

Dmitriy Zhuk 1 – Alexandr Kazda 2

 $^{1}{\rm Moscow\ State\ University}$

²Vanderbilt University

Arbeitstagung Allgemeine Algebra 90th Workshop on General Algebra Novi Sad, Serbia, June 5-7, 2015

	Main Results	Open Problems
Outline		

Introduction	Main Results	Open Problems
Near-unanimity oper	ation	

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

Introduction	Main Results	Open Problems
Near-unanimity ope	ration	

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

Problem

Given a finite algebra $\mathbb{A} = (A; F)$. Decide whether there exists a near-unanimity term operation in \mathbb{A} .

Introduction	Main Results	Open Problems

Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

Problem

Given a finite algebra $\mathbb{A} = (A; F)$. Decide whether there exists a near-unanimity term operation in \mathbb{A} .

- For any fixed n we can easily check if an algebra contains a NU term operation of arity n.
- To solve the problem we just need an upper bound on the minimal arity of a NU.

Introduction	Main Results	Open Problems
Background		

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Introduction	Main Results	Open Problems
Background		

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Theorem (M.Maróti, 2000)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $A \setminus \{a, b\}$.

Introduction	Main Results	Open Problems
Background		

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Theorem (M.Maróti, 2000)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $A \setminus \{a, b\}$.

Theorem (M.Maróti, 2005)

It is decidable for a finite algebra \mathbb{A} whether it has a near-unanimity term operation.

• No upper bound on the minimal arity of NU were found.

 $(NU(\mathbb{A}) = \infty$ if \mathbb{A} doesn't have a NU term operation).

• By $ar(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A} .

 $(NU(\mathbb{A}) = \infty$ if \mathbb{A} doesn't have a NU term operation).

- By $ar(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A} .
- $NU_A(m) = \max\{NU(\mathbb{A}) \mid ar(\mathbb{A}) \leq m, NU(\mathbb{A}) < \infty\},\$
- $NU_A^{idemp}(m)$ the same for idempotent algebras.
- $NU_A^{cons}(m)$ the same for conservative algebras.

 $(NU(\mathbb{A}) = \infty$ if \mathbb{A} doesn't have a NU term operation).

- By $ar(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A} .
- $NU_A(m) = \max\{NU(\mathbb{A}) \mid ar(\mathbb{A}) \leq m, NU(\mathbb{A}) < \infty\},\$
- $NU_A^{idemp}(m)$ the same for idempotent algebras.
- $NU_A^{cons}(m)$ the same for conservative algebras.

Theorem (D.Zhuk, 2013)

• $NU_A(m) \le |A|^2 \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$.

 $(NU(\mathbb{A}) = \infty$ if \mathbb{A} doesn't have a NU term operation).

- By $ar(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A} .
- $NU_A(m) = \max\{NU(\mathbb{A}) \mid ar(\mathbb{A}) \leq m, NU(\mathbb{A}) < \infty\},\$
- $NU_A^{idemp}(m)$ the same for idempotent algebras.
- $NU_A^{cons}(m)$ the same for conservative algebras.

Theorem (D.Zhuk, 2013)

•
$$NU_A(m) \le |A|^2 \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

2
$$NU_A^{idemp}(m) \leq m \cdot |A|^3$$

 $(NU(\mathbb{A}) = \infty$ if \mathbb{A} doesn't have a NU term operation).

- By $ar(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A} .
- $NU_A(m) = \max\{NU(\mathbb{A}) \mid ar(\mathbb{A}) \leq m, NU(\mathbb{A}) < \infty\},\$
- $NU_A^{idemp}(m)$ the same for idempotent algebras.
- $NU_A^{cons}(m)$ the same for conservative algebras.

Theorem (D.Zhuk, 2013)

•
$$NU_A(m) \le |A|^2 \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

2
$$NU_A^{idemp}(m) \leq m \cdot |A|^3$$

3
$$NU_A^{cons}(m) \leq m \cdot |A|^2$$
.

 $(NU(\mathbb{A}) = \infty$ if \mathbb{A} doesn't have a NU term operation).

