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The Constraint Satisfaction Problem CSP(B) takes as input a
primitive positive (pp) sentence Φ, i.e. of the form

∃v1 . . . vj φ(v1, . . . , vj),

where φ is a conjunction of atoms, and asks whether B |= Φ.

This is equivalent to the Homomorphism Problem – has A a
homomorphism to B?

The structure B is known as the template.
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Finite CSPs occur a lot in nature.

• CSP(Km) is graph m-colourability.

• CSP({0, 1}; RNAE ), where BNAE is
{0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is not-all-equal 3-satisfiabilty.

• CSP({0, 1}; RTTT ,RTTF ,RTFF ,RFFF ) is 3-satisfiabilty.

• CSP({0, 1}; {0}, {1}, {(0, 0), (1, 1)}) is graph s-t
unreachability.

Also vertex cover, clique and hamilton path – but these require
non-fixed template.

Infinite CSPs also occur a lot in nature (another story...)



Introduction Collapsibility

Feder-Vardi dichotomy conjecture. Each CSP(B) is either in P or
is NP-complete.

• Compare with Ladner non-dichotomy for NP.

Still open, but known for:

• Structures size 2 (Schaefer 1978).

• Structures size 3 (Bulatov 2002).

• Structures with unary relations (Bulatov 2003).

• Smooth digraphs (Barto, Kozik and Niven 2010).

• Structures size 4 (Marković 2011?).
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Manuel Bodirsky calls the CSP Königsproblem because it is a
beautiful marriage of

• logic (primitive positive model theory)

• combinatorics (structure homomorphism)

• algebra (polymorphism clones and varieties)

to an important class of problems in computer science.
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The Quantified CSP QCSP(B) takes as input a positive Horn (pH)
sentence Φ, i.e. of the form

∀v1∃v2 . . . ,Qv j φ(v1, v2, . . . , v j),

where φ is a conjunction of atoