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Relational structures

Relational signatures

A relational signature is a pair Σ = (Σ,ar), where
Σ is a set of relational symbols,
ar : Σ→ N \ {0}.

Relational structures

A Σ-structure is a pair A = (A, (%A)%∈Σ), where
A is a set,
%A ⊆ Aar(%), for each % ∈ Σ.
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Clones

O(n)
A := A(An), OA :=

⋃
n∈N\{0}

O(n)
A ,

Projections

en
i ∈ O(n)

A : (x1, . . . , xn) 7→ xi (where n ∈ N \ {0}, 1 ≤ i ≤ n).

JA denotes the set of all projections on A.

Clones
C ⊆ OA is called clone if

1 JA ⊆ C,
2 it is closed with respect to composition.

Clone isomorphisms
A clone isomorphism between clones C and D is a bijection
that preserves projections and composition.

Ch. Pech Reconstructing the topology of polymorphism clones 3 / 19



Polymorphism clones

Given a relational signature Σ, and a Σ-structure A.

Polymorphisms

f ∈ O(n)
A is called n-ary polymorphism of A if

f : An → A.

The set of n-ary polymorphisms of A is denoted by Pol(n)(A).

Polymorphism clones

Pol(A) :=
⋃

n∈N\{0}
Pol(n)(A) is a clone.

It is called the polymorphism clone of A.
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Topology on Clones

Given a set A, equipped with the discrete topology.

Topology on O(n)
A

for every finite M ⊆ An and for every h : M → A:

ΦM,h := {f ∈ O(n)
A | f �M = h}.

together all ΦM,h form the basis of the Tychonoff topology
on O(n)

A ,

Topology on OA

OA can be considered as the topological sum of the O(n)
A .

Composition of functions is continuous.
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Topology on clones (cont.)

Topology on clones

Every clone C ≤ OA can be considered as topological
subspace of OA.
Thus, every clone is canonically equipped with a topology,
with respect to which the composition is continuous.

Metrization of Tychonoff topology on O(n)
A when |A| = ω

Let w = (ai)i<ω be an enumeration of An.
Define Dw : O(n)

A ×O(n)
A → ω + 1:

Dw (f ,g) :=

{
min{i ∈ ω | f (ai) 6= g(ai)} f 6= g
ω f = g.

Then the following defines an ultrametric on O(n)
A :

dw (f ,g) :=

{
2−Dn(f ,g) f 6= g
0 f = g.
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Reconstruction and Automatic homeomorphicity

Let C ≤ OA be a closed clone.

Definition
C has reconstruction if whenever C is isomorphic to another
closed subclone D ≤ OA, then C and D are isomorphic as
topological clones.

Definition (Bodirsky, Pinsker, Pongrácz)

C has automatic homeomorphicity if every clone isomorphism
from C to another closed clone on A is a homeomorphism.

Remark
The definition of reconstruction and automatic
homeomorphicity for permutation groups and transformation
monoids goes analogously.
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Some examples

Theorem (Bodirsky, Pinsker, Pongrácz)

The following clones have automatic homeomorphicity:
1 every closed clone on A that contains O(1)

A ,
2 the polymorphism clone of the Rado graph,
3 the Horn-clone

Here the Horn clone is the smallest clone on a countable set A
that contains all injective functions from OA.
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Some examples

Theorem (CP+MP)
Let U be a countable homogeneous relational structure. If

1 Pol(U) contains all constant functions,
2 Age(U) has the free amalgamation property,
3 Age(U) is closed with respect to finite products,
4 Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Definition
A class C of structures has the HAP if for all A,B,C ∈ C,. . .

B

D

A C.
g

ι
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Some examples

Theorem (CP+MP)
Let U be a countable homogeneous relational structure. If

1 Pol(U) contains all constant functions,
2 Age(U) has the free amalgamation property,
3 Age(U) is closed with respect to finite products,
4 Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Example
The following structures have automatic homeomorphicity:

the Rado graph with all loops added,
the universal homogeneous digraph with all loops added.

