Free medial quandles

Přemysl Jedlička
with Agata Pilitowska, David Stanovský, Anna Zamojska-Dzienio

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in Prague

5th June 2015
Novi Sad
Faculty of
Engineering

Definition of quandles

Definition

A groupoid $(Q, *)$ is called a quandle, if it satisfies

- $x * x=x$,
- $x *(y * z)=(x * y) *(x * z)$,
- $\forall x, z \exists!y ; \quad x * y=z$.
(idempotency) (left distributivity) (left quasigroup)

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Definition of quandles

Definition

A groupoid $(Q, *)$ is called a quandle, if it satisfies

- $x * x=x$,
- $x *(y * z)=(x * y) *(x * z)$,
- $\forall x, z \exists!y ; \quad x * y=z$.
(idempotency) (left distributivity) (left quasigroup)

Theorem (D. Joyce)

The knot quandle is a classifying invariant of knots.

Properties of quandles

Examples of quandles

Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=a \cdot b \cdot a^{-1}$

Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set A with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Examples of quandles

Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=a \cdot b \cdot a^{-1}$.

Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set A with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Examples of quandles

Example (Right zero band)

The groupoid $(Q, *)$ with the operation $x * y=y$.

Example (Group conjugation)

Let (G, \cdot) be a group and let $a * b=a \cdot b \cdot a^{-1}$.

Definition

Let $(A,+)$ be an abelian group and $f \in \operatorname{Aut}(A)$. The set A with the operation

$$
x * y=(1-f)(x)+f(y)
$$

forms a quandle called affine and denoted by $\operatorname{Aff}(A, f)$.

Example of a free quandle

Definition

A groupoid Q is called medial if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

and involutory if it satisfies

$$
x *(x * y)=y .
$$

Theorem (D. Joyce)
Let $n \in \mathbb{N}$ and $Q=\operatorname{Aff}\left(\mathbb{Z}^{n},-1\right)$. Let
$F=\{u \in Q$; at most one coordinate of u is odd $\}$.
Then F is a subquandle of Q which is a free $n+1$ generated
involutory medial quandle over

Example of a free quandle

Definition

A groupoid Q is called medial if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

and involutory if it satisfies

$$
x *(x * y)=y .
$$

Theorem (D. Joyce)
Let $n \in \mathbb{N}$ and $Q=\operatorname{Aff}\left(\mathbb{Z}^{n},-1\right)$. Let

$$
F=\{u \in Q ; \text { at most one coordinate of } u \text { is odd }\} .
$$

Then F is a subquandle of Q which is a free $n+1$ generated involutory medial quandle over

$$
(0, \ldots, 0),(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1) .
$$

Left translations

Definition

Let $(Q, *)$ be a groupoid. The mapping $L_{x}: a \mapsto x * a$ is called the left translation by x.

Definition

A groupoid Q is called a quandle if it satisfies

- L_{x} is an endomorphism, for each $x \in Q$,
(left distributivity)
- L_{x} is a permutation, for each $x \in Q$, (left quasigroup) - x is a fixed point of L_{x}, for each $x \in Q$.

Left translations

Definition

Let $(Q, *)$ be a groupoid. The mapping $L_{x}: a \mapsto x * a$ is called the left translation by x.

Definition

A groupoid Q is called a quandle if it satisfies

- L_{x} is an endomorphism, for each $x \in Q$,
- L_{x} is a permutation, for each $x \in Q$,
- x is a fixed point of L_{x}, for each $x \in Q$.
(left distributivity) (left quasigroup) (idempotency)

Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

```
Proposition
    e IMM1+(Q)'}\triangleleft\operatorname{Dis}(Q)\unlhd\operatorname{LMlt}(Q
    - the group LMlt(Q)/ Dis(Q) is cyclic,
    - the natural actions of LMlt(Q) and Dis(Q) on Q have the
    same orbits.
```


Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group LMlt(Q)/Dis(Q) is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Permutation groups

Definitions

- The left multiplication group of Q is the permutation group $\operatorname{LMlt}(Q)=\left\langle L_{x} ; x \in Q\right\rangle$.
- The displacement group of Q is the permutation group $\operatorname{Dis}(Q)=\left\langle L_{x} L_{y}^{-1} ; x, y \in Q\right\rangle$.

