Absorption in semigroups and n-ary semigroups

Bojan Bašić

Department of Mathematics and Informatics
University of Novi Sad Serbia

June 6, 2015

Introduction

Introduction

Definition (Barto \& Kozik)

Let \mathbf{A} be an algebra and $\mathbf{B} \leqslant \mathbf{A}$. We say that \mathbf{B} absorbs \mathbf{A}, denoted by $\mathbf{B} \unlhd \mathbf{A}$, iff there exists an idempotent term t in \mathbf{A} such that for each $a \in A$ and $b_{1}, b_{2}, \ldots, b_{m} \in B$ we have

$$
\begin{gathered}
t\left(a, b_{2}, b_{3}, \ldots, b_{m}\right) \in B \\
t\left(b_{1}, a, b_{3}, \ldots, b_{m}\right) \in B \\
\vdots \\
t\left(b_{1}, b_{2}, b_{3}, \ldots, a\right) \in B
\end{gathered}
$$

Introduction

Introduction

- A generalization of the near-unanimity

Introduction

- A generalization of the near-unanimity (an idempotent finite algebra \mathbf{A} has a near-unanimity term iff every singleton absorbs A).

Introduction

- A generalization of the near-unanimity (an idempotent finite algebra \mathbf{A} has a near-unanimity term iff every singleton absorbs A).
- A very useful notion with many applications so far.

Introduction

- A generalization of the near-unanimity (an idempotent finite algebra \mathbf{A} has a near-unanimity term iff every singleton absorbs A).
- A very useful notion with many applications so far. For example, Bulatov's dichotomy theorem for conservative CSPs, with a deep and complicated proof (nearly 70 pages long), was reproved [Barto, 2010] using these techniques on merely 10 pages.

Introduction

- A generalization of the near-unanimity (an idempotent finite algebra \mathbf{A} has a near-unanimity term iff every singleton absorbs A).
- A very useful notion with many applications so far. For example, Bulatov's dichotomy theorem for conservative CSPs, with a deep and complicated proof (nearly 70 pages long), was reproved [Barto, 2010] using these techniques on merely 10 pages.
- Loosely speaking, the main idea of absorption is that, when $\mathbf{B} \unlhd \mathbf{A}$ where \mathbf{B} is a proper subalgebra of \mathbf{A}, then some induction-like step can often be applied.

Introduction

Introduction

Question

Given a finite algebra \mathbf{A} and its subalgebra \mathbf{B}, is it decidable whether $\mathbf{B} \unlhd \mathbf{A}$?

Introduction

Question

Given a finite algebra \mathbf{A} and its subalgebra \mathbf{B}, is it decidable whether $\mathbf{B} \unlhd \mathbf{A}$?

- This is hard.

Introduction

Question

Given a finite algebra \mathbf{A} and its subalgebra \mathbf{B}, is it decidable whether $\mathbf{B} \unlhd \mathbf{A}$?

- This is hard.
- Maróti, 2009: The existence of a near-unanimity term in a finite algebra is decidable.

Introduction

Question

Given a finite algebra \mathbf{A} and its subalgebra \mathbf{B}, is it decidable whether $\mathbf{B} \unlhd \mathbf{A}$?

- This is hard.
- Maróti, 2009: The existence of a near-unanimity term in a finite algebra is decidable.
- Bulín, 2014: The absorption is decidable if \mathbf{A} is finitely related.

Introduction

Question

Given a finite algebra \mathbf{A} and its subalgebra \mathbf{B}, is it decidable whether $\mathbf{B} \unlhd \mathbf{A}$?

- This is hard.
- Maróti, 2009: The existence of a near-unanimity term in a finite algebra is decidable.
- Bulín, 2014: The absorption is decidable if \mathbf{A} is finitely related.
- Barto \& Kazda \& Bulín, 2013 (announced): The absorption is decidable (a very complex algorithm).

In semigroups everything becomes easier

In semigroups everything becomes easier

Theorem
Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch).

In semigroups everything becomes easier

Theorem
Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.

