Absorption in semigroups and *n*-ary semigroups

Bojan Bašić

Department of Mathematics and Informatics University of Novi Sad Serbia

June 6, 2015

∋⊳

Introduction

Bojan Bašić

æ

Ξ.

Definition (Barto & Kozik)

Let **A** be an algebra and **B** \leq **A**. We say that **B** *absorbs* **A**, denoted by **B** \leq **A**, iff there exists an idempotent term *t* in **A** such that for each *a* \in *A* and *b*₁, *b*₂, ..., *b*_m \in *B* we have

$$egin{aligned} t(a, b_2, b_3, \dots, b_m) \in B; \ t(b_1, a, b_3, \dots, b_m) \in B; \ &\vdots \ t(b_1, b_2, b_3, \dots, a) \in B. \end{aligned}$$

Introduction

Bojan Bašić

Ξ.

• A generalization of the near-unanimity

• A generalization of the near-unanimity (an idempotent finite algebra **A** has a near-unanimity term iff every singleton absorbs **A**).

- A generalization of the near-unanimity (an idempotent finite algebra **A** has a near-unanimity term iff every singleton absorbs **A**).
- A very useful notion with many applications so far.

- A generalization of the near-unanimity (an idempotent finite algebra **A** has a near-unanimity term iff every singleton absorbs **A**).
- A very useful notion with many applications so far. For example, Bulatov's dichotomy theorem for conservative CSPs, with a deep and complicated proof (nearly 70 pages long), was reproved [Barto, 2010] using these techniques on merely 10 pages.

- A generalization of the near-unanimity (an idempotent finite algebra **A** has a near-unanimity term iff every singleton absorbs **A**).
- A very useful notion with many applications so far. For example, Bulatov's dichotomy theorem for conservative CSPs, with a deep and complicated proof (nearly 70 pages long), was reproved [Barto, 2010] using these techniques on merely 10 pages.
- Loosely speaking, the main idea of absorption is that, when
 B ≤ A where B is a proper subalgebra of A, then some induction-like step can often be applied.

Introduction

æ

Given a finite algebra **A** and its subalgebra **B**, is it decidable whether $\mathbf{B} \trianglelefteq \mathbf{A}$?

• This is hard.

- This is hard.
- Maróti, 2009: The existence of a near-unanimity term in a finite algebra is decidable.

- This is hard.
- Maróti, 2009: The existence of a near-unanimity term in a finite algebra is decidable.
- Bulín, 2014: The absorption is decidable if **A** is finitely related.

- This is hard.
- Maróti, 2009: The existence of a near-unanimity term in a finite algebra is decidable.
- Bulín, 2014: The absorption is decidable if **A** is finitely related.
- Barto & Kazda & Bulín, 2013 (announced): The absorption is decidable (a very complex algorithm).

In semigroups everything becomes easier

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch).

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.

Boian Bašić

Theorem

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

5/13

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

• $t(x_1, x_2, ..., x_m)$ —an absorbing term;

Boian Bašić

Boian Bašić

Theorem

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

• $t(x_1, x_2, \ldots, x_m)$ —an absorbing term; x_i appears d_i times;

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

- $t(x_1, x_2, \ldots, x_m)$ —an absorbing term; x_i appears d_i times;
- $B \ni t(ab, b^{k-1}, b^{k-1}, \dots, b^{k-1}) \approx (ab)^{d_1};$

Boian Bašić

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

- $t(x_1, x_2, \ldots, x_m)$ —an absorbing term; x_i appears d_i times;
- $B \ni t(ab, b^{k-1}, b^{k-1}, \dots, b^{k-1}) \approx (ab)^{d_1};$
- choose $r \equiv 1 \pmod{k-1}$, $r > (m-1)d_1$;

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

- $t(x_1, x_2, \ldots, x_m)$ —an absorbing term; x_i appears d_i times;
- $B \ni t(ab, b^{k-1}, b^{k-1}, \dots, b^{k-1}) \approx (ab)^{d_1};$
- choose $r \equiv 1 \pmod{k-1}$, $r > (m-1)d_1$;
- $B \ni t_i = t((ab)^{d_1}, b^{k-1}, \dots, b^{k-1}, (ab)^r, b^{k-1}, \dots, b^{k-1});$

Let $\mathbf{A} = (A, \cdot)$ be a semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ if and only if $ab \in B$ and $ba \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy. (\Rightarrow) :

• $t(x_1, x_2, \ldots, x_m)$ —an absorbing term; x_i appears d_i times;

•
$$B \ni t(ab, b^{k-1}, b^{k-1}, \dots, b^{k-1}) \approx (ab)^{d_1};$$

- choose $r \equiv 1 \pmod{k-1}$, $r > (m-1)d_1$;
- $B \ni t_i = t((ab)^{d_1}, b^{k-1}, \dots, b^{k-1}, (ab)^r, b^{k-1}, \dots, b^{k-1});$ • $B \ni (ab)^{d_1(r-(m-1)d_1)}t_2t_3 \cdots t_m \approx ab.$

 Algebraic Dichotomy Conjecture (Bulatov, Jeavons & Krokhin): CSP(Γ) is NP-complete ↔ Γ does not admit any wnu polymorphism

- Absorption was the key ingredient in many special cases proved so far

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons & Krokhin): CSP(Γ) is NP-complete ↔ Γ does not admit any wnu polymorphism
- Absorption was the key ingredient in many special cases proved so far
- Jeavons, Cohen & Gyssens, 1997: Γ admits a semilattice polymorphism (idempotent, commutative, associative) ⇒ CSP(Γ) ∈ P

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons & Krokhin): CSP(Γ) is NP-complete ↔ Γ does not admit any wnu polymorphism
- Absorption was the key ingredient in many special cases proved so far
- Jeavons, Cohen & Gyssens, 1997: Γ admits a semilattice polymorphism (idempotent, commutative, associative) ⇒ CSP(Γ) ∈ P
- We now have a very simple description of the behavior of absorption in semigroups, which might possibly lead to something more general than the result above

- Absorption was the key ingredient in many special cases proved so far
- Jeavons, Cohen & Gyssens, 1997: Γ admits a semilattice polymorphism (idempotent, commutative, associative) ⇒ CSP(Γ) ∈ P
- We now have a very simple description of the behavior of absorption in semigroups, which might possibly lead to something more general than the result above
- Another motivation: given the very chaotic behavior of absorption in general, it is nice to have a natural class of algebras in which the absorption behaves in a very predictable (but still nontrivial) way. It might be a very useful research direction to discover whether there is a deeper reason for this nice behavior of absorption in semigroups and *n*-ary semigroups, and whether this reason may help to describe the behavior of absorption in other classes of algebras.

(日本) (日本) (日本)

A definition of *n*-ary semigroup

Definition

We say that an *n*-ary operation $f : A^n \to A$ is *associative* iff

$$f(f(a_1, a_2, \dots, a_n), a_{n+1}, \dots, a_{2n-1}) = f(a_1, f(a_2, \dots, a_n, a_{n+1}), \dots, a_{2n-1})$$

= ...
= $f(a_1, a_2, \dots, f(a_n, a_{n+1}, \dots, a_{2n-1}))$

for every $a_1, a_2, ..., a_{2n-1} \in A$.

Definition

We say that an *n*-ary operation $f : A^n \to A$ is *associative* iff

$$f(f(a_1, a_2, \dots, a_n), a_{n+1}, \dots, a_{2n-1}) = f(a_1, f(a_2, \dots, a_n, a_{n+1}), \dots, a_{2n-1})$$

= ...
= f(a_1, a_2, \dots, f(a_n, a_{n+1}, \dots, a_{2n-1}))

for every $a_1, a_2, ..., a_{2n-1} \in A$.

Definition

An algebra $\mathbf{A} = (A, f)$, where f is an *n*-ary associative operation, is called an *n*-ary semigroup.

Definition

We say that an *n*-ary operation $f : A^n \to A$ is *associative* iff

$$f(f(a_1, a_2, \dots, a_n), a_{n+1}, \dots, a_{2n-1}) = f(a_1, f(a_2, \dots, a_n, a_{n+1}), \dots, a_{2n-1})$$

= ...
= f(a_1, a_2, \dots, f(a_n, a_{n+1}, \dots, a_{2n-1}))

for every $a_1, a_2, ..., a_{2n-1} \in A$.

Definition

An algebra $\mathbf{A} = (A, f)$, where f is an *n*-ary associative operation, is called an *n*-ary semigroup.

• Instead of $f(a_1, a_2, \ldots, a_n)$ we write $a_1 a_2 \cdots a_n$ etc.