Proposition

- $\operatorname{LMlt}(Q)^{\prime} \unlhd \operatorname{Dis}(Q) \unlhd \operatorname{LMlt}(Q)$,
- the group $\operatorname{LMlt}(Q) / \operatorname{Dis}(Q)$ is cyclic,
- the natural actions of $\operatorname{LMlt}(Q)$ and $\operatorname{Dis}(Q)$ on Q have the same orbits.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

\square
Proposition (P.J., A.P., D.S., A.Z.-D.)
A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian. Moreover, in such a case $\operatorname{Dis}(Q)$ can be naturally endowed with a structure of a $\mathbb{Z}\left[x, x^{-1}\right]$-module.

Proposition (P.J., A.P., D.S., A.Z.-D.)

Every orbit Qe of a medial quandle is affine of form
$\left(\operatorname{Dis}(Q) / \operatorname{Dis}(Q)_{e}, x\right)$, for any e in Qe.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Proposition (P.J., A.P., D.S., A.Z.-D.)

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian. Moreover, in such a case $\operatorname{Dis}(Q)$ can be naturally endowed with a structure of a $\mathbb{Z}\left[x, x^{-1}\right]$-module.

Proposition (P.J., A.P., D.S., A.Z.-D.)

Every orbit Qe of a medial quandle is affine of form
$\left(\operatorname{Dis}(Q) / \operatorname{Dis}(Q)_{e}, x\right)$, for any e in $Q e$.

Medial quandles

Definition

A groupoid is called medial, if it satisfies

$$
(x * y) *(u * z)=(x * u) *(y * z)
$$

Proposition (P.J., A.P., D.S., A.Z.-D.)

A quandle is medial if and only if $\operatorname{Dis}(Q)$ is abelian. Moreover, in such a case $\operatorname{Dis}(Q)$ can be naturally endowed with a structure of a $\mathbb{Z}\left[x, x^{-1}\right]$-module.

Proposition (P.J., A.P., D.S., A.Z.-D.)

Every orbit Qe of a medial quandle is affine of form
$\left(\operatorname{Dis}(Q) / \operatorname{Dis}(Q)_{e}, x\right)$, for any e in $Q e$.

Free medial quandles

Theorem (P.J., A.P., D.S., A.Z.-D.)

Let Q be a medial quandle generated by a subset X. Then Q is free over X if and only if, for each $e \in Q$,

- \mid Qe $\cap X \mid=1$,
- the action of $\operatorname{Dis}(Q)$ on Qe is free,
- $\operatorname{Dis}(Q)$ is a free $\mathbb{Z}\left[x, x^{-1}\right]$-module of $\operatorname{rank}|X|-1$.

Construction of free medial quandles

$$
1_{i}= \begin{cases}\underbrace{(0,0, \ldots, 0,1}_{i \times}, 0, \ldots, 0), & \text { for } i>0, \\ (0, \ldots, 0), & \text { for } i=0\end{cases}
$$

Theorem (P.J., A.P., D.S., A.Z.-D.)
Let $n \in \mathbb{N}$ and let $Q=\operatorname{Aff}\left(\mathbb{Z}\left[x, x^{-1}\right]^{n}, x\right)$. Let

$$
F=\left\{\left(f_{i}\right)_{1 \leqslant i \leqslant n} \in Q ; \exists 0 \leqslant j \leqslant n ;\left(f_{i}\right)_{1 \leqslant i \leqslant n} \equiv 1_{j} \quad(\bmod (x-1))\right\} .
$$

Then F is a free medial quandle over $\{1 ; 0 \leqslant i \leqslant n\}$.

Construction of free medial quandles

$$
1_{i}= \begin{cases}\underbrace{(0,0, \ldots, 0,1}_{i \times}, 0, \ldots, 0), & \text { for } i>0, \\ (0, \ldots, 0), & \text { for } i=0\end{cases}
$$

Theorem (P.J., A.P., D.S., A.Z.-D.)
Let $n \in \mathbb{N}$ and let $Q=\operatorname{Aff}\left(\mathbb{Z}\left[x, x^{-1}\right]^{n}, x\right)$. Let

$$
F=\left\{\left(f_{i}\right)_{1 \leqslant i \leqslant n} \in Q ; \exists 0 \leqslant j \leqslant n ;\left(f_{i}\right)_{1 \leqslant i \leqslant n} \equiv 1_{j} \quad(\bmod (x-1))\right\} .
$$

Then F is a free medial quandle over $\{1 ; 0 \leqslant i \leqslant n\}$.