In semigroups everything becomes easier

Theorem
Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

- $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$-an absorbing term;

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

- $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$-an absorbing term; x_{i} appears d_{i} times;

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

- $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$-an absorbing term; x_{i} appears d_{i} times;
- $B \ni t\left(a b, b^{k-1}, b^{k-1}, \ldots, b^{k-1}\right) \approx(a b)^{d_{1}}$;

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

- $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$-an absorbing term; x_{i} appears d_{i} times;
- $B \ni t\left(a b, b^{k-1}, b^{k-1}, \ldots, b^{k-1}\right) \approx(a b)^{d_{1}}$;
- choose $r \equiv 1(\bmod k-1), r>(m-1) d_{1}$;

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

- $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$-an absorbing term; x_{i} appears d_{i} times;
- $B \ni t\left(a b, b^{k-1}, b^{k-1}, \ldots, b^{k-1}\right) \approx(a b)^{d_{1}}$;
- choose $r \equiv 1(\bmod k-1), r>(m-1) d_{1}$;
- $B \ni t_{i}=t\left((a b)^{d_{1}}, b^{k-1}, \ldots, b^{k-1},(a b)^{r}, b^{k-1}, \ldots, b^{k-1}\right)$;

In semigroups everything becomes easier

Theorem

Let $\mathbf{A}=(A, \cdot)$ be a semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ if and only if $a b \in B$ and $b a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

Proof (sketch). (\Leftarrow) : Easy.
(\Rightarrow) :

- $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$-an absorbing term; x_{i} appears d_{i} times;
- $B \ni t\left(a b, b^{k-1}, b^{k-1}, \ldots, b^{k-1}\right) \approx(a b)^{d_{1}}$;
- choose $r \equiv 1(\bmod k-1), r>(m-1) d_{1}$;
- $B \ni t_{i}=t\left((a b)^{d_{1}}, b^{k-1}, \ldots, b^{k-1},(a b)^{r}, b^{k-1}, \ldots, b^{k-1}\right)$;
- $B \ni(a b)^{d_{1}\left(r-(m-1) d_{1}\right)} t_{2} t_{3} \cdots t_{m} \approx a b$.

Why are semigroups interesting?

Why are semigroups interesting?

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons \& Krokhin): $\operatorname{CSP}(\Gamma)$ is NP-complete $\Longleftrightarrow \Gamma$ does not admit any wnu polymorphism

Why are semigroups interesting?

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons \& Krokhin): $\operatorname{CSP}(\Gamma)$ is NP-complete $\Longleftrightarrow \Gamma$ does not admit any wnu polymorphism
- Absorption was the key ingredient in many special cases proved so far

Why are semigroups interesting?

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons \& Krokhin): CSP(Г) is NP-complete \Longleftrightarrow 「 does not admit any wnu polymorphism
- Absorption was the key ingredient in many special cases proved so far
- Jeavons, Cohen \& Gyssens, 1997: 「 admits a semilattice polymorphism (idempotent, commutative, associative) $\Rightarrow C S P(\Gamma) \in \mathrm{P}$

Why are semigroups interesting?

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons \& Krokhin): CSP(Г) is NP-complete $\Longleftrightarrow \Gamma$ does not admit any wnu polymorphism
- Absorption was the key ingredient in many special cases proved so far
- Jeavons, Cohen \& Gyssens, 1997: 「 admits a semilattice polymorphism (idempotent, commutative, associative) $\Rightarrow C S P(\Gamma) \in \mathrm{P}$
- We now have a very simple description of the behavior of absorption in semigroups, which might possibly lead to something more general than the result above

Why are semigroups interesting?

- Algebraic Dichotomy Conjecture (Bulatov, Jeavons \& Krokhin): CSP(Г) is NP-complete $\Longleftrightarrow \Gamma$ does not admit any wnu polymorphism
- Absorption was the key ingredient in many special cases proved so far
- Jeavons, Cohen \& Gyssens, 1997: 「 admits a semilattice polymorphism (idempotent, commutative, associative) $\Rightarrow C S P(\Gamma) \in \mathrm{P}$
- We now have a very simple description of the behavior of absorption in semigroups, which might possibly lead to something more general than the result above
- Another motivation: given the very chaotic behavior of absorption in general, it is nice to have a natural class of algebras in which the absorption behaves in a very predictable (but still nontrivial) way. It might be a very useful research direction to discover whether there is a deeper reason for this nice behavior of absorption in semigroups and n-ary semigroups, and whether this reason may help to describe the behavior of absorption in other classes of algebras.

A definition of n-ary semigroup

A definition of n-ary semigroup

Definition

We say that an n-ary operation $f: A^{n} \rightarrow A$ is associative iff

$$
\begin{aligned}
f\left(f\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{n+1}, \ldots, a_{2 n-1}\right) & =f\left(a_{1}, f\left(a_{2}, \ldots, a_{n}, a_{n+1}\right), \ldots, a_{2 n-1}\right) \\
& =\cdots \\
& =f\left(a_{1}, a_{2}, \ldots, f\left(a_{n}, a_{n+1}, \ldots, a_{2 n-1}\right)\right)
\end{aligned}
$$

for every $a_{1}, a_{2}, \ldots, a_{2 n-1} \in A$.