- By $ar(\mathbb{A})$ we denote the maximal arity of operations in \mathbb{A} .
- $NU_A(m) = \max\{NU(\mathbb{A}) \mid ar(\mathbb{A}) \leq m, NU(\mathbb{A}) < \infty\},\$
- $NU_A^{idemp}(m)$ the same for idempotent algebras.
- $NU_A^{cons}(m)$ the same for conservative algebras.

Theorem (D.Zhuk, 2013)

- $NU_A(m) \le |A|^2 \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$.
- $I O NU_A^{idemp}(m) \leq m \cdot |A|^3.$
- $I W_A^{cons}(m) \le m \cdot |A|^2.$

	Main Results	Open Problems
Idempotent Algebras		

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) . Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \leq \sum_{i=1}^n (m_i - 1) + 1$.

	Main Results	Open Problems
Idempotent Algebras		

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) . Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \leq \sum_{i=1}^n (m_i - 1) + 1$.

Theorem

Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) , where $m_1 \ge m_2 \ge \dots \ge m_n$, $k = \min(n, |A|(|A| - 1)/2)$. Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \le \sum_{i=1}^{k} (m_i - 1) + 1$.

	Main Results	Open Problems
Idempotent Algebras		

Theorem (Keith Kearnes and Ágnes Szendrei)

Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) . Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \leq \sum_{i=1}^n (m_i - 1) + 1$.

Theorem

Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) , where $m_1 \ge m_2 \ge \dots \ge m_n$, $k = \min(n, |A|(|A| - 1)/2)$. Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \le \sum_{i=1}^{k} (m_i - 1) + 1$.

Theorem

Suppose $m_1 \ge m_2 \ge \cdots \ge m_n$, A is a finite set, $k = \min(n, |A|(|A| - 1)/2)$. Then there exists an idempotent algebra $\mathbb{A} = (A; f_1, \dots, f_n)$ of type (m_1, \dots, m_n) such that $NU(\mathbb{A}) = \sum_{i=1}^{k} (m_i - 1) + 1$.

	Main Results	Open Problems
Idempotent algebras	1	

Suppose
$$m_1 \ge m_2 \ge \cdots \ge m_n$$
, $A = \{0, 1, \dots, r\}$,
 $n \le |A|(|A| - 1)/2$.
Let J_1, \dots, J_n be the partition of the set $\{(a, b) \mid a < b\}$.
We define an operations f_i of arity m_i as follows

$$f_i(b, a, \dots, a) = f_i(a, b, a, \dots, a) = f_i(a, a, \dots, a, b) = a$$

for all pairs $(a, b) \in J_i$,
otherwise, $f_i(x_1, \dots, x_{m_i}) = \max(x_1, \dots, x_{m_i})$.

Lemma

For
$$\mathbb{A} = (A; f_1, \dots, f_n)$$
 we have $NU(\mathbb{A}) = \sum_{i=1}^n (m_i - 1) + 1$.

	Main Results	Open Problems
Main Results		

.

Theorem (D.Zhuk 2013)

• ???
$$\leq NU_{A}(m) \leq |A|^{2} \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

$$??? \leq NU_A^{idemp}(m) \leq m \cdot |A|^3.$$

$$3 ??? \leq NU_A^{cons}(m) \leq m \cdot |A|^2.$$

	Main Results	Open Problems
Main Results		

• ???
$$\leq NU_{A}(m) \leq |A|^{2} \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

$$@ ??? \leq NU_{\mathcal{A}}^{idemp}(m) \leq m \cdot |\mathcal{A}|^3.$$

3 ???
$$\leq NU_{\mathcal{A}}^{cons}(m) \leq m \cdot |\mathcal{A}|^2$$
.

(
$$m-1$$
) $|A|(|A|-1)/2+1 \le NU_A(m) \le m|A|^3/2$.

	Main Results	Open Problems
Main Results		

• ???
$$\leq NU_A(m) \leq |A|^2 \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

$$@ ??? \leq NU_{\mathcal{A}}^{idemp}(m) \leq m \cdot |\mathcal{A}|^3.$$

3 ???
$$\leq NU_{\mathcal{A}}^{cons}(m) \leq m \cdot |\mathcal{A}|^2$$
.

