Subdirectly irreducible commutative idempotent semirings

Ivan Chajda - Helmut Länger

Palacký University Olomouc, Olomouc, Czech Republic, email: ivan.chajda@upol.cz Vienna University of Technology, Vienna, Austria, email: helmut.laenger@tuwien.ac.at

Support of the research of both authors by the Austrian Science Fund (FWF) and the Czech Science Foundation (GAČR), project I 1923-N25, and by AKTION Austria - Czech Republic, grant No. 71p3, is gratefully acknowledged.

90th Workshop on General Algebra, University of Novi Sad, June 7, 2015

Contents:

1. Semirings
2. Varieties of semirings
3. Subdirectly irreducible semirings
4. Concluding remarks
5. References

1. Semirings

Definition of a semiring and examples

Definition 1

A semiring is an algebra $(R,+, \cdot, 0,1)$ of type $(2,2,0,0)$ satisfying

- $(R,+, 0)$ is a commutative monoid.
- $(R, \cdot, 1)$ is a monoid.
- The operation - is distributive with respect to +.
- $x 0=0 x=0$

Example 2

- $(\{0,1,2,3, \ldots\},+, \cdot, 0,1)$ is a semiring.
- Every unitary ring is a semiring.
- Every bounded distributive lattice is a semiring.

2. Varieties of semirings

Different kinds of semirings

Definition 3

A semiring is called

- commutative if . is commutative
- idempotent if . is idempotent
- Boolean if it is commutative and idempotent and additionally satisfies $1+x+x=1$
- trivial if it has only one element

Let

- \mathcal{S} denote the variety of semirings
- \mathcal{C} the variety of commutative idempotent semirings
- \mathcal{B} the variety of Boolean semirings
- \mathcal{V} the subvariety of \mathcal{C} determined by $x y+x+1=x+1$
- \mathcal{T} the variety of trivial semirings

Hasse diagram of semiring varieties

We have the following Hasse diagram:

3. Subdirectly irreducible semrings

Subdirectly irreducible algebras

Definition 4

An algebra \mathcal{A} with base set A is called subdirectly irreducible $(S I)$ if there exists a smallest (with respect to \subseteq) congruence Θ on \mathcal{A} with $\Theta \neq \Delta$ $(:=\{(x, x) \mid x \in A\})$, the so-called monolith of \mathcal{A}.

The importance of knowing all SI members of a variety is expressed by the following well-known fact:

Theorem 5

Every variety is generated by its SI members.

Therefore it is interesting to know all SI members of \mathcal{B}, \mathcal{C} and \mathcal{V}.

Structure of SI members of \mathcal{C}

Lemma 6

 If $(R,+, \cdot, 0,1) \in \mathcal{C}$ then (R, \cdot) is a semilattice. We consider this semilattice as a meet-semilattice. Let \leq denote the corresponding partial order relation. Then $(R, \leq, 0,1)$ is a bounded poset.
Lemma 7

If $\mathbf{R}=(R,+, \cdot, 0,1)$ is an $S I$ member of \mathcal{C} then there exists a coatom a of (R, \leq) such that

- $R=[0, a] \cup\{1\}$
- $\{a, 1\}^{2} \cup \Delta$ is the monolith of \mathbf{R}.

Corollary 8

If $(R,+, \cdot, 0,1)$ is an S member of \mathcal{C} and $|R| \leq 4$ then (R, \leq) is a chain.

Definition of \mathbf{S}_{n} and \mathbf{T}_{n}

Definition 9

For every integer $n>1$ put $S_{n}:=\{1, \ldots, n\}$ and let \leq_{1} denote the linear ordering on S_{n} given by

$$
\left.\begin{array}{l}
1 \leq_{1} 3 \leq_{1} \ldots \leq_{1} n-1 \leq_{1} n \leq_{1} n-2 \leq_{1} \ldots \leq_{1} 2 \\
1 \leq_{1} 3 \leq_{1} \ldots \leq_{1} n \leq_{1} n-1 \leq_{1} n-3 \leq_{1} \ldots \leq_{1} 2
\end{array}\right\} \text { if } n \text { is }\left\{\begin{array}{l}
\text { even } \\
\text { odd }
\end{array}\right.
$$

Moreover, put

$$
\begin{aligned}
x+1 y & :=\max _{\leq_{1}(x, y)} \\
x+2 y & :=\left\{\begin{array}{cc}
n-1 & \text { if } x=y=n \\
x+1 y & \text { otherwise }
\end{array}\right. \\
x y & :=\min (x, y) \\
\mathbf{S}_{n} & :=\left(S_{n},+1, \cdot, 1, n\right) \\
\mathbf{T}_{n} & :=\left(S_{n},+2, \cdot, 1, n\right)
\end{aligned}
$$

