# Reconstructing the topology of polymorphism clones

**Christian Pech** 

TU Dresden

#### AAA90, Novi Sad, June 2015

(joint work with Maja Pech)

Ch. Pech Reconstructing the topology of polymorphism clones

1/19

ъ

★ Ξ → ★ Ξ →

#### **Relational signatures**

A relational signature is a pair  $\underline{\Sigma} = (\Sigma, ar)$ , where

- Σ is a set of relational symbols,
- ar :  $\Sigma \to \mathbb{N} \setminus \{0\}$ .

#### **Relational structures**

- A  $\underline{\Sigma}$ -structure is a pair  $\mathbf{A} = (\mathbf{A}, (\varrho^{\mathbf{A}})_{\varrho \in \Sigma})$ , where
  - A is a set,
  - $\rho^{\mathbf{A}} \subseteq A^{\operatorname{ar}(\rho)}$ , for each  $\rho \in \Sigma$ .

- イヨト イヨト - ヨ

### Clones

$$O^{(n)}_{\mathcal{A}}:=\mathcal{A}^{(\mathcal{A}^n)}, \qquad \qquad O_{\mathcal{A}}:=igcup_{n\in\mathbb{N}\setminus\{0\}}O^{(n)}_{\mathcal{A}},$$

#### Projections

 $e_i^n \in O_A^{(n)}$ :  $(x_1, \ldots, x_n) \mapsto x_i$  (where  $n \in \mathbb{N} \setminus \{0\}, 1 \le i \le n$ ).

 $J_A$  denotes the set of all projections on A.

#### Clones

$$C \subseteq O_A$$
 is called clone if   
  $J_A \subset C$ .

$$\bigcirc J_A \subseteq$$

it is closed with respect to composition.

#### Clone isomorphisms

A clone isomorphism between clones C and D is a bijection that preserves projections and composition.

# Polymorphism clones

Given a relational signature  $\underline{\Sigma}$ , and a  $\underline{\Sigma}$ -structure **A**.

#### Polymorphisms

 $f \in O_A^{(n)}$  is called *n*-ary polymorphism of **A** if

$$f: \mathbf{A}^n \to \mathbf{A}.$$

The set of *n*-ary polymorphisms of **A** is denoted by  $Pol^{(n)}(\mathbf{A})$ .

#### Polymorphism clones

$$Pol(\mathbf{A}) := \bigcup_{n \in \mathbb{N} \setminus \{0\}} Pol^{(n)}(\mathbf{A})$$
 is a clone.  
It is called the polymorphism clone of  $\mathbf{A}$ 

★ Ξ → ★ Ξ →

### **Topology on Clones**

Given a set A, equipped with the discrete topology.

# Topology on $O_A^{(n)}$

• for every finite  $M \subseteq A^n$  and for every  $h: M \to A$ :

$$\Phi_{M,h} := \{ f \in O_A^{(n)} \mid f \upharpoonright_M = h \}.$$

• together all  $\Phi_{M,h}$  form the basis of the Tychonoff topology on  $O_A^{(n)}$ ,

#### Topology on O<sub>A</sub>

- $O_A$  can be considered as the topological sum of the  $O_A^{(n)}$ .
- Composition of functions is continuous.

ъ

프 에 관 프 어 - - -

### Topology on clones (cont.)

#### Topology on clones

- Every clone C ≤ O<sub>A</sub> can be considered as topological subspace of O<sub>A</sub>.
- Thus, every clone is canonically equipped with a topology, with respect to which the composition is continuous.

### Metrization of Tychonoff topology on $O_A^{(n)}$ when $|A| = \omega$

• Let  $\overline{w} = (\overline{a}_i)_{i < \omega}$  be an enumeration of  $A^n$ . • Define  $D_{\overline{w}} : O_A^{(n)} \times O_A^{(n)} \to \omega + 1$ :  $D_{\overline{w}}(f,g) := \begin{cases} \min\{i \in \omega \mid f(\overline{a}_i) \neq g(\overline{a}_i)\} & f \neq g \\ \omega & f = g. \end{cases}$ 

• Then the following defines an ultrametric on  $O_A^{(n)}$ :

$$d_{\overline{w}}(f,g):=egin{cases} 2^{-D_n(f,g)} & f
eq g \ 0 & f=g. \end{cases}$$

# Reconstruction and Automatic homeomorphicity

Let  $C \leq O_A$  be a closed clone.