•
$$(m-1)|A|(|A|-1)/2+1 \le NU_A(m) \le m|A|^3/2.$$

3
$$NU_A^{lamp}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

	Main Results	Open Problems
Main Results		

• ???
$$\leq NU_{A}(m) \leq |A|^{2} \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

$$@ ??? \leq NU_{\mathcal{A}}^{idemp}(m) \leq m \cdot |\mathcal{A}|^3.$$

3 ???
$$\leq NU_{\mathcal{A}}^{cons}(m) \leq m \cdot |\mathcal{A}|^2$$
.

●
$$(m-1)|A|(|A|-1)/2+1 \le NU_A(m) \le m|A|^3/2.$$

2
$$NU_A^{idemp}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

3
$$NU_A^{cons}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

	Main Results	Open Problems
Main Results		

.

Theorem (D.Zhuk 2013)

• ???
$$\leq NU_{A}(m) \leq |A|^{2} \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

$$@ ??? \leq NU_{\mathcal{A}}^{idemp}(m) \leq m \cdot |\mathcal{A}|^3.$$

3 ???
$$\leq NU_{\mathcal{A}}^{cons}(m) \leq m \cdot |\mathcal{A}|^2$$
.

•
$$(m-1)|A|(|A|-1)/2+1 \le NU_A(m) \le m|A|^3/2.$$

2
$$NU_A^{idemp}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

3
$$NU_A^{cons}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

	Main Results	Open Problems
Main Results		

• ???
$$\leq NU_{A}(m) \leq |A|^{2} \cdot (|A| \cdot m)^{(3|A|)^{|A|}}$$

$$@ ??? \leq NU_{\mathcal{A}}^{idemp}(m) \leq m \cdot |\mathcal{A}|^3.$$

3 ???
$$\leq NU_{\mathcal{A}}^{cons}(m) \leq m \cdot |\mathcal{A}|^2$$
.

Main Theorem

•
$$(m-1)|A|(|A|-1)/2+1 \le NU_A(m) \le m|A|^3/2.$$

3
$$NU_A^{idemp}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

3
$$NU_A^{cons}(m) = (m-1)|A|(|A|-1)/2 + 1.$$

All bounds hold if instead of $NU(\mathbb{A})$ we consider

- the minimal arity of an Edge term operation (- 1).
- the minimal dimension of a Cube term operation.

Is there any difference between idempotent and nonidempotent cases?

Is there any difference between idempotent and nonidempotent cases?

Example

Let
$$m, k \in \mathbb{N}, A = \{0, 1, a_1, \dots, a_k\}$$
. Put

• $h_i(x) = \begin{cases} 1, & \text{if } x \in \{1, a_i\} \\ 0, & \text{otherwise} \end{cases}$ for $i \in \{1, 2, \dots, k\}$ • $h(\underbrace{0, 0, \dots, 0}_{k}) = 0, h(\underbrace{0, 0, \dots, 0, 1}_{i}, 0, \dots, 0) = a_i, \text{ otherwise}$ h returns 1.• $f(\underbrace{0, 0, \dots, 0}_{m}) = 0, f(0, 0, \dots, 0, a_i, 0, \dots, 0) = 0, \text{ otherwise } f$ returns 1. Is there any difference between idempotent and nonidempotent cases?

Example

Let
$$m, k \in \mathbb{N}, A = \{0, 1, a_1, \dots, a_k\}$$
. Put

•
$$h_i(x) = \begin{cases} 1, & \text{if } x \in \{1, a_i\} \\ 0, & \text{otherwise} \end{cases}$$
 for $i \in \{1, 2, \dots, k\}$
• $h(\underbrace{0, 0, \dots, 0}_{k}) = 0, h(\underbrace{0, 0, \dots, 0, 1}_{i}, 0, \dots, 0) = a_i, \text{ otherwise} \end{cases}$
• $h \text{ returns } 1.$
• $f(\underbrace{0, 0, \dots, 0}_{m}) = 0, f(0, 0, \dots, 0, a_i, 0, \dots, 0) = 0, \text{ otherwise } i$

returns 1.

