Subdirectly irreducible commutative idempotent semirings

Ivan Chajda – Helmut Länger

Palacký University Olomouc, Olomouc, Czech Republic, email: ivan.chajda@upol.cz Vienna University of Technology, Vienna, Austria, email: helmut.laenger@tuwien.ac.at

Support of the research of both authors by the Austrian Science Fund (FWF) and the Czech Science Foundation (GAČR), project I 1923-N25, and by AKTION Austria – Czech Republic, grant No. 71p3, is gratefully acknowledged.

90th Workshop on General Algebra, University of Novi Sad, June 7, 2015

Contents:

- 1. Semirings
- 2. Varieties of semirings
- 3. Subdirectly irreducible semirings
- 4. Concluding remarks
- 5. References

1. Semirings

æ

イロト イヨト イヨト イヨト

A semiring is an algebra $(R, +, \cdot, 0, 1)$ of type (2, 2, 0, 0) satisfying

- (R, +, 0) is a commutative monoid.
- $(R, \cdot, 1)$ is a monoid.
- The operation \cdot is distributive with respect to +.
- x0 = 0x = 0

Example 2

- $(\{0, 1, 2, 3, \ldots\}, +, \cdot, 0, 1)$ is a semiring.
- Every unitary ring is a semiring.
- Every bounded distributive lattice is a semiring.

2. Varieties of semirings

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Different kinds of semirings

Definition 3

A semiring is called

- commutative if · is commutative
- *idempotent* if · *is idempotent*
- Boolean if it is commutative and idempotent and additionally satisfies 1 + x + x = 1
- trivial if it has only one element

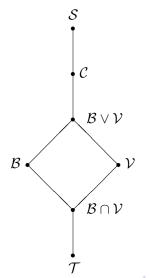
Let

- S denote the variety of semirings
- C the variety of commutative idempotent semirings
- B the variety of Boolean semirings
- \mathcal{V} the subvariety of \mathcal{C} determined by xy + x + 1 = x + 1
- $\mathcal T$ the variety of trivial semirings

(日) (同) (三) (三)

Hasse diagram of semiring varieties

We have the following Hasse diagram:



3. Subdirectly irreducible semrings

An algebra \mathcal{A} with base set A is called subdirectly irreducible (SI) if there exists a smallest (with respect to \subseteq) congruence Θ on \mathcal{A} with $\Theta \neq \Delta$ (:= {(x, x) | $x \in A$ }), the so-called monolith of \mathcal{A} .

The importance of knowing all SI members of a variety is expressed by the following well-known fact:

Theorem 5

Every variety is generated by its SI members.

Therefore it is interesting to know all SI members of \mathcal{B} , \mathcal{C} and \mathcal{V} .

Lemma 6

If $(R, +, \cdot, 0, 1) \in C$ then (R, \cdot) is a semilattice. We consider this semilattice as a meet-semilattice. Let \leq denote the corresponding partial order relation. Then $(R, \leq, 0, 1)$ is a bounded poset.

Lemma 7

If $\mathbf{R} = (R, +, \cdot, 0, 1)$ is an SI member of C then there exists a coatom a of (R, \leq) such that

•
$$R = [0, a] \cup \{1\}$$

•
$$\{a,1\}^2 \cup \Delta$$
 is the monolith of **R**.

Corollary 8

If $(R, +, \cdot, 0, 1)$ is an SI member of C and $|R| \le 4$ then (R, \le) is a chain.

イロト イ理ト イヨト イヨト

Definition of S_n and T_n

Definition 9

For every integer n>1 put $S_n:=\{1,\ldots,n\}$ and let \leq_1 denote the linear ordering on S_n given by

$$\begin{array}{l} 1 \leq_1 3 \leq_1 \ldots \leq_1 n - 1 \leq_1 n \leq_1 n - 2 \leq_1 \ldots \leq_1 2 \\ 1 \leq_1 3 \leq_1 \ldots \leq_1 n \leq_1 n - 1 \leq_1 n - 3 \leq_1 \ldots \leq_1 2 \end{array} \} \text{ if } n \text{ is } \left\{ \begin{array}{l} \text{even} \\ \text{odd} \end{array} \right.$$