A definition of n-ary semigroup

Definition

We say that an n-ary operation $f: A^{n} \rightarrow A$ is associative iff

$$
\begin{aligned}
f\left(f\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{n+1}, \ldots, a_{2 n-1}\right) & =f\left(a_{1}, f\left(a_{2}, \ldots, a_{n}, a_{n+1}\right), \ldots, a_{2 n-1}\right) \\
& =\cdots \\
& =f\left(a_{1}, a_{2}, \ldots, f\left(a_{n}, a_{n+1}, \ldots, a_{2 n-1}\right)\right)
\end{aligned}
$$

for every $a_{1}, a_{2}, \ldots, a_{2 n-1} \in A$.

Definition

An algebra $\mathbf{A}=(A, f)$, where f is an n-ary associative operation, is called an n-ary semigroup.

A definition of n-ary semigroup

Definition

We say that an n-ary operation $f: A^{n} \rightarrow A$ is associative iff

$$
\begin{aligned}
f\left(f\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{n+1}, \ldots, a_{2 n-1}\right) & =f\left(a_{1}, f\left(a_{2}, \ldots, a_{n}, a_{n+1}\right), \ldots, a_{2 n-1}\right) \\
& =\cdots \\
& =f\left(a_{1}, a_{2}, \ldots, f\left(a_{n}, a_{n+1}, \ldots, a_{2 n-1}\right)\right)
\end{aligned}
$$

for every $a_{1}, a_{2}, \ldots, a_{2 n-1} \in A$.

Definition

An algebra $\mathbf{A}=(A, f)$, where f is an n-ary associative operation, is called an n-ary semigroup.

- Instead of $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ we write $a_{1} a_{2} \cdots a_{n}$ etc.

A possible generalization of the semigroup case

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A}=(A, f)$ be an n-ary semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then the following conditions are equivalent:

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A}=(A, f)$ be an n-ary semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then the following conditions are equivalent:
(1) $\mathbf{B} \unlhd \mathbf{A}$;

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A}=(A, f)$ be an n-ary semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then the following conditions are equivalent:
(1) $\mathbf{B} \unlhd \mathbf{A}$;
(2) $a b^{n-1} \in B$ and $b^{n-1} a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A ;$

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A}=(A, f)$ be an n-ary semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then the following conditions are equivalent:
(1) $\mathbf{B} \unlhd \mathbf{A}$;
(2) $a b^{n-1} \in B$ and $b^{n-1} a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$;
(3) $a_{1} a_{2} \cdots a_{n} \in B$ whenever at least one of $a_{1}, a_{2}, \ldots, a_{n}$ belongs to B, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

A possible generalization of the semigroup case

Conjecture

Let $\mathbf{A}=(A, f)$ be an n-ary semigroup, and let $\mathbf{B} \leqslant \mathbf{A}$. Then the following conditions are equivalent:
(1) $\mathbf{B} \unlhd \mathbf{A}$;
(2) $a b^{n-1} \in B$ and $b^{n-1} a \in B$ for each $a \in A, b \in B$, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$;
(3) $a_{1} a_{2} \cdots a_{n} \in B$ whenever at least one of $a_{1}, a_{2}, \ldots, a_{n}$ belongs to B, and there exists a positive integer $k>1$ such that $a^{k} \approx a$ for each $a \in A$.

- The implications $(2) \Rightarrow(3)$ and $(3) \Rightarrow(1)$ are easy.

Theorem
 The conjecture holds when $|A \backslash B|=1$.

Two nice cases

Theorem

The conjecture holds when $|A \backslash B|=1$.

Definition

We say that an n-ary operation f is commutative iff

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)
$$

for any $a_{1}, a_{2}, \ldots, a_{n}$ and any permutation π of the set $\{1,2, \ldots, n\}$.

Two nice cases

Theorem

The conjecture holds when $|A \backslash B|=1$.

Definition

We say that an n-ary operation f is commutative iff

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)
$$

for any $a_{1}, a_{2}, \ldots, a_{n}$ and any permutation π of the set $\{1,2, \ldots, n\}$.

Theorem

The conjecture holds when f is commutative.

Idempotent ternary semigroups

Idempotent ternary semigroups

Theorem
The conjecture holds when \mathbf{A} is an idempotent ternary semigroup.

Idempotent ternary semigroups

Theorem
The conjecture holds when A is an idempotent ternary semigroup.

Proof (sketch).