A possible generalization of the semigroup case

∢ ≣ ▶

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A} = (A, f)$ be an *n*-ary semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then the following conditions are equivalent:

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A} = (A, f)$ be an *n*-ary semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then the following conditions are equivalent: (1) $\mathbf{B} \triangleleft \mathbf{A}$;

Conjecture

Let $\mathbf{A} = (A, f)$ be an *n*-ary semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then the following conditions are equivalent:

- (1) B ⊴ A;
- (2) $ab^{n-1} \in B$ and $b^{n-1}a \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$;

Conjecture

Let $\mathbf{A} = (A, f)$ be an *n*-ary semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then the following conditions are equivalent:

- (1) B ⊴ A;
- (2) $ab^{n-1} \in B$ and $b^{n-1}a \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$;
- (3) a₁a₂ ··· a_n ∈ B whenever at least one of a₁, a₂, ..., a_n belongs to B, and there exists a positive integer k > 1 such that a^k ≈ a for each a ∈ A.

Conjecture

Let $\mathbf{A} = (A, f)$ be an *n*-ary semigroup, and let $\mathbf{B} \leq \mathbf{A}$. Then the following conditions are equivalent:

- (1) **B** ⊴ **A**;
- (2) $ab^{n-1} \in B$ and $b^{n-1}a \in B$ for each $a \in A$, $b \in B$, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$:
- (3) $a_1 a_2 \cdots a_n \in B$ whenever at least one of a_1, a_2, \ldots, a_n belongs to B, and there exists a positive integer k > 1 such that $a^k \approx a$ for each $a \in A$.
 - The implications $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are easy.

Two nice cases

≣≯

The conjecture holds when $|A \setminus B| = 1$.

The conjecture holds when $|A \setminus B| = 1$.

Definition

We say that an n-ary operation f is commutative iff

$$f(a_1, a_2, \ldots, a_n) = f(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)})$$

for any a_1, a_2, \ldots, a_n and any permutation π of the set $\{1, 2, \ldots, n\}$.

Bojan Bašić

A B + A B +

The conjecture holds when $|A \setminus B| = 1$.

Definition

We say that an n-ary operation f is commutative iff

$$f(a_1, a_2, \ldots, a_n) = f(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)})$$

for any a_1, a_2, \ldots, a_n and any permutation π of the set $\{1, 2, \ldots, n\}$.

Theorem

The conjecture holds when f is commutative.

9/13

Bojan Bašić

The conjecture holds when **A** is an idempotent ternary semigroup.

The conjecture holds when **A** is an idempotent ternary semigroup.

Proof (sketch).

The conjecture holds when **A** is an idempotent ternary semigroup.

Proof (sketch). We need to prove that, assuming $\mathbf{B} \leq \mathbf{A}$, for any $a \in A$, $b \in B$ we have $ab^2 \in B$ and $b^2a \in B$.

The conjecture holds when **A** is an idempotent ternary semigroup.

The conjecture holds when **A** is an idempotent ternary semigroup.

(1)
$$u^2 v u \in B$$
, $2 \nmid |u|$, $2 \mid |v| \Rightarrow v u \in B$

The conjecture holds when **A** is an idempotent ternary semigroup.

(1)
$$u^2 v u \in B$$
, $2 \nmid |u|$, $2 \mid |v| \Rightarrow v u \in B$; $uvu^2 \in B \Rightarrow uv \in B$

The conjecture holds when **A** is an idempotent ternary semigroup.

(1)
$$u^2 vu \in B$$
, $2 \nmid |u|$, $2 \mid |v| \Rightarrow vu \in B$; $uvu^2 \in B \Rightarrow uv \in B$
(2) $ub \in B$, $2 \mid |u|$, $b \in B \Rightarrow bu \in B$ and vice versa

(3) $abbab \in B$, $babba \in B$ for any $a \in A$, $b \in B$

(3) abbab ∈ B, babba ∈ B for any a ∈ A, b ∈ B a' = abbab

Bojan Bašić

(3)
$$abbab \in B$$
, $babba \in B$ for any $a \in A$, $b \in B$
• $a' = abbab$
• $t(a'bb, b, b, \dots, b) \in B$
• $a'ba' = (abbab)b(abbab) = (abb)^3ab \approx abbab = a'$
• $t \approx (a'bb)' \approx a'bb$ or $t \approx (a'bb)'a'b \approx a'bba'b$

Bojan Bašić

< E> < E>

(3)
$$abbab \in B$$
, $babba \in B$ for any $a \in A$, $b \in B$
• $a' = abbab$
• $t(a'bb, b, b, \dots, b) \in B$
• $a'ba' = (abbab)b(abbab) = (abb)^3ab \approx abbab = a'$
• $t \approx (a'bb)' \approx a'bb$ or $t \approx (a'bb)'a'b \approx a'bba'b$
• $a'bb = (abbab)bb = abbab^3 \approx abbab$

