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Plactic monoid via Knuth relations

Definition
Let An be the finite ordered alphabet {1 < 2 < . . . < n}.
LetR be the set of defining relations:

zxy = xzy and yzx = yxz x < y < z,

xyx = xxy and xyy = yxy x < y.

The Plactic monoid Pl(An) is the monoid defined by the presentation
〈An|R〉.

That is, Pl(An) = A∗n/ ∼ where ∼ is the smallest congruence on the free
monoid A∗n containingR.

I We call ∼ the Plactic congruence. The relations in this presentation are
called the Knuth relations.



The Plactic monoid

I Has origins in work of Schensted (1961) and Knuth (1970) concerned
with combinatorial problems on Young tableaux.

I Later studied in depth by Lascoux and Shützenberger (1981).

Due to close relations to Young tableaux, has become a tool in several
aspects of representation theory and algebraic combinatorics.

T =

1 1 1 2 4
2 2 3
4 5 5
6 8

←→ w(T) = 4213512581246

Fact: The set of word readings of tableaux is a set of normal forms for the
elements of the Plactic monoid. So Pl(An) is the monoid of tableaux:

Elements The set of all tableaux over An = {1 < 2 < · · · < n}.
Products Computed using Schensted insertion algorithm.



Crystals

1

1Fig 8.4 from Hong and Kang’s book An introduction to quantum groups and crystal bases.



Crystal graphs
(following Kashiwara and Nakashima (1994))

Idea: Define a directed labelled digraph ΓAn with the properties:
I Vertex set = A∗n
I Each directed edge is labelled by a symbol from the label set

I = {1, 2, . . . , n− 1}.
I For each vertex u ∈ A∗n every i ∈ I there is at most one directed edge

labelled by i leaving u, and there is at most one directed edge labelled
by i entering u,

u vi
, w ui

I If u vi
then |u| = |v|, so words in the same component have

the same length as each other. In particular, connected components are
all finite.



Building the crystal graph ΓAn

An = {1 < 2 < . . . < n}

We begin by specifying structure on the words of length one

1 2 . . . n− 1 n1 2 n − 2 n − 1

This is known as a Crystal basis.

Kashiwara operators on letters
For each i ∈ {1, . . . , n− 1} we define partial maps ẽi and f̃i on the letters An

called the Kashiwara crystal graph operators. For each edge

a b
i

,

we define f̃i(a) = b and ẽi(b) = a.



Kashiwara operators on words
Let u ∈ A∗n and i ∈ I.

I Are ẽi(u) or f̃i(u) defined? If so what words do we obtain?

Example with A3 = {1 < 2 < 3}

1 2 3
1 2

a f̃i(a)
i

,
ẽi(b) b

i

Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2

+ + + +
− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f̃2(u)
3 2 2 1 2 3 1 3 2 3 2 = ẽ2(u)
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ẽi(b) b

i

Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +

− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f̃2(u)
3 2 2 1 2 3 1 3 2 3 2 = ẽ2(u)
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The crystal graph ΓAn

Definition
The crystal graph ΓAn is the directed labelled graph with:

I Vertex set: A∗n
I Directed labelled edges: for u ∈ A∗n

u f̃i(u)
i

,
ẽi(u) ui

Note: When defined ẽi(f̃i(u)) = u and f̃i(ẽi(u)) = u.



Crystal graph components for A3 = {1 < 2 < 3}

Word length one

1 2 3
1 2

Word length two

11 12 13

21 22 23

31 32 33

2

11

1

2

1 2

2
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Crystal graph components for A3 = {1 < 2 < 3}

Word length three

112

113 212

213 312

223 313

323

2

1

1

2

1

2

2

1

121

131 122

231 132

232 133

233

2

1

1

2

1

2

2

1



Plactic monoid via crystals

Definition: Two connected components B(w) and B(w′) of ΓAn are
isomorphic if there is a label-preserving digraph isomorphism
f : B(w)→ B(w′).

Fact: In ΓAn if B(w) ∼= B(w′) then there is a unique isomorphism
f : B(w)→ B(w′).