Definition of S_{C} and T_{C}

Definition 10

For every infinite bounded chain $\mathbf{C}=\left(C, \leq_{2}, 0,1\right)$ let $\mathbf{S}_{\mathbf{C}}$ denote the algebra $\left(S_{\mathbf{C}},+, \cdot,(0,1),(1,2)\right)$ of type $(2,2,0,0)$ defined by $S_{\mathbf{C}}:=C \times\{1,2\}$,

$$
\begin{aligned}
(x, i)+(y, j) & :=\left\{\begin{array}{l}
\left(\max _{\leq_{2}}(x, y), 1\right) \\
(y, 2) \\
(x, 2) \\
\left(\min _{\leq_{2}}(x, y), 2\right)
\end{array}\right\} \text { if }(i, j)=\left\{\begin{array}{l}
(1,1) \\
(1,2) \\
(2,1) \\
(2,2)
\end{array}\right. \\
(x, i)(y, j) & :=\left\{\begin{array}{l}
(x, i) \\
(x, \min (i, j)) \\
(y, j)
\end{array}\right\} \text { if } x\left\{\begin{array}{l}
< \\
= \\
>
\end{array}\right\} y
\end{aligned}
$$

$\left((x, i),(y, j) \in S_{\mathbf{C}}\right)$. Moreover, let $\mathbf{T}_{\mathbf{C}}$ denote the algebra of type $(2,2,0,0)$ which coincides with $\mathbf{S}_{\mathbf{c}}$ with the only exception that $(1,2)+(1,2):=(1,1)$ instead of $(1,2)+(1,2):=(1,2)$.

Definition of $\mathbf{B} \oplus 1$

Definition 11

For any non-trivial Boolean lattice $\mathbf{B}=(B, \vee, \wedge, 0, a)$ let $\mathbf{B} \oplus 1$ denote the semiring $(S,+, \cdot, 0,1)$ where $1 \notin B, S:=B \cup\{1\}$ and + and \cdot are defined as follows:

$$
\begin{aligned}
x+y & :=\left\{\begin{array}{l}
x \vee y \\
1 \\
a
\end{array}\right\} \text { if }\left\{\begin{array}{l}
x, y \neq 1 \\
(x, y) \in\{(0,1),(1,0)\} \\
\text { otherwise }
\end{array}\right. \\
x y & :=\left\{\begin{array}{l}
x \wedge y \\
y \\
x
\end{array}\right\} \text { if }\left\{\begin{array}{l}
x, y \neq 1 \\
x=1 \\
y=1
\end{array}\right.
\end{aligned}
$$

SI semirings

Theorem 12

- (Guzmán 92) Up to isomorphism \mathbf{S}_{2} and \mathbf{T}_{2} are all SI members of \mathcal{B}.
- $\mathbf{S}_{n}, \mathbf{T}_{n}, \mathbf{S}_{\mathbf{C}}, \mathbf{T}_{\mathbf{C}}$ and $\mathbf{B} \oplus 1$ are SI members of \mathcal{C}.
- $\mathbf{S}_{2}, \mathbf{T}_{3}$ and $\mathbf{B} \oplus 1$ are $S I$ members of \mathcal{V}.

Remark 13

- If $n \leq 4$ then up to isomorphism \mathbf{S}_{n} and \mathbf{T}_{n} are the only n-element SI members of \mathcal{C}.
- If \mathbf{C} is an n-element chain then $\mathbf{S}_{\mathbf{C}} \cong \mathbf{S}_{2 n}$ and $\mathbf{T}_{\mathbf{C}} \cong \mathbf{T}_{2 n}$.
- $\mathbf{T}_{3} \cong \mathbf{2} \oplus 1$
- $\mathbf{S}_{n} \in \mathcal{V}$ if and only if $n=2$
- $\mathbf{T}_{n} \in \mathcal{V}$ if and only if $n=3$
- $\mathbf{S}_{\mathbf{C}}, \mathbf{T}_{\mathbf{c}} \notin \mathcal{V}$

4. Concluding remarks

Number of SI semirings

Remark 14

- Up to isomorphism \mathcal{B} has exactly two SI members.
- Up to isomorphism \mathcal{C} has at least two SI members of cardinality $n>1$.
- If $m \geq 2$ then up to isomorphism \mathcal{C} has at least three S I members of cardinality $2^{m}+1$.
- If $m \geq 0$ then up to isomorphism \mathcal{V} has at least one $S I$ member of cardinality $2^{m}+1$.
- Since for infinite n there exist 2^{n} pairwise non-isomorphic Boolean algebras of cardinality n, \mathcal{V} has at least 2^{n} SI members of infinite cardinality n.

Hasse diagram of semiring varieties revisited

Remark 15

All inclusions in the Hasse diagram

are proper.

5. References

References

[1] I. Chajda, H. Länger and F. Švrček, Multiplicatively idempotent semirings. Math. Bohemica 140 (2015), 35-42.
[2] J. S. Golan, Semirings and Their Applications. Kluwer, Dordrecht 1999. ISBN 0-7923-5786-8.
[3] F. Guzmán, The variety of Boolean semirings. J. Pure Appl. Algebra 78 (1992), 253-270.
[4] W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer, Berlin 1986. ISBN 3-540-13716-5.
[5] J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras. Vol. 2. North-Holland, Amsterdam 1989. ISBN 0-444-87152-7.

Thank you for your attention!

