# Algebra and the complexity of quantified constraints 

Barnaby Martin<br>Foundations of Computing Group, Middlesex University, London AAA90, Novi Sad

5th June, 2015


Mathematics


Computer Science

The Constraint Satisfaction Problem $\operatorname{CSP}(\mathcal{B})$ takes as input a primitive positive ( pp ) sentence $\Phi$, i.e. of the form

$$
\exists v_{1} \ldots v_{j} \phi\left(v_{1}, \ldots, v_{j}\right)
$$

where $\phi$ is a conjunction of atoms, and asks whether $\mathcal{B} \models \Phi$.
This is equivalent to the Homomorphism Problem - has $\mathcal{A}$ a homomorphism to $\mathcal{B}$ ?

The structure $\mathcal{B}$ is known as the template.

Finite CSPs occur a lot in nature.

- $\operatorname{CSP}\left(\mathcal{K}_{m}\right)$ is graph m-colourability.
- $\operatorname{CSP}\left(\{0,1\} ; R_{N A E}\right)$, where $B_{\text {NAE }}$ is $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$ is not-all-equal 3-satisfiabilty.
- $\operatorname{CSP}\left(\{0,1\} ; R_{\text {TTT }}, R_{\text {TTF }}, R_{\text {TFF }}, R_{\text {FFF }}\right)$ is 3-satisfiabilty.
- $\operatorname{CSP}(\{0,1\} ;\{0\},\{1\},\{(0,0),(1,1)\})$ is graph s-t unreachability.
Also vertex cover, clique and hamilton path - but these require non-fixed template.

Infinite CSPs also occur a lot in nature (another story...)

Feder-Vardi dichotomy conjecture. Each $\operatorname{CSP}(\mathcal{B})$ is either in P or is NP-complete.

- Compare with Ladner non-dichotomy for NP.

Still open, but known for:

- Structures size 2 (Schaefer 1978).
- Structures size 3 (Bulatov 2002).
- Structures with unary relations (Bulatov 2003).
- Smooth digraphs (Barto, Kozik and Niven 2010).
- Structures size 4 (Marković 2011?).

Manuel Bodirsky calls the CSP Königsproblem because it is a beautiful marriage of

- logic (primitive positive model theory)
- combinatorics (structure homomorphism)
- algebra (polymorphism clones and varieties) to an important class of problems in computer science.

The Quantified $\operatorname{CSP} \operatorname{QCSP}(\mathcal{B})$ takes as input a positive Horn ( pH ) sentence $\Phi$, i.e. of the form

$$
\forall \bar{v}_{1} \exists \bar{v}_{2} \ldots, Q \bar{v}_{j} \phi\left(\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{j}\right),
$$

where $\phi$ is a conjunction of atoms, and asks whether $\mathcal{B} \models \Phi$.
$\operatorname{QCSP}(\mathcal{B})$ is always in Pspace.

- QCSPs used in AI to model non-monotonic reasoning.


## Previous classifications

QCSP classifications are harder than CSP classifications.

- Boolean structures. Dichotomy P, Pspace-complete. (Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)
- Graphs of permutations. Trichotomy P, NP-complete, Pspace-complete. (Börner et al. 2002.)
- Various digraphs Dichotomies and trichotomies NL, NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011, 2013; Dapić, Marković, M. 2014 etc.)
- Structures with 2-semilattice polymorphism. Dichotomy P, coNP-hard. (Chen 2004.)

The recent advances in CSP complexity classification are due to the algebraic approach.

- a $k$-ary polymorphism of $\mathcal{B}$ is a homomorphism from $\mathcal{B}^{k}$ to $\mathcal{B}$. The key to this approach is the Galois correspondence

$$
\operatorname{Inv}(\operatorname{Pol}(\mathcal{B}))=\langle\mathcal{B}\rangle_{\mathrm{pp}}
$$

whose consequence is

$$
\operatorname{Pol}(\mathcal{B}) \subseteq \operatorname{Pol}\left(\mathcal{B}^{\prime}\right) \Rightarrow \operatorname{CSP}\left(\mathcal{B}^{\prime}\right) \leq_{\mathrm{P}} \operatorname{CSP}(\mathcal{B})
$$

The algebraic approach exists also for the QCSP.

$$
\operatorname{Inv}(\operatorname{sPol}(\mathcal{B}))=\langle\mathcal{B}\rangle_{\mathrm{pH}}
$$

whose consequence is

$$
\operatorname{sPol}(\mathcal{B}) \subseteq \operatorname{sPol}\left(\mathcal{B}^{\prime}\right) \Rightarrow \operatorname{QCSP}\left(\mathcal{B}^{\prime}\right) \leq_{\mathrm{P}} \operatorname{QCSP}(\mathcal{B})
$$

It appears to be weaker (surjective operations are not closed under composition) and we have fewer combinatorial constructs.

- Important?
- Königsproblem?

Assume henceforth that finite $\mathcal{B}$ contains constants naming each element. Now all polymorphisms are idempotent and $\operatorname{sPol}(\mathcal{B})=\operatorname{Pol}(\mathcal{B})$.