Lemma

For
$$\mathbb{A} = (A; f, h, h_1, \dots, h_k)$$
 we have $NU(\mathbb{A}) = k \cdot m$.

Introduction Main Results Proof Open Problems Theorem (Keith Kearnes and Ágnes Szendrei) Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) . Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \leq \sum_{i=1}^n (m_i - 1) + 1$. Introduction Main Results Proof Open Problems Theorem (Keith Kearnes and Ágnes Szendrei) Suppose $\mathbb{A} = (A; f_1, \dots, f_n)$ is a finite idempotent algebra of type (m_1, \dots, m_n) . Then $NU(\mathbb{A}) = \infty$ or $NU(\mathbb{A}) \leq \sum_{i=1}^n (m_i - 1) + 1$.

Lemma

For
$$\mathbb{A} = (A; f, h, h_1, \dots, h_k)$$
 we have $NU(\mathbb{A}) = k \cdot m$.

m-1+k-1+1=m+k-1.

• if A was idempotent then NU(A) would be less than

	Main Results	Proof	Open Problems
The idea of the proo	f		
Main Theorem			
$NU_A(m) \leq m A ^2$	³ /2.		

	Main Results	Proof	Open Problems
The idea of the proc	f		

Main Theorem

 $NU_A(m) \leq m|A|^3/2.$

For $\mathbf{a} = (a_1, \ldots, a_n)$, $\mathbf{b} = (b_1, \ldots, b_n) \in A^n$ the relation generated by $(\{a_1, b_1\} \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, \ldots, a_n)\}$ we denote by $Gen(\mathbf{a}, \mathbf{b})$.

The idea of the proof

Main Theorem

$$NU_A(m) \leq m|A|^3/2$$

For
$$\mathbf{a} = (a_1, \dots, a_n)$$
, $\mathbf{b} = (b_1, \dots, b_n) \in A^n$ the relation
generated by $(\{a_1, b_1\} \times \dots \times \{a_n, b_n\}) \setminus \{(a_1, \dots, a_n)\}$ we
denote by $Gen(\mathbf{a}, \mathbf{b})$.

Lemma

Suppose $NU(\mathbb{A}) = n + 1$, then there exist $\mathbf{a}, \mathbf{b} \in A^n$ such that the tuple $\mathbf{a} \notin \text{Gen}(\mathbf{a}, \mathbf{b})$.

The idea of the proof

Main Theorem

$$NU_A(m) \leq m|A|^3/2$$

For
$$\mathbf{a} = (a_1, \dots, a_n)$$
, $\mathbf{b} = (b_1, \dots, b_n) \in \mathcal{A}^n$ the relation
generated by $(\{a_1, b_1\} \times \dots \times \{a_n, b_n\}) \setminus \{(a_1, \dots, a_n)\}$ we
denote by $Gen(\mathbf{a}, \mathbf{b})$.

Lemma

Suppose $NU(\mathbb{A}) = n + 1$, then there exist $\mathbf{a}, \mathbf{b} \in A^n$ such that the tuple $\mathbf{a} \notin \text{Gen}(\mathbf{a}, \mathbf{b})$.

Lemma

Suppose an algebra \mathbb{A} has a cube term of dimension n + 1 and doesn't have a cube term of dimension n, then there exist $\mathbf{a}, \mathbf{b} \in \mathbf{A}^n$ such that the tuple $\mathbf{a} \notin \text{Gen}(\mathbf{a}, \mathbf{b})$.

$$Blob(C_1, D_1, n_1, ..., C_m, D_m, n_m) = \{ \mathbf{v} \in D_1^{n_1} \times D_2^{n_2} \cdots \times D_m^{m_n} \mid \forall j : C_j = \{ v_{n_j-1}, ..., v_{n_j} \} \}$$

The tuple (n_1, \ldots, n_m) is called a type of a blob. The union of blobs of the same type is called a sponge.