Theorem (Kashiwara and Nakashima (1994))
Let ΓAn be the crystal graph with crystal basis

1 2 . . . n− 1 n1 2 n − 2 n − 1

Define a relation ∼ on A∗n by

u ∼ w⇔ ∃ an isomorphism f : B(u)→ B(w) with f (u) = w.

Then∼ is the Plactic congruence and Pl(An) = A∗n/ ∼ is the Plactic monoid.
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Where do crystals come from?

J. Hong, S.-J. Kang,
Introduction to Quantum Groups and Crystal Bases.
Stud. Math., vol. 42, Amer. Math. Soc., Providence, RI, 2002.

I Take a “nice” Lie algebra g e.g. a finite-dimensional semisimple Lie
algebra.

I Crystal bases are bases of Uq(g)-modules satisfying certain axioms.
I Uq(g) = quantum deformation of universal enveloping algebra U(g)

(Drinfeld and Jimbo (1985).

I Every crystal basis has the structure of a coloured digraph (called a
crystal graph). The structure of these coloured digraphs has been
explicitly determined for certain semisimple Lie algebras (special
linear, special orthogonal, symplectic, some exceptional types).

I Crystal constructed using Kashiwara operators is a combinatorial tool
for studying representations of Uq(g).



Crystal bases and crystal monoids
Lie algebra Crystal basis Monoid

type

An: sln+1
1 2 . . . n− 1 n1 2 n − 2 n − 1

Pl(An)

Bn: so2n+1 1 2 . . . n 0 n . . . 2 1
1 2 n − 1 n n n − 1 2 1

Pl(Bn)

Cn: sp2n
1 2 . . . n n . . . 2 1

1 2 n − 1 n n − 1 2 1
Pl(Cn)

Dn: so2n

1 2 . . . n− 1

n

n

n− 1 . . . 2 1
1 2 n − 2

n − 1

n

n

n − 1

n − 2 2 1

Pl(Dn)

G2
1 2 3 0 3 2 1

1 2 1 1 2 1
Pl(G2)



Known results and our interest

Known results on crystals An, Bn, Cn, Dn, or G2 and their crystal monoids:

1. Crystal bases - combinatorial description Kashiwara and Nakashima
(1994).

2. Tableaux theory and Schensted-type insertion algorithms - Kashiwara
and Nakashima (1994), Lecouvey (2002, 2003, 2007).

3. Finite presentations for Pl(X) via Knuth-type relations - Lecouvey
(2002, 2003, 2007).

Theory we have been developing for these monoids:

4. Finite complete rewriting systems
I Finite presentation with ordered relations u →R v where each word

converges w →∗
R w to unique normal form.

5. Automatic structures
I Regular language of normal forms such that ∀a ∈ A ∃ a finite automaton

recognising pairs of normal forms that differ by multiplication by a.



Our results

A. J. Cain, R. D. Gray, A. Malheiro
Crystal bases, finite complete rewriting systems, and biautomatic structures for Plactic
monoids of types An, Bn, Cn, Dn, and G2.
arXiv:math.GR/1412.7040, 50 pages.

Theorem
For any X ∈ {An,Bn,Cn,Dn,G2}, there is a finite complete rewriting system
(Σ,T) that presents Pl(X).

Theorem
The monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and Pl(G2) are all biautomatic.

Corollary
The monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and Pl(G2) all have word
problem solvable in quadratic time.



Current and future work

I Further develop the theory of crystal monoids in general
I We can obtain other examples (e.g. bicyclic monoid is a crystal monoid).
I They all have decidable word problem.
I Under what conditions do they admit finite complete rewriting systems /

are automatic?
I What do our results say about the Plactic algebras of Littelmann?

P. Littelmann,
A Plactic Algebra for Semisimple Lie Algebras.
Advances in Mathematics 124 (1996), 312–331.

I Investigate how our results might be applied to give new computational
tools for working with crystals (e.g. using rewriting systems / finite
automata to compute with crystals).