Following Chen, for $z \in B$, call $\mathcal{B}$

- logically $k$-collapsible from source $\{z\}$
if truth of a pH sentence can be decided by sub-sentences in which all but $k$ universal variables are forced to $z$.
E.g. $k:=2$ and for the pH sentence

$$
\forall x_{1} \forall x_{2} \exists y_{1} \forall x_{3} \forall x_{4} \exists y_{2} E\left(x_{1}, y_{1}\right) \wedge E\left(x_{2}, y_{1}\right) \wedge E\left(x_{3}, y_{2}\right) \wedge E\left(x_{4}, y_{2}\right)
$$

we obtain the 2-collapsings

$$
\begin{aligned}
& \forall x_{1} \forall x_{2} \exists y_{1} \exists y_{2} E\left(x_{1}, y_{1}\right) \wedge E\left(x_{2}, y_{1}\right) \wedge E\left(z, y_{2}\right) \wedge E\left(z, y_{2}\right) \\
& \forall x_{1} \exists y_{1} \forall x_{3} \exists y_{2} E\left(x_{1}, y_{1}\right) \wedge E\left(z, y_{1}\right) \wedge E\left(x_{3}, y_{2}\right) \wedge E\left(z, y_{2}\right) \\
& \forall x_{1} \exists y_{1} \forall x_{4} \exists y_{2} E\left(x_{1}, y_{1}\right) \wedge E\left(z, y_{1}\right) \wedge E\left(z, y_{2}\right) \wedge E\left(x_{4}, y_{2}\right) \\
& \forall x_{2} \exists y_{1} \forall x_{3} \exists y_{2} E\left(z, y_{1}\right) \wedge E\left(x_{2}, y_{1}\right) \wedge E\left(x_{3}, y_{2}\right) \wedge E\left(z, y_{2}\right) \\
& \forall x_{2} \exists y_{1} \forall x_{4} \exists y_{2} E\left(z, y_{1}\right) \wedge E\left(x_{2}, y_{1}\right) \wedge E\left(z, y_{2}\right) \wedge E\left(x_{4}, y_{2}\right) \\
& \exists y_{1} \forall x_{3} \forall x_{5} \exists y_{2} E\left(z, y_{1}\right) \wedge E\left(z, y_{1}\right) \wedge E\left(x_{3}, y_{2}\right) \wedge E\left(x_{4}, y_{2}\right)
\end{aligned}
$$

If $\mathcal{B}$ is logically $k$-collapsible, then $\operatorname{QCSP}(\mathcal{B})$ "collapses" to an ensemble of instances of $\operatorname{CSP}(\mathcal{B})$ and $\operatorname{QCSP}(\mathcal{B})$ is in NP.

Call an idempotent clone $\mathbb{B}$

- algebraically $k$-collapsible from source $\{z\}$
if it contains $f$ so that for each $m$, the image under $f$ of set tuples that are co-ordinate permutations of

is

E.g. $m:=4, k:=2$.

| $\{z\}$ | $\{z\}$ | $\{z\}$ | $B$ | $B$ | $B$ |  | $B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\{z\}$ | $B$ | $B$ | $\{z\}$ | $\{z\}$ | $B$ | $f$ | $B$ |
| $B$ | $\{z\}$ | $B$ | $\{z\}$ | $B$ | $\{z\}$ | $\longrightarrow$ | $B$ |
| $B$ | $B$ | $\{z\}$ | $B$ | $\{z\}$ | $\{z\}$ |  | $B$ |

Theorem (Chen 2006)
If $\operatorname{Pol}(\mathcal{B})$ is algebraically $k$-collapsible from source $Z$, then $\mathcal{B}$ is logically $k$-collapsible from source $Z$.

Theorem (Carvalho, Madelaine, M. 2015)
If $\mathcal{B}$ is logically $k$-collapsible from source $Z$, then $\operatorname{Pol}(\mathcal{B})$ is algebraically $k$-collapsible from source $Z$.

In many QCSP classiifications, all NP memberships can be explained uniformly by collapsibility. For example, this is true of all the classifications we already saw. But,

Theorem (Chen 2008)
There is $\mathcal{B}$ on 3-elements so that $\operatorname{Pol}(\mathcal{B})$ is "switchable" but not collapsible, and $\operatorname{QCSP}(\mathcal{B})$ is in NP.

Collapsibility looks like a form of the polynomal generated powers property (PGP): E.g. $m:=4, k:=2$.

$$
\begin{array}{cccccccc}
\{z\} & \{z\} & \{z\} & B & B & B & & B \\
\{z\} & B & B & \{z\} & \{z\} & B & f & B \\
B & \{z\} & B & \{z\} & B & \{z\} & \longrightarrow & B \\
B & B & \{z\} & B & \{z\} & \{z\} & & B
\end{array}
$$

Imagine for $|B|=2$ that each column becomes

$$
\begin{gathered}
\{z\} \\
\{z\}
\end{gathered} \Rightarrow \begin{array}{cccc}
z & z & z & z \\
B & z & z & z \\
z \\
B & & b_{1} & b_{1} \\
b_{1} & b_{2} & b_{2} & b_{1}
\end{array} b_{2}
$$

and for each $x_{1}, x_{2}, x_{3}, x_{4} \in B$ there exists an $f$ (i.e. this function is no longer uniform).

This is saying that $B^{m}$ is generated, in $\operatorname{Pol}(\mathcal{B})$, from the set of tuples of the form of co-orindate permutations of $\left(b_{1}, \ldots, b_{k}, z, \ldots, z\right)$, a set that we call $\mathscr{C}_{\{z\}}^{m}$.
Theorem (Carvalho, Madelaine, M. 2015)
$\operatorname{Pol}(\mathcal{B})$ is algebraically $k$-collapsible from source $Z$ iff, for all $m$, $B^{m}$ is generated in $\operatorname{Pol}(\mathcal{B})$ by $\mathscr{C}_{Z}^{m}$.
Message: Collapsibility well understood in idempotent singleton source case; and quite well understood in general idempotent case.

## Conjecture (Chen)

$\operatorname{QCSP}(\mathcal{B})$ in NP iff Pol $(\mathcal{B})$ has the PGP; and Pspace-complete otherwise.