.⊒ →

3)
$$abbab \in B$$
, $babba \in B$ for any $a \in A$, $b \in B$
• $a' = abbab$
• $t(a'bb, b, b, \dots, b) \in B$
• $a'ba' = (abbab)b(abbab) = (abb)^3ab \approx abbab = a'$
• $t \approx (a'bb)^1 \approx a'bb$ or $t \approx (a'bb)^1a'b \approx a'bba'b$
• $a'bb = (abbab)bb = abbab^3 \approx abbab$
• $a'bba'b = abbab^3abbabb \approx abbababbabb$

11/13

(3) $abbab \in B$, $babba \in B$ for any $a \in A$, $b \in B$ • a' = abbab• $t(a'bb, b, b, \dots, b) \in B$ • $a'ba' = (abbab)b(abbab) = (abb)^3ab \approx abbab = a'$ • $t \approx (a'bb)' \approx a'bb$ or $t \approx (a'bb)'a'b \approx a'bba'b$ • $a'bb = (abbab)bb = abbab^3 \approx abbab$ • $a'bba'b = abbab^3abbabb \approx abbababbabb$

•
$$(abb)ab(abb)^2 = abbababbabb \in B \Rightarrow abbab \in B$$

(4) $aab \in B$, $baa \in B$, $aabaa \in B$ for any $a \in A$, $b \in B$

12/13

(4) aab ∈ B, baa ∈ B, aabaa ∈ B for any a ∈ A, b ∈ B
(5) whenever t'(x, y) is a term such that t'(a, b) ∈ B for all a ∈ A, b ∈ B, then b(ab)^I ∈ B, where I is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word t'(a, b)

(4) aab ∈ B, baa ∈ B, aabaa ∈ B for any a ∈ A, b ∈ B
(5) whenever t'(x, y) is a term such that t'(a, b) ∈ B for all a ∈ A, b ∈ B, then b(ab)^l ∈ B, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word t'(a, b)
(6) whenever b(ab)^l ∈ B for an integer l > 1 and some a ∈ A, b ∈ B, then (ab)^{l-1}a ∈ B

(4) $aab \in B$, $baa \in B$, $aabaa \in B$ for any $a \in A$, $b \in B$

- (5) whenever t'(x, y) is a term such that t'(a, b) ∈ B for all a ∈ A, b ∈ B, then b(ab)^l ∈ B, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word t'(a, b)
- (6) whenever $b(ab)^{l} \in B$ for an integer l > 1 and some $a \in A$, $b \in B$, then $(ab)^{l-1}a \in B$
- (7) $\exists l \text{ such that } b(ab)^l \in B \text{ and } b(ab)^{l+1} \in B \text{ for any } a \in A, b \in B$

(4) aab ∈ B, baa ∈ B, aabaa ∈ B for any a ∈ A, b ∈ B
(5) whenever t'(x, y) is a term such that t'(a, b) ∈ B for all a ∈ A, b ∈ B, then b(ab)^I ∈ B, where I is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word t'(a, b)

- (6) whenever $b(ab)^{l} \in B$ for an integer l > 1 and some $a \in A$, $b \in B$, then $(ab)^{l-1}a \in B$
- (7) $\exists l \text{ such that } b(ab)^l \in B \text{ and } b(ab)^{l+1} \in B \text{ for any } a \in A, b \in B$
- (8) $bab \in B$ for any $a \in A$, $b \in B$

(4) aab ∈ B, baa ∈ B, aabaa ∈ B for any a ∈ A, b ∈ B
(5) whenever t'(x, y) is a term such that t'(a, b) ∈ B for all a ∈ A, b ∈ B, then b(ab)^I ∈ B, where I is the absolute value of the difference of the number of occurrences of the letter a

at the odd, respectively even positions in the word t'(a, b)

- (6) whenever b(ab)^l ∈ B for an integer l > 1 and some a ∈ A, b ∈ B, then (ab)^{l-1}a ∈ B
- (7) $\exists l \text{ such that } b(ab)^l \in B \text{ and } b(ab)^{l+1} \in B \text{ for any } a \in A, b \in B$
- (8) $bab \in B$ for any $a \in A$, $b \in B$
- (9) $ab^2 \in B$, $b^2a \in B$ for any $a \in A$, $b \in B$

Bojan Bašić

Assume that the conjecture holds for all idempotent n-ary semigroups. Then the conjecture holds in general.