Moreover, put

э

・ロン ・四 ・ ・ ヨン ・ ヨン

For every infinite bounded chain $C = (C, \leq_2, 0, 1)$ let S_C denote the algebra $(S_C, +, \cdot, (0, 1), (1, 2))$ of type (2, 2, 0, 0) defined by $S_C := C \times \{1, 2\}$,

$$\begin{aligned} &(x,i) + (y,j) &:= \begin{cases} &(\max_{\leq 2}(x,y),1) \\ &(y,2) \\ &(x,2) \\ &(\min_{\leq 2}(x,y),2) \end{cases} if (i,j) = \begin{cases} &(1,1) \\ &(1,2) \\ &(2,1) \\ &(2,2) \\ &(2,2) \\ &(2,2) \end{cases} \\ &(x,i)(y,j) &:= \begin{cases} &(x,i) \\ &(x,\min(i,j)) \\ &(y,j) \end{cases} if x \begin{cases} < \\ = \\ > \end{cases} y \end{aligned}$$

 $((x, i), (y, j) \in S_{\mathbf{C}})$. Moreover, let $\mathbf{T}_{\mathbf{C}}$ denote the algebra of type (2, 2, 0, 0) which coincides with $\mathbf{S}_{\mathbf{C}}$ with the only exception that (1, 2) + (1, 2) := (1, 1) instead of (1, 2) + (1, 2) := (1, 2).

イロト イポト イヨト イヨト

For any non-trivial Boolean lattice $\mathbf{B} = (B, \lor, \land, 0, a)$ let $\mathbf{B} \oplus 1$ denote the semiring $(S, +, \cdot, 0, 1)$ where $1 \notin B$, $S := B \cup \{1\}$ and + and \cdot are defined as follows:

$$\begin{array}{rcl} x+y & := & \left\{ \begin{array}{c} x \lor y \\ 1 \\ a \end{array} \right\} & \text{if} \left\{ \begin{array}{c} x,y \neq 1 \\ (x,y) \in \{(0,1),(1,0)\} \\ \text{otherwise} \end{array} \right. \\ xy & := & \left\{ \begin{array}{c} x \land y \\ y \\ x \end{array} \right\} & \text{if} \left\{ \begin{array}{c} x,y \neq 1 \\ x=1 \\ y=1 \end{array} \right. \end{array}$$

SI semirings

Theorem 12

- (Guzmán 92) Up to isomorphism S_2 and T_2 are all SI members of \mathcal{B} .
- S_n , T_n , S_C , T_C and $B \oplus 1$ are SI members of C.
- S_2 , T_3 and $B \oplus 1$ are SI members of V.

Remark 13

- If n ≤ 4 then up to isomorphism S_n and T_n are the only n-element SI members of C.
- If C is an n-element chain then $S_C \cong S_{2n}$ and $T_C \cong T_{2n}$.
- $\mathbf{T}_3 \cong \mathbf{2} \oplus \mathbf{1}$
- $S_n \in \mathcal{V}$ if and only if n = 2
- $\mathbf{T}_n \in \mathcal{V}$ if and only if n = 3
- $S_C, T_C \notin \mathcal{V}$

イロト イポト イヨト イヨト

4. Concluding remarks

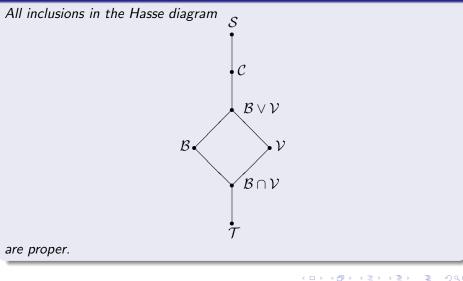
(日) (周) (三) (三)

Remark 14

- Up to isomorphism B has exactly two SI members.
- Up to isomorphism C has at least two SI members of cardinality n > 1.
- If m ≥ 2 then up to isomorphism C has at least three SI members of cardinality 2^m + 1.
- If m ≥ 0 then up to isomorphism V has at least one SI member of cardinality 2^m + 1.
- Since for infinite n there exist 2ⁿ pairwise non-isomorphic Boolean algebras of cardinality n, V has at least 2ⁿ SI members of infinite cardinality n.

Hasse diagram of semiring varieties revisited

Remark 15



5. References

æ

イロト イヨト イヨト イヨト

- I. Chajda, H. Länger and F. Švrček, Multiplicatively idempotent semirings. Math. Bohemica 140 (2015), 35-42.
- [2] J. S. Golan, Semirings and Their Applications. Kluwer, Dordrecht 1999. ISBN 0-7923-5786-8.
- [3] F. Guzmán, The variety of Boolean semirings. J. Pure Appl. Algebra 78 (1992), 253-270.
- [4] W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer, Berlin 1986. ISBN 3-540-13716-5.
- [5] J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras. Vol. 2. North-Holland, Amsterdam 1989. ISBN 0-444-87152-7.

Thank you for your attention!

Chajda, Länger

- ∢ ∃ ▶