Slightly changing the argument, it can be shown that also the
countable generic poset (P,≤) has automatic homeomorphicity.
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A new result

Theorem (CP+MP)
Let U be a countable homogeneous relational structure. If

1 Aut(U) acts oligomorphically and transitively on U,
2 Aut(U) has automatic homeomorphicity,
3 Age(U) has the free amalgamation property,
4 Age(U) is closed with respect to finite products,
5 Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Example
The following structures have automatic homeomorphicity:

the Rado graph (already known from BPP),
the universal homogeneous digraph,
the universal homogeneous k -uniform hypergraph (for all
k ≥ 2).
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Sketch of the proof

Let
C := Pol(U),
D ≤ OU a closed clone,
h : C → D a clone isomorphism.

Structure of the proof
h is continuous:

Aut(U) has automatic homeomorphicity.
Thus, h�Aut(U) is continuous.
We need to “lift” continuity from h�Aut(U) to h.
This is achieved using strong gate coverings.

h is open:

This uses the topological Birkhoff Theorem by
Bodirsky and Pinsker.
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Lifting the continuity

Lemma (Bodirsky, Pinsker, Pongrácz)

Given
U,V countable relational structures,
h : Pol(U)→ Pol(V), such that h�Aut(U) is continuous.

If Pol(U) has a strong gate covering, then h is continuous.

But what is a strong gate covering?
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Strong gate coverings

Definition (Bodirsky, Pinsker, Pongrácz)

Let A be countable, C ≤ OA, G be the group of units in C(1).
A strong gate covering of C consists of

an open covering U of C,
functions fU ∈ U, for each U ∈ U ,

such that for all U ∈ U and for all Cauchy-sequences (g j)j∈ω of
elements of U of the same arity n there exist

a Cauchy-sequence (αj)j∈ω in G,
Cauchy-sequences (β j

i )j∈ω (1 ≤ i ≤ n) in G,
such that for all (x1, . . . , xn) ∈ An we have

g j(x1, . . . , xn) = αj(fU(β j
1(x1), . . . , β j

n(xn))).
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Existence of strong gate coverings

Which structures have strong gate coverings?

Proposition (CP+MP)
Let U be a countable homogeneous structure. If

1 Age(U) has the free amalgamation property,
2 Age(U) is closed with respect to finite products,
3 Age(U) has the HAP,

then Pol(U) has a strong gate covering

Remark
The proof uses axiomatic Fraïssé-theory to show the existence
of universal homogeneous polymorphisms of every arity. From
this the existence of a strong gate covering follows at once.

Thus, the first part of the proof is complete.
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How to obtain openness?

Proposition (CP+MP)
Let U be a countable homogeneous relational structure. If

1 Aut(U) acts oligomorphically and transitively on U,
2 U has quantifier elimination for primitive positive formulae

(QEPPF),
3 Age(U) has the free amalgamation property,
4 Age(U) is closed with respect to finite products,

then every continuous isomorphism from Pol(U) to another
closed clone D ≤ OU is a homeomorphism.

Remark
The proof applies a neat idea from the proof of automatic
homeomorphicity for the polymorphism clone of the
Rado-graph in BPP.
It uses the topological Birkhoff Theorem due to Bodirsky
and Pinsker.
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Showing QEPPF

It only remains, to show QEPPF.

First observation:

Theorem (Romov)
A countable ω-categorical relational structure U has quantifier
elimination for primitive positive formulae if and only if it is
polymorphism homogeneous.

Remark
U is polymorphism homogeneous if every partial polymorphism
of U with finite domain extends to a global polymorphism.
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Showing QEPPF (2)

Second observation:

Lemma (folklore)

U is polymorphism homogeneous if and only if Un is
homomorphism homogeneous, for every n ≥ 1.

Third observation:

Theorem (Dolinka)
A countable homogeneous structure U is homomorphism
homogeneous if and only if Age(U) has the HAP.

Fourth obervation

Lemma (folklore)
Retracts of homomorphism homogeneous structures are
homomorphism homogeneous, too.
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Showing QEPPF (3)

Proposition (CP+MP)
Let U be a countable homogeneous structure. If

1 Age(U) has the free amalgamation property,
2 Age(U) is closed with respect to finite products,
3 Age(U) has the HAP,

then Un is isomorphic to a retract of U, for every n > 1.

Remark
The proof of this uses axiomatic Fraïssé-theory in order to
show the existence of universal homogeneous retractions from
U to Un.

This finishes the second part of the proof.
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