#### Definition

*C* has reconstruction if whenever *C* is isomorphic to another closed subclone  $D \le O_A$ , then *C* and *D* are isomorphic as topological clones.

Definition (Bodirsky, Pinsker, Pongrácz)

C has automatic homeomorphicity if every clone isomorphism from C to another closed clone on A is a homeomorphism.

#### Remark

The definition of reconstruction and automatic homeomorphicity for permutation groups and transformation monoids goes analogously.

#### Theorem (Bodirsky, Pinsker, Pongrácz)

The following clones have automatic homeomorphicity:

- every closed clone on A that contains  $O_A^{(1)}$ ,
- 2 the polymorphism clone of the Rado graph,
- the Horn-clone

Here the Horn clone is the smallest clone on a countable set A that contains all injective functions from  $O_A$ .

Let U be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

#### Definition

A class C of structures has the HAP if for all  $A, B, C \in C, ...$ 



Let U be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

### Definition

A class C of structures has the HAP if for all  $A, B, C \in C, ...$ 



Let U be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

#### Definition

A class C of structures has the HAP if for all  $A, B, C \in C, ...$ 



Let U be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

#### Example

The following structures have automatic homeomorphicity:

- the Rado graph with all loops added,
- the universal homogeneous digraph with all loops added.

Slightly changing the argument, it can be shown that also the countable generic poset  $(\mathbb{P}, \leq)$  has automatic homeomorphicity.

Let U be a countable homogeneous relational structure. If

- Aut(U) acts oligomorphically and transitively on U,
- Aut(U) has automatic homeomorphicity,
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

#### Example

The following structures have automatic homeomorphicity:

- the Rado graph (already known from BPP),
- the universal homogeneous digraph,
- the universal homogeneous k-uniform hypergraph (for all k ≥ 2).

# Sketch of the proof

### Let

- C := Pol(U),
- $D \leq O_U$  a closed clone,
- $h: C \rightarrow D$  a clone isomorphism.

#### Structure of the proof

h is continuous:

- $\overline{\text{Aut}(\mathbf{U})}$  has automatic homeomorphicity.
- Thus,  $h_{Aut}(\mathbf{U})$  is continuous.
- We need to "lift" continuity from  $h_{\overline{Aut}(\mathbf{U})}$  to h.
- This is achieved using strong gate coverings.

h is open:

• This uses the topological Birkhoff Theorem by Bodirsky and Pinsker.

Lemma (Bodirsky, Pinsker, Pongrácz)

Given

- U,V countable relational structures,
- $h : Pol(\mathbf{U}) \to Pol(\mathbf{V})$ , such that  $h \upharpoonright_{\overline{Aut(\mathbf{U})}}$  is continuous.

If Pol(U) has a strong gate covering, then h is continuous.

But what is a strong gate covering?

(\* E) \* E)

#### Definition (Bodirsky, Pinsker, Pongrácz)

Let *A* be countable,  $C \le O_A$ , *G* be the group of units in  $C^{(1)}$ . A strong gate covering of *C* consists of

- an open covering  $\mathcal{U}$  of C,
- functions  $f_U \in U$ , for each  $U \in U$ ,

such that for all  $U \in U$  and for all Cauchy-sequences  $(g^j)_{j \in \omega}$  of elements of U of the same arity n there exist

- a Cauchy-sequence  $(\alpha^j)_{j\in\omega}$  in  $\overline{G}$ ,
- Cauchy-sequences  $(\beta_i^j)_{j\in\omega}$  (1  $\leq i \leq n$ ) in  $\overline{G}$ ,

such that for all  $(x_1, \ldots, x_n) \in A^n$  we have

$$g^{j}(x_{1},\ldots,x_{n})=\alpha_{j}(f_{U}(\beta_{1}^{j}(x_{1}),\ldots,\beta_{n}^{j}(x_{n}))).$$