Idempotent ternary semigroups

Theorem
The conjecture holds when A is an idempotent ternary semigroup.
Proof (sketch). We need to prove that, assuming $\mathbf{B} \unlhd \mathbf{A}$, for any $a \in A, b \in B$ we have $a b^{2} \in B$ and $b^{2} a \in B$.

Idempotent ternary semigroups

Theorem
The conjecture holds when \mathbf{A} is an idempotent ternary semigroup.
Proof (sketch). We need to prove that, assuming $\mathbf{B} \unlhd \mathbf{A}$, for any $a \in A, b \in B$ we have $a b^{2} \in B$ and $b^{2} a \in B$. The proof consists of nine steps.

Idempotent ternary semigroups

Theorem
The conjecture holds when A is an idempotent ternary semigroup.
Proof (sketch). We need to prove that, assuming $\mathbf{B} \unlhd \mathbf{A}$, for any $a \in A, b \in B$ we have $a b^{2} \in B$ and $b^{2} a \in B$. The proof consists of nine steps.
(1) $u^{2} v u \in B, 2 \nmid|u|, 2| | v \mid \Rightarrow v u \in B$

Idempotent ternary semigroups

Theorem
The conjecture holds when A is an idempotent ternary semigroup.
Proof (sketch). We need to prove that, assuming $\mathbf{B} \unlhd \mathbf{A}$, for any $a \in A, b \in B$ we have $a b^{2} \in B$ and $b^{2} a \in B$. The proof consists of nine steps.
(1) $u^{2} v u \in B, 2 \nmid|u|, 2| | v \mid \Rightarrow v u \in B ; u v u^{2} \in B \Rightarrow u v \in B$

Idempotent ternary semigroups

Theorem

The conjecture holds when \mathbf{A} is an idempotent ternary semigroup.
Proof (sketch). We need to prove that, assuming $\mathbf{B} \unlhd \mathbf{A}$, for any $a \in A, b \in B$ we have $a b^{2} \in B$ and $b^{2} a \in B$. The proof consists of nine steps.
(1) $u^{2} v u \in B, 2 \nmid|u|, 2| | v \mid \Rightarrow v u \in B ; u v u^{2} \in B \Rightarrow u v \in B$
(2) $u b \in B, 2| | u \mid, b \in B \Rightarrow b u \in B$ and vice versa

Idempotent ternary semigroups

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$
- $t\left(a^{\prime} b b, b, b, \ldots, b\right) \in B$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$
- $t\left(a^{\prime} b b, b, b, \ldots, b\right) \in B$
- $a^{\prime} b a^{\prime}=(a b b a b) b(a b b a b)=(a b b)^{3} a b \approx a b b a b=a^{\prime}$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$
- $t\left(a^{\prime} b b, b, b, \ldots, b\right) \in B$
- $a^{\prime} b a^{\prime}=(a b b a b) b(a b b a b)=(a b b)^{3} a b \approx a b b a b=a^{\prime}$
- $t \approx\left(a^{\prime} b b\right)^{\prime} \approx a^{\prime} b b$ or $t \approx\left(a^{\prime} b b\right)^{\prime} a^{\prime} b \approx a^{\prime} b b a^{\prime} b$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$
- $t\left(a^{\prime} b b, b, b, \ldots, b\right) \in B$
- $a^{\prime} b a^{\prime}=(a b b a b) b(a b b a b)=(a b b)^{3} a b \approx a b b a b=a^{\prime}$
- $t \approx\left(a^{\prime} b b\right)^{\prime} \approx a^{\prime} b b$ or $t \approx\left(a^{\prime} b b\right)^{\prime} a^{\prime} b \approx a^{\prime} b b a^{\prime} b$
- $a^{\prime} b b=(a b b a b) b b=a b b a b^{3} \approx a b b a b$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$
- $t\left(a^{\prime} b b, b, b, \ldots, b\right) \in B$
- $a^{\prime} b a^{\prime}=(a b b a b) b(a b b a b)=(a b b)^{3} a b \approx a b b a b=a^{\prime}$
- $t \approx\left(a^{\prime} b b\right)^{\prime} \approx a^{\prime} b b$ or $t \approx\left(a^{\prime} b b\right)^{\prime} a^{\prime} b \approx a^{\prime} b b a^{\prime} b$
- $a^{\prime} b b=(a b b a b) b b=a b b a b^{3} \approx a b b a b$
- $a^{\prime} b b a^{\prime} b=a b b a b^{3} a b b a b b \approx a b b a b a b b a b b$

