On varietal joins of MV-algebras and some varieties

Jan Kühr

Palacký University in Olomouc Czech Republic

AAA 90 Novi Sad

- 2

Example: Let $(G, \leq, +, 0)$ be a partially ordered Abelian group and $u \in G^+$. Then ([0, u], +, 0, u) is an example of an effect algebra.

Definition: An effect algebra is a partial structure (A, +, 0, 1) satisfying:

- x + y = y + x if one side is defined;
- (x+y)+z = x + (y+z) if one side is defined;
- for every x there is a unique x' (the orthosupplement of x) such that x' + x = 1;
- if x + 1 is defined, then x = 0.

Every EA has a natural partial order and subtraction:

• $x \le y$ iff y = x + z, in which case y - x := z.

Lattice effect algebras are EAs which are lattices w.r.t. \leq .

(a)

Example: Let $(G, \leq, +, 0)$ be a partially ordered Abelian group and $u \in G^+$. Then ([0, u], +, 0, u) is an example of an effect algebra.

Definition: An effect algebra is a partial structure (A, +, 0, 1) satisfying:

- x + y = y + x if one side is defined;
- (x+y) + z = x + (y+z) if one side is defined;
- for every x there is a unique x' (the orthosupplement of x) such that x' + x = 1;
- if x + 1 is defined, then x = 0.

Every EA has a natural partial order and subtraction:

•
$$x \le y$$
 iff $y = x + z$, in which case $y - x := z$.

Lattice effect algebras are EAs which are lattices w.r.t. \leq .

• In an orthomodular lattice $(A, \lor, \land, ', 0, 1)$, if we define

$$x + y := x \lor y$$
 iff $x \le y'$,

then (A, +, 0, 1) is a LEA.

 OMLs are equivalent to LEAs satisfying x ∧ x' = 0, or equivalently, x + x is defined iff x = 0.

- 3

- An MV-algebra is an algebra (A, ⊕, ', 0, 1) such that (A, ⊕, 0) is a commutative monoid satisfying 1 ⊕ x = 1 = 0', x'' = x and (x' ⊕ y)' ⊕ y = (y' ⊕ x)' ⊕ x. The natural lattice order is defined by x ≤ y iff x' ⊕ y = 1.
- Every MV-algebra is isomorphic to one of the form $\Gamma(G, u) = ([0, u], \oplus, ', 0, u)$ where $(G, \leq, +, 0)$ is an Abelian ℓ -group, $u \in G^+$, $x \oplus y = (x + y) \wedge u$ and x' = u x.
- In an MV-algebra $(A,\oplus,',0,1)$, if we define

$$x + y := x \oplus y$$
 iff $x \le y'$,

- The total \oplus is given by $x \oplus y = (x \land y') + y$.
- MVAs are equivalent to MV-effect algebras, i.e. LEAs satisfying (x ∨ y) y = x (x ∧ y).

- An MV-algebra is an algebra (A, ⊕, ', 0, 1) such that (A, ⊕, 0) is a commutative monoid satisfying 1 ⊕ x = 1 = 0', x'' = x and (x' ⊕ y)' ⊕ y = (y' ⊕ x)' ⊕ x. The natural lattice order is defined by x ≤ y iff x' ⊕ y = 1.
- Every MV-algebra is isomorphic to one of the form $\Gamma(G, u) = ([0, u], \oplus, ', 0, u)$ where $(G, \leq, +, 0)$ is an Abelian ℓ -group, $u \in G^+$, $x \oplus y = (x + y) \wedge u$ and x' = u x.
- In an MV-algebra $(A, \oplus, ', 0, 1)$, if we define

$$x + y := x \oplus y$$
 iff $x \le y'$,

- The total \oplus is given by $x \oplus y = (x \land y') + y$.
- MVAs are equivalent to MV-effect algebras, i.e. LEAs satisfying (x ∨ y) y = x (x ∧ y).