Symmetric quandles

Definition

A quandle Q is called m-symmetric, for some $n \in \mathbb{N}$, if $L_{e}^{m}=1$, for each $e \in Q$, i.e., if it satisfies the identity

$$
\underbrace{x \cdot(x \cdots(x}_{m \times} \cdot y) \cdots)=y .
$$

Proposition (P.J., A.P., D.S., A.Z.-D.)

A medial quandle Q is m-symmetric if and only if
$\left(x^{m-1}+x^{m-2}+\cdots+x+1\right) \cdot \operatorname{Dis}(Q)=0$. In this case $\operatorname{Dis}(Q)$ is a $\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)$-module.

Symmetric quandles

Definition

A quandle Q is called m-symmetric, for some $n \in \mathbb{N}$, if $L_{e}^{m}=1$, for each $e \in Q$, i.e., if it satisfies the identity

$$
\underbrace{x \cdot(x \cdots(x}_{m \times} \cdot y) \cdots)=y .
$$

Proposition (P.J., A.P., D.S., A.Z.-D.)

A medial quandle Q is m-symmetric if and only if $\left(x^{m-1}+x^{m-2}+\cdots+x+1\right) \cdot \operatorname{Dis}(Q)=0$. In this case $\operatorname{Dis}(Q)$ is a $\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)$-module.

Free symmetric medial quandles

Theorem (P.J., A.P., D.S., A.Z.-D.)

Let Q be a m-symmetric medial quandle generated by a subset X. Then Q is free over X if and only if, for each $e \in Q$,

- $|Q e \cap X|=1$,
- the action of $\operatorname{Dis}(Q)$ on Qe is free,
- $\operatorname{Dis}(Q)$ is a free $\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)$-module of $\operatorname{rank}|X|-1$.

Theorem (P.J., A.P., D.S., A.Z.-D.)
 Let $n, m \in \mathbb{N}$ and let $Q=\operatorname{Aff}\left(\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right), x\right)$. Let
 \square $(\bmod (x-1))\}$.

\square

Free symmetric medial quandles

Theorem (P.J., A.P., D.S., A.Z.-D.)

Let Q be a m-symmetric medial quandle generated by a subset X.
Then Q is free over X if and only if, for each $e \in Q$,

- $|Q e \cap X|=1$,
- the action of $\operatorname{Dis}(Q)$ on Qe is free,
- $\operatorname{Dis}(Q)$ is a free $\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)$-module of $\operatorname{rank}|X|-1$.

Theorem (P.J., A.P., D.S., A.Z.-D.)

Let $n, m \in \mathbb{N}$ and let $Q=\operatorname{Aff}\left(\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right), x\right)$. Let

$$
F=\left\{\left(f_{i}\right)_{1 \leqslant i \leqslant n} \in Q ; \exists 0 \leqslant j \leqslant n ;\left(f_{i}\right)_{1 \leqslant i \leqslant n} \equiv 1_{j} \quad(\bmod (x-1))\right\} .
$$

Then F is a free m-symmetric medial quandle over $\left\{1_{i} ; 0 \leqslant i \leqslant n\right\}$.

Examples of free symmetric quandles

Example

Let $m=2$. Then $\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right) \cong \mathbb{Z}$ and $x-1 \equiv 2(\bmod (x+1))$.

Example

Let $n=2$. We know that
$\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right) \cong \prod_{d \mid m, d>1} \mathbb{Z}\left[\zeta_{d}\right]$, where ζ_{d} is a
d-th primitive root of 1 in \mathbb{C}. Hence the free two-generated
m-symmetric medial quandle is the subquandle of
$\prod \operatorname{Aff}\left(\mathbb{Z}\left[\zeta_{d}\right], \zeta_{d}\right)$ generated by $(0, \ldots, 0)$ and $(1, \ldots, 1)$.

Examples of free symmetric quandles

Example

Let $m=2$. Then $\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right) \cong \mathbb{Z}$ and $x-1 \equiv 2(\bmod (x+1))$.

Example

Let $n=2$. We know that
$\mathbb{Z}[x] /\left(x^{m-1}+x^{m-2}+\cdots+x+1\right) \cong \prod_{d \mid m, d>1} \mathbb{Z}\left[\zeta_{d}\right]$, where ζ_{d} is a d-th primitive root of 1 in \mathbb{C}. Hence the free two-generated m-symmetric medial quandle is the subquandle of
$\prod \operatorname{Aff}\left(\mathbb{Z}\left[\zeta_{d}\right], \zeta_{d}\right)$ generated by $(0, \ldots, 0)$ and $(1, \ldots, 1)$.