Blob
$$(C_1, D_1, n_1, ..., C_m, D_m, n_m) = \{ \mathbf{v} \in D_1^{n_1} \times D_2^{n_2} \cdots \times D_m^{m_n} \mid \forall j : C_j = \{ v_{n_j-1}, ..., v_{n_j} \} \}$$

The tuple (n_1, \ldots, n_m) is called a type of a blob. The union of blobs of the same type is called a sponge.

Lemma

Suppose $\mathbf{a}, \mathbf{b} \in A^n$ such that $\mathbf{a} \notin \text{Gen}(\mathbf{a}, \mathbf{b})$ and $\text{Gen}(\mathbf{a}, \mathbf{b})$ is minimal by inclusion. Then $\text{Gen}(\mathbf{a}, \mathbf{b})$ is a sponge.

$$\mathsf{Blob}(C_1, D_1, n_1, \dots, C_m, D_m, n_m) = \{\mathbf{v} \in D_1^{n_1} \times D_2^{n_2} \cdots \times D_m^{m_n} \mid \forall j \colon C_j = \{v_{n_j-1}, \dots, v_{n_j}\}\}$$

The tuple (n_1, \ldots, n_m) is called a type of a blob. The union of blobs of the same type is called a sponge.

Lemma

Suppose $\mathbf{a}, \mathbf{b} \in A^n$ such that $\mathbf{a} \notin \text{Gen}(\mathbf{a}, \mathbf{b})$ and $\text{Gen}(\mathbf{a}, \mathbf{b})$ is minimal by inclusion. Then $\text{Gen}(\mathbf{a}, \mathbf{b})$ is a sponge.

Lemma

Suppose a sponge of type (n_1, \ldots, n_m) is an invariant of an algebra \mathbb{A} , $ar(\mathbb{A}) < \frac{1}{|A|} \max\{n_1, n_2, \ldots, n_m\}$. Then

• we can get a bigger sponge that is still an invariant.

$$\mathsf{Blob}(C_1, D_1, n_1, \dots, C_m, D_m, n_m) = \{\mathbf{v} \in D_1^{n_1} \times D_2^{n_2} \cdots \times D_m^{m_n} \mid \forall j \colon C_j = \{v_{n_j-1}, \dots, v_{n_j}\}\}$$

The tuple (n_1, \ldots, n_m) is called a type of a blob. The union of blobs of the same type is called a sponge.

Lemma

Suppose $\mathbf{a}, \mathbf{b} \in A^n$ such that $\mathbf{a} \notin \text{Gen}(\mathbf{a}, \mathbf{b})$ and $\text{Gen}(\mathbf{a}, \mathbf{b})$ is minimal by inclusion. Then $\text{Gen}(\mathbf{a}, \mathbf{b})$ is a sponge.

Lemma

Suppose a sponge of type (n_1, \ldots, n_m) is an invariant of an algebra \mathbb{A} , $ar(\mathbb{A}) < \frac{1}{|A|} \max\{n_1, n_2, \ldots, n_m\}$. Then

• we can get a bigger sponge that is still an invariant.

•
$$NU(\mathbb{A}) = \infty$$
.

	Main Results	Open Problems
Open Problems		

Problem 1

Find an exact value for $NU_A(m)$ (now we have $(m-1)|A|(|A|-1)/2 + 1 \le NU_A(m) \le m|A|^3/2$)

	Main Results	Open Problems
Open Problems		

Problem 1

Find an exact value for $NU_A(m)$ (now we have $(m-1)|A|(|A|-1)/2 + 1 \le NU_A(m) \le m|A|^3/2$)

Problem 2

Suppose $\mathbb{A} = (A; f)$ and $NU(\mathbb{A}) < \infty$. Find a better upper bound on $NU(\mathbb{A})$. (now we have $ar(f)|A|^3/2$)

	Main Results	Open Problems
Open Problems		

Problem 1

Find an exact value for $NU_A(m)$ (now we have $(m-1)|A|(|A|-1)/2 + 1 \le NU_A(m) \le m|A|^3/2$)

Problem 2

Suppose $\mathbb{A} = (A; f)$ and $NU(\mathbb{A}) < \infty$. Find a better upper bound on $NU(\mathbb{A})$. (now we have $ar(f)|A|^3/2$)

Thank you for your attention