- An MV-algebra is an algebra (A, ⊕, ', 0, 1) such that (A, ⊕, 0) is a commutative monoid satisfying 1 ⊕ x = 1 = 0', x'' = x and (x' ⊕ y)' ⊕ y = (y' ⊕ x)' ⊕ x. The natural lattice order is defined by x ≤ y iff x' ⊕ y = 1.
- Every MV-algebra is isomorphic to one of the form $\Gamma(G, u) = ([0, u], \oplus, ', 0, u)$ where $(G, \leq, +, 0)$ is an Abelian ℓ -group, $u \in G^+$, $x \oplus y = (x + y) \wedge u$ and x' = u x.
- In an MV-algebra $(A,\oplus,{}',0,1)$, if we define

$$x + y := x \oplus y$$
 iff $x \le y'$,

- The total \oplus is given by $x \oplus y = (x \land y') + y$.
- MVAs are equivalent to MV-effect algebras, i.e. LEAs satisfying (x ∨ y) − y = x − (x ∧ y).

- An MV-algebra is an algebra (A, ⊕, ', 0, 1) such that (A, ⊕, 0) is a commutative monoid satisfying 1 ⊕ x = 1 = 0', x'' = x and (x' ⊕ y)' ⊕ y = (y' ⊕ x)' ⊕ x. The natural lattice order is defined by x ≤ y iff x' ⊕ y = 1.
- Every MV-algebra is isomorphic to one of the form $\Gamma(G, u) = ([0, u], \oplus, ', 0, u)$ where $(G, \leq, +, 0)$ is an Abelian ℓ -group, $u \in G^+$, $x \oplus y = (x + y) \wedge u$ and x' = u x.
- In an MV-algebra $(A,\oplus,{}',0,1)$, if we define

$$x + y := x \oplus y$$
 iff $x \le y'$,

- The total \oplus is given by $x \oplus y = (x \land y') + y$.
- MVAs are equivalent to MV-effect algebras, i.e. LEAs satisfying (x ∨ y) − y = x − (x ∧ y).

- An MV-algebra is an algebra (A, ⊕, ', 0, 1) such that (A, ⊕, 0) is a commutative monoid satisfying 1 ⊕ x = 1 = 0', x'' = x and (x' ⊕ y)' ⊕ y = (y' ⊕ x)' ⊕ x. The natural lattice order is defined by x ≤ y iff x' ⊕ y = 1.
- Every MV-algebra is isomorphic to one of the form $\Gamma(G, u) = ([0, u], \oplus, ', 0, u)$ where $(G, \leq, +, 0)$ is an Abelian ℓ -group, $u \in G^+$, $x \oplus y = (x + y) \wedge u$ and x' = u x.
- In an MV-algebra $(A,\oplus,{}',0,1)$, if we define

$$x + y := x \oplus y$$
 iff $x \le y'$,

- The total \oplus is given by $x \oplus y = (x \land y') + y$.
- MVAs are equivalent to MV-effect algebras, i.e. LEAs satisfying (x ∨ y) y = x (x ∧ y).

- An MV-algebra is an algebra (A, ⊕, ', 0, 1) such that (A, ⊕, 0) is a commutative monoid satisfying 1 ⊕ x = 1 = 0', x'' = x and (x' ⊕ y)' ⊕ y = (y' ⊕ x)' ⊕ x. The natural lattice order is defined by x ≤ y iff x' ⊕ y = 1.
- Every MV-algebra is isomorphic to one of the form $\Gamma(G, u) = ([0, u], \oplus, ', 0, u)$ where $(G, \leq, +, 0)$ is an Abelian ℓ -group, $u \in G^+$, $x \oplus y = (x + y) \wedge u$ and x' = u x.
- In an MV-algebra $(A,\oplus,{}',0,1)$, if we define

$$x + y := x \oplus y$$
 iff $x \le y'$,

- The total \oplus is given by $x \oplus y = (x \land y') + y$.
- MVAs are equivalent to MV-effect algebras, i.e. LEAs satisfying (x ∨ y) − y = x − (x ∧ y).