Idempotent ternary semigroups

(3) $a b b a b \in B, b a b b a \in B$ for any $a \in A, b \in B$

- $a^{\prime}=a b b a b$
- $t\left(a^{\prime} b b, b, b, \ldots, b\right) \in B$
- $a^{\prime} b a^{\prime}=(a b b a b) b(a b b a b)=(a b b)^{3} a b \approx a b b a b=a^{\prime}$
- $t \approx\left(a^{\prime} b b\right)^{\prime} \approx a^{\prime} b b$ or $t \approx\left(a^{\prime} b b\right)^{\prime} a^{\prime} b \approx a^{\prime} b b a^{\prime} b$
- $a^{\prime} b b=(a b b a b) b b=a b b a b^{3} \approx a b b a b$
- $a^{\prime} b b a^{\prime} b=a b b a b^{3} a b b a b b \approx a b b a b a b b a b b$
- $(a b b) a b(a b b)^{2}=a b b a b a b b a b b \in B \Rightarrow a b b a b \in B$

Idempotent ternary semigroups

Idempotent ternary semigroups

(4) $a a b \in B, b a a \in B$, aabaa $\in B$ for any $a \in A, b \in B$

Idempotent ternary semigroups

(4) $a a b \in B, b a a \in B$, aabaa $\in B$ for any $a \in A, b \in B$
(5) whenever $t^{\prime}(x, y)$ is a term such that $t^{\prime}(a, b) \in B$ for all $a \in A, b \in B$, then $b(a b)^{\prime} \in B$, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word $t^{\prime}(a, b)$

Idempotent ternary semigroups

(4) $a a b \in B, b a a \in B$, aabaa $\in B$ for any $a \in A, b \in B$
(5) whenever $t^{\prime}(x, y)$ is a term such that $t^{\prime}(a, b) \in B$ for all $a \in A, b \in B$, then $b(a b)^{\prime} \in B$, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word $t^{\prime}(a, b)$
(6) whenever $b(a b)^{\prime} \in B$ for an integer $I>1$ and some $a \in A$, $b \in B$, then $(a b)^{l-1} a \in B$

Idempotent ternary semigroups

(4) $a a b \in B, b a a \in B$, aabaa $\in B$ for any $a \in A, b \in B$
(5) whenever $t^{\prime}(x, y)$ is a term such that $t^{\prime}(a, b) \in B$ for all $a \in A, b \in B$, then $b(a b)^{\prime} \in B$, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word $t^{\prime}(a, b)$
(6) whenever $b(a b)^{\prime} \in B$ for an integer $I>1$ and some $a \in A$, $b \in B$, then $(a b)^{l-1} a \in B$
(7) $\exists l$ such that $b(a b)^{\prime} \in B$ and $b(a b)^{\prime+1} \in B$ for any $a \in A$, $b \in B$

Idempotent ternary semigroups

(4) $a a b \in B, b a a \in B$, aabaa $\in B$ for any $a \in A, b \in B$
(5) whenever $t^{\prime}(x, y)$ is a term such that $t^{\prime}(a, b) \in B$ for all $a \in A, b \in B$, then $b(a b)^{\prime} \in B$, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word $t^{\prime}(a, b)$
(6) whenever $b(a b)^{\prime} \in B$ for an integer $I>1$ and some $a \in A$, $b \in B$, then $(a b)^{I-1} a \in B$
(7) $\exists l$ such that $b(a b)^{\prime} \in B$ and $b(a b)^{\prime+1} \in B$ for any $a \in A$, $b \in B$
(8) $b a b \in B$ for any $a \in A, b \in B$

Idempotent ternary semigroups

(4) $a a b \in B$, baa $\in B$, aabaa $\in B$ for any $a \in A, b \in B$
(5) whenever $t^{\prime}(x, y)$ is a term such that $t^{\prime}(a, b) \in B$ for all $a \in A, b \in B$, then $b(a b)^{\prime} \in B$, where l is the absolute value of the difference of the number of occurrences of the letter a at the odd, respectively even positions in the word $t^{\prime}(a, b)$
(6) whenever $b(a b)^{\prime} \in B$ for an integer $I>1$ and some $a \in A$, $b \in B$, then $(a b)^{l-1} a \in B$
(7) $\exists /$ such that $b(a b)^{\prime} \in B$ and $b(a b)^{I+1} \in B$ for any $a \in A$, $b \in B$
(8) $b a b \in B$ for any $a \in A, b \in B$
(9) $a b^{2} \in B, b^{2} a \in B$ for any $a \in A, b \in B$

Idempotence is not a real restriction

Idempotence is not a real restriction

Theorem
 Assume that the conjecture holds for all idempotent n-ary semigroups. Then the conjecture holds in general.

