main Results

Theorem (D.Zhuk 2013)

1 ??? ≤ NUA(m) ≤ |A|2 · (|A| ·m)(3|A|)
|A|
.

2 ??? ≤ NU idemp
A (m) ≤ m · |A|3.

3 ??? ≤ NUcons
A (m) ≤ m · |A|2.

Main Theorem

1 (m − 1)|A|(|A| − 1)/2 + 1 ≤ NUA(m) ≤ m|A|3/2.
2 NU idemp

A (m) = (m − 1)|A|(|A| − 1)/2 + 1.
3 NUcons

A (m) = (m − 1)|A|(|A| − 1)/2 + 1.

All bounds hold if instead of NU(A) we consider
the minimal arity of an Edge term operation (- 1).

the minimal dimension of a Cube term operation.
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Is there any di�erence between idempotent and nonidempotent

cases?

Example

Let m, k ∈ N, A = {0,1,a1, . . . ,ak}. Put

hi(x) =

{
1, if x ∈ {1,ai}
0, otherwise

for i ∈ {1,2, . . . , k}

h(0,0, . . . ,0︸ ︷︷ ︸
k

) = 0, h(0,0, . . . ,0,1︸ ︷︷ ︸
i

,0, . . . ,0) = ai , otherwise

h returns 1.
f (0,0, . . . ,0︸ ︷︷ ︸

m

) = 0, f (0,0, . . . ,0,ai ,0, . . . ,0) = 0, otherwise f

returns 1.

Lemma

For A = (A; f ,h,h1, . . . ,hk ) we have NU(A) = k ·m.
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Theorem (Keith Kearnes and �Agnes Szendrei)

Suppose A = (A; f1, . . . , fn) is a �nite idempotent algebra of type

(m1, . . . ,mn). Then NU(A) =∞ or NU(A) ≤
∑n

i=1(mi − 1) + 1.

if A was idempotent then NU(A) would be less than

m − 1 + k − 1 + 1 = m + k − 1.

Lemma

For A = (A; f ,h,h1, . . . ,hk ) we have NU(A) = k ·m.
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The idea of the proof

Main Theorem

NUA(m) ≤ m|A|3/2.

For a = (a1, . . . ,an), b = (b1, . . . ,bn) ∈ An the relation

generated by ({a1,b1} × · · · × {an,bn}) \ {(a1, . . . ,an)} we
denote by Gen(a,b).

Lemma

Suppose NU(A) = n + 1, then there exist a,b ∈ An such that

the tuple a /∈ Gen(a,b).

Lemma

Suppose an algebra A has a cube term of dimension n + 1 and

doesn't have a cube term of dimension n, then there exist

a,b ∈ An such that the tuple a /∈ Gen(a,b).
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For C1,D1, . . . ,Cm,Dm ⊆ A, n1, . . . ,nm ∈ N denote

Blob(C1,D1,n1, . . . ,Cm,Dm,nm) =

{v ∈ Dn1
1 × Dn2

2 · · · × Dm
mn | ∀j : Cj = {vnj−1, . . . , vnj}}

The tuple (n1, . . . ,nm) is called a type of a blob. The union of

blobs of the same type is called a sponge.

Lemma

Suppose a,b ∈ An such that a /∈ Gen(a,b) and Gen(a,b) is
minimal by inclusion. Then Gen(a,b) is a sponge.

Lemma

Suppose a sponge of type (n1, . . . ,nm) is an invariant of an

algebra A, ar(A) < 1
|A| max{n1,n2, . . . ,nm}. Then

we can get a bigger sponge that is still an invariant.

NU(A) =∞.
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For C1,D1, . . . ,Cm,Dm ⊆ A, n1, . . . ,nm ∈ N denote

Blob(C1,D1,n1, . . . ,Cm,Dm,nm) =

{v ∈ Dn1
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2 · · · × Dm
mn | ∀j : Cj = {vnj−1, . . . , vnj}}

The tuple (n1, . . . ,nm) is called a type of a blob. The union of
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Lemma
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Open Problems

Problem 1

Find an exact value for NUA(m)
(now we have (m − 1)|A|(|A| − 1)/2 + 1 ≤ NUA(m) ≤ m|A|3/2)

Problem 2

Suppose A = (A; f ) and NU(A) <∞. Find a better upper bound

on NU(A).
(now we have ar(f )|A|3/2)

Thank you for your attention
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