• Total operations on LEAs:

$$\begin{aligned} x \oplus y &:= (x \land y') + y \\ x \oslash y &:= (x \lor y) - y = (x' \oplus y)' \dots x \lor y = (x \oslash y) \oplus y \\ x \ominus y &:= x - (x \land y) = (y \oplus x')' \dots x \land y = x \ominus (x \ominus y) \end{aligned}$$

 LEAs are equivalent to algebras (A, ⊕, ', 0, 1) of type (2, 1, 0, 0) satisfying:

$$\begin{split} x \oplus 0 &= x = x'', \\ (x \oslash y) \oplus y &= (y \oslash x) \oplus x, \\ ((x \oplus y) \oslash y) \oplus z &\leq x \oplus z, \\ x \oplus y &\leq z' \implies (x \oplus y) \oplus z = x \oplus (y \oplus z). \end{split}$$

where $x \leq y$ iff $x' \oplus y = 1$. They form a variety $-\mathcal{E}$.

Total operations on LEAs:

$$\begin{aligned} x \oplus y &:= (x \land y') + y \\ x \oslash y &:= (x \lor y) - y = (x' \oplus y)' \dots x \lor y = (x \oslash y) \oplus y \\ x \ominus y &:= x - (x \land y) = (y \oplus x')' \dots x \land y = x \ominus (x \ominus y) \end{aligned}$$

• LEAs are equivalent to algebras $(A,\oplus,{}',0,1)$ of type (2,1,0,0) satisfying:

$$\begin{split} x \oplus 0 &= x = x'', \\ (x \oslash y) \oplus y &= (y \oslash x) \oplus x, \\ ((x \oplus y) \oslash y) \oplus z &\leq x \oplus z, \\ x \oplus y &\leq z' \implies (x \oplus y) \oplus z = x \oplus (y \oplus z), \end{split}$$

where $x \leq y$ iff $x' \oplus y = 1$. They form a variety – \mathcal{E} .

- 3

For any algebra $(A,\oplus,{}',0,1)$ in $\mathcal{E},$ let (A,+,0,1) be defined as follows:

x + y exists iff $x \leq y'$, in which case $x + y := x \oplus y$.

Then (A, +, 0, 1) is a LEA with the same lattice order as $(A, \oplus, ', 0, 1)$, and $x \oplus y = (x \land y') + y$.

3

• (10) • (10)

- The variety ${\mathcal E}$ is congruence distributive and regular.
- For $A \in \mathcal{E}$, $I \subseteq A$ is an ideal if $I = [0]_{\theta}$ for some $\theta \in \operatorname{Con}(A)$.
- The ideal lattice Id(A) is isomorphic to Con(A) under $\theta \mapsto [0]_{\theta}$ and $I \mapsto \theta_I$ where

 $(x,y) \in \theta_I$ iff $x \ominus y, y \ominus x \in I$ iff $x \oslash y, y \oslash x \in I$.

•
$$\emptyset \neq I \subseteq A$$
 is an ideal iff
(i) $x \oplus y \in I$ for all $x, y \in I$;
(ii) $x \oslash y = (x \lor y) - y \in I$ for all $x \in I, y \in A$.

Compatibility, blocks, and sharp elements:

- In EAs, two elements a, b are compatible (in symbols: a ↔ b) if there exist a₁, b₁, c such that a = a₁ + c, b = b₁ + c and a₁ + c + b₁ is defined.
- In LEAs, $a \leftrightarrow b$ iff $(a \lor b) b = a (a \land b)$ iff $(a \lor b) b \le a$ iff $a - (a \land b) \le b'$.
- Hence, $a \leftrightarrow b$ iff $a \oslash b = a \ominus b$ iff $a \oslash b \le a$ iff $a \ominus b \le b'$ iff $a \oplus b = b \oplus a$ iff $a \le a \oplus b$.
- A block of an algebra A ∈ E is a maximal subset of mutually compatible elements. Blocks are subalgebras of A and MV-algebras in their own right.

Compatibility, blocks, and sharp elements:

- In EAs, two elements a, b are compatible (in symbols: a ↔ b) if there exist a₁, b₁, c such that a = a₁ + c, b = b₁ + c and a₁ + c + b₁ is defined.
- In LEAs, $a \leftrightarrow b$ iff $(a \lor b) b = a (a \land b)$ iff $(a \lor b) b \le a$ iff $a - (a \land b) \le b'$.
- Hence, $a \leftrightarrow b$ iff $a \oslash b = a \ominus b$ iff $a \oslash b \le a$ iff $a \ominus b \le b'$ iff $a \oplus b = b \oplus a$ iff $a \le a \oplus b$.
- A block of an algebra A ∈ E is a maximal subset of mutually compatible elements. Blocks are subalgebras of A and MV-algebras in their own right.