★ Ξ → ★ Ξ →

# Existence of strong gate coverings

### Which structures have strong gate coverings?

#### Proposition (CP+MP)

Let U be a countable homogeneous structure. If

- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has a strong gate covering

#### Remark

The proof uses axiomatic Fraïssé-theory to show the existence of universal homogeneous polymorphisms of every arity. From this the existence of a strong gate covering follows at once.

Thus, the first part of the proof is complete.

### Proposition (CP+MP)

Let U be a countable homogeneous relational structure. If

- Aut(U) acts oligomorphically and transitively on U,
- U has quantifier elimination for primitive positive formulae (QEPPF),
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,

then every continuous isomorphism from  $Pol(\mathbf{U})$  to another closed clone  $D \leq O_U$  is a homeomorphism.

#### Remark

- The proof applies a neat idea from the proof of automatic homeomorphicity for the polymorphism clone of the Rado-graph in BPP.
- It uses the topological Birkhoff Theorem due to Bodirsky and Pinsker.

It only remains, to show QEPPF.

First observation:

#### Theorem (Romov)

A countable  $\omega$ -categorical relational structure **U** has quantifier elimination for primitive positive formulae if and only if it is polymorphism homogeneous.

#### Remark

**U** is polymorphism homogeneous if every partial polymorphism of **U** with finite domain extends to a global polymorphism.

(E) (E)

# Showing QEPPF (2)

#### Second observation:

#### Lemma (folklore)

**U** is polymorphism homogeneous if and only if  $\mathbf{U}^n$  is homomorphism homogeneous, for every  $n \ge 1$ .

#### Third observation:

#### Theorem (Dolinka)

A countable homogeneous structure U is homomorphism homogeneous if and only if Age(U) has the HAP.

#### Fourth obervation

#### Lemma (folklore)

Retracts of homomorphism homogeneous structures are homomorphism homogeneous, too.

< ロ > < 同 > < 三 >

э

#### Proposition (CP+MP)

Let U be a countable homogeneous structure. If

- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then  $\mathbf{U}^n$  is isomorphic to a retract of  $\mathbf{U}$ , for every n > 1.

#### Remark

The proof of this uses axiomatic Fraïssé-theory in order to show the existence of universal homogeneous retractions from  $\mathbf{U}$  to  $\mathbf{U}^n$ .

#### This finishes the second part of the proof.



#### M. Bodirsky and M. Pinsker.

Topological Birkhoff.

*Trans. Amer. Math. Soc.*, 367(4):2527–2549, 2015. doi:10.1090/S0002-9947-2014-05975-8.



M. Bodirsky, M. Pinsker, and A. Pongrácz.

Reconstructing the topology of clones. *ArXiv e-prints*, Dec. 2013. arXiv:1312.7699.



#### I. Dolinka.

The Bergman property for endomorphism monoids of some Fraïssé limits. Forum Math., 26(2):357–376, 2014. doi:10.1515/form.2011.153.



#### C. Pech and M. Pech.

Universal homomorphisms, universal structures, and the polymorphism clones of homogeneous structures. *ArXiv e-prints*, Feb. 2013.

arXiv:1302.5692.



C. Pech and M. Pech.

On polymorphism-homogeneous relational structures and their clones. *Algebra Universalis*, 73(1):53–85, 2015.

doi:10.1007/s00012-014-0310-3.



#### C. Pech and M. Pech.

Polymorphism clones of homogeneous structures (universal homogeneous polymorphisms and automatic homeomorphicity).

ArXiv e-prints, Feb. 2015.

arXiv:1502.07769.



#### B.A. Romov.

#### Positive primitive structures.

J. Mult.-Valued Logic Soft Comput, 17(5-6): 581-589, 2011.

э

イロト イポト イヨト イヨト