イロト 不得 とうせい かほとう ほ

• The compatibility center of A is

$$K(A) = \{ a \in A \mid a \leftrightarrow x \text{ for all } x \in A \}.$$

• If $a \in K(A)$, then

 $Ig(a) = \{ x \in A \mid x \le na \text{ for some } n \in \mathbb{N} \},\$

where $na = a \oplus \cdots \oplus a$.

• The compatibility center of A is

$$K(A) = \{ a \in A \mid a \leftrightarrow x \text{ for all } x \in A \}.$$

• If $a \in K(A)$, then

$$Ig(a) = \{ x \in A \mid x \le na \text{ for some } n \in \mathbb{N} \},\$$

where $na = a \oplus \cdots \oplus a$.

- 2

イロン イロン イヨン イヨン

Relative to \mathcal{E} ,

- \mathcal{MV} is axiomatized by $x \oplus y = y \oplus x$ or $x \le x \oplus y$ or $x \oslash y \le x$, and
- OM, the subvariety of E term equivalent to the variety of OMLs, is axiomatized by x ∧ x' = 0 or x ⊕ x = x.

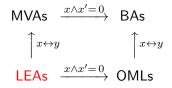
What is the join $\mathcal{MV} \lor \mathcal{OM}$ in the lattice of subvarieties of \mathcal{E} ?

 $\begin{array}{ccc} \mathsf{MVAs} & \xrightarrow{x \wedge x' = 0} & \mathsf{BAs} \\ & \uparrow x \leftrightarrow y & & \uparrow x \leftrightarrow y \\ \mathsf{LEAs} & \xrightarrow{x \wedge x' = 0} & \mathsf{OMLs} \end{array}$

Relative to \mathcal{E} ,

- \mathcal{MV} is axiomatized by $x \oplus y = y \oplus x$ or $x \le x \oplus y$ or $x \oslash y \le x$, and
- OM, the subvariety of E term equivalent to the variety of OMLs, is axiomatized by x ∧ x' = 0 or x ⊕ x = x.

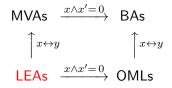
What is the join $\mathcal{MV} \lor \mathcal{OM}$ in the lattice of subvarieties of \mathcal{E} ?



Relative to \mathcal{E} ,

- \mathcal{MV} is axiomatized by $x \oplus y = y \oplus x$ or $x \leq x \oplus y$ or $x \oslash y \leq x$, and
- OM, the subvariety of E term equivalent to the variety of OMLs, is axiomatized by x ∧ x' = 0 or x ⊕ x = x.

What is the join $\mathcal{MV} \lor \mathcal{OM}$ in the lattice of subvarieties of \mathcal{E} ?



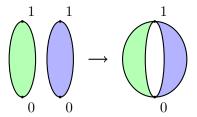
Relative to \mathcal{E} ,

- \mathcal{MV} is axiomatized by $x \oplus y = y \oplus x$ or $x \leq x \oplus y$ or $x \oslash y \leq x$, and
- OM, the subvariety of E term equivalent to the variety of OMLs, is axiomatized by x ∧ x' = 0 or x ⊕ x = x.

What is the join $\mathcal{MV} \lor \mathcal{OM}$ in the lattice of subvarieties of \mathcal{E} ?

Horizontal sums of MV-algebras – simple members of \mathcal{E} :

Let $\{A_i \mid i \in I\}$ be a family of MV-algebras such that $A_i \cap A_j = \{0, 1\}$ for all $i \neq j$. The horizontal sum is the algebra $\bigoplus_{i \in I} A_i$ with domain $\bigcup_{i \in I} A_i$ on which the addition \oplus is given by $x \oplus y = x \oplus_i y$ if there is $i \in I$ such that $x, y \in A_i$, and $x \oplus y = y$ otherwise.



同 ト イヨ ト イヨ ト

Axiomatization of V(Hor):

Theorem

If $A \in \mathcal{E}$ is subdirectly irreducible, then the following are equivalent:

- A is the horizontal sum of its blocks;
- A satisfies the identity

$$(\gamma(x,y) \wedge z) \vee (\gamma(x,y)' \wedge z) = z,$$
 (H)

where $\gamma(x,y) = (x \ominus (x \oplus y)) \lor (y \ominus (y \oplus x)).$

Thus, relative to \mathcal{E} , $V(\mathcal{H}or)$ is axiomatized by the identity (H).

Remark: The variety $V(\mathcal{H}or^c)$ generated by the horizontal sums of MV-chains is smaller than $V(\mathcal{H}or)$.

- 4 同 6 4 回 6 4 回 6

Axiomatization of V(Hor):

Theorem

If $A \in \mathcal{E}$ is subdirectly irreducible, then the following are equivalent:

- A is the horizontal sum of its blocks;
- A satisfies the identity

$$(\gamma(x,y) \wedge z) \vee (\gamma(x,y)' \wedge z) = z,$$
 (H)

where $\gamma(x,y) = (x \ominus (x \oplus y)) \lor (y \ominus (y \oplus x)).$

Thus, relative to \mathcal{E} , $V(\mathcal{H}\mathit{or})$ is axiomatized by the identity (H).

Remark: The variety $V(\mathcal{H}or^c)$ generated by the horizontal sums of MV-chains is smaller than $V(\mathcal{H}or)$.

- 3

- 4 同 6 4 日 6 4 日 6

Axiomatization of V(Hor):

Theorem

If $A \in \mathcal{E}$ is subdirectly irreducible, then the following are equivalent:

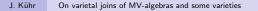
- A is the horizontal sum of its blocks;
- A satisfies the identity

$$(\gamma(x,y) \wedge z) \vee (\gamma(x,y)' \wedge z) = z,$$
 (H)

where $\gamma(x,y) = (x \ominus (x \oplus y)) \lor (y \ominus (y \oplus x)).$

Thus, relative to $\mathcal{E}\text{, }V(\mathcal{H}\mathit{or})$ is axiomatized by the identity (H).

Remark: The variety $V(Hor^c)$ generated by the horizontal sums of MV-chains is smaller than V(Hor).



(1)

- 3

Relative to \mathcal{E} , \mathcal{MV} and \mathcal{OM} are axiomatized respectively by

$$x \oslash (x \oplus y) = 0$$
 and $x \land x' = 0$.

Conjecture: $\mathcal{MV} \lor \mathcal{OM}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land z \land z' = 0.$$

More generally, let $\mathcal{V}_1, \mathcal{V}_2 \subseteq \mathcal{E}$ be axiomatized by $\sigma_1 = 0$ and $\sigma_2 = 0$, respectively. Is $\mathcal{V}_1 \lor \mathcal{V}_2$ axiomatized by $\sigma_1 \land \sigma_2 = 0$? Problem: $a \land b = 0$ doesn't imply $Ig(a) \cap Ig(b) = \{0\}$, even wh

 $a \leftrightarrow b \dots$

Relative to \mathcal{E} , \mathcal{MV} and \mathcal{OM} are axiomatized respectively by

$$x \oslash (x \oplus y) = 0$$
 and $x \land x' = 0$.

Conjecture: $\mathcal{MV} \lor \mathcal{OM}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land z \land z' = 0.$$

More generally, let $\mathcal{V}_1, \mathcal{V}_2 \subseteq \mathcal{E}$ be axiomatized by $\sigma_1 = 0$ and $\sigma_2 = 0$, respectively. Is $\mathcal{V}_1 \lor \mathcal{V}_2$ axiomatized by $\sigma_1 \land \sigma_2 = 0$?

Problem: $a \wedge b = 0$ doesn't imply $Ig(a) \cap Ig(b) = \{0\}$, even when $a \leftrightarrow b \dots$

Relative to \mathcal{E} , \mathcal{MV} and \mathcal{OM} are axiomatized respectively by

$$x \oslash (x \oplus y) = 0$$
 and $x \land x' = 0$.

Conjecture: $\mathcal{MV} \lor \mathcal{OM}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land z \land z' = 0.$$

More generally, let $\mathcal{V}_1, \mathcal{V}_2 \subseteq \mathcal{E}$ be axiomatized by $\sigma_1 = 0$ and $\sigma_2 = 0$, respectively. Is $\mathcal{V}_1 \lor \mathcal{V}_2$ axiomatized by $\sigma_1 \land \sigma_2 = 0$?

Problem: $a \wedge b = 0$ doesn't imply $Ig(a) \cap Ig(b) = \{0\}$, even when $a \leftrightarrow b \dots$

- 3

- 4 同 6 4 日 6 4 日 6

Lemma

Let $A \in \mathcal{E}$. Let $a \in A$ and suppose that

$$(x \oslash (x \oplus y)) \land a = 0$$

for all $x, y \in A$. Then $a \in K(A)$ and the polar

$$a^{\perp} = \{ x \in A \mid x \land a = 0 \}$$

is an ideal of A such that $Ig(a) \cap a^{\perp} = \{0\}.$

Э

- 4 回 > - 4 回 > - 4 回 >

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

 $(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$

Proof: Let W be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in \mathrm{Si}(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $\mathrm{Ig}(a) \cap a^{\perp} = \{0\}$. Since $\mathrm{Ig}(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 4 同 6 4 日 6 4 日 6

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in Si(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \otimes (x \oplus y)) \wedge a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $Ig(a) \cap a^{\perp} = \{0\}$. Since $Ig(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \otimes (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

3

- 4 同 6 4 日 6 4 日 6

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in Si(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $Ig(a) \cap a^{\perp} = \{0\}$. Since $Ig(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in \operatorname{Si}(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $\operatorname{Ig}(a) \cap a^{\perp} = \{0\}$. Since $\operatorname{Ig}(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in \operatorname{Si}(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $\operatorname{Ig}(a) \cap a^{\perp} = \{0\}$. Since $\operatorname{Ig}(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in \operatorname{Si}(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $\operatorname{Ig}(a) \cap a^{\perp} = \{0\}$. Since $\operatorname{Ig}(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 3

(a)

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in \operatorname{Si}(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $\operatorname{Ig}(a) \cap a^{\perp} = \{0\}$. Since $\operatorname{Ig}(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathcal{U} be a subvariety of \mathcal{E} , incomparable with \mathcal{MV} , which is axiomatized, relative to \mathcal{E} , by $\tau(x_1, \ldots, x_n) = 0$. Then the join $\mathcal{MV} \lor \mathcal{U}$ is axiomatized by

$$(x \oslash (x \oplus y)) \land \tau(z_1, \dots, z_n) = 0.$$
 (J)

Proof: Let \mathcal{W} be the subvariety of \mathcal{E} defined by the identity (J). Then $\mathcal{MV} \lor \mathcal{U} \subseteq \mathcal{W}$.

Conversely, let $A \in \operatorname{Si}(\mathcal{W}) \setminus \mathcal{U}$ and take $a_1, \ldots, a_n \in A$ so that $a := \tau(a_1, \ldots, a_n) \neq 0$. Then $(x \oslash (x \oplus y)) \land a = 0$ for all $x, y \in A$, hence by the lemma, $a \in K(A)$, a^{\perp} is an ideal and $\operatorname{Ig}(a) \cap a^{\perp} = \{0\}$. Since $\operatorname{Ig}(a) \neq \{0\}$, $a^{\perp} = \{0\}$ and so $x \oslash (x \oplus y) = 0$ for all $x, y \in A$. Thus $A \in \mathcal{MV}$ and we have $\mathcal{W} = \mathcal{MV} \lor \mathcal{U}$.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

Relative to $\mathcal{E},$ the join $\mathcal{MV} \lor \mathcal{OM}$ is axiomatized by

$(x \oslash (x \oplus y)) \land z \land z' = 0.$

æ

| 4 回 🕨 🔺 三 🕨 🖌 三 🕨

Corollary

Relative to $\mathcal{E},$ the join $\mathcal{MV} \lor \mathcal{OM}$ is axiomatized by

$(x \oslash (x \oplus y)) \land z \land z' = 0.$

Thank you!

æ

< 回 > < 回 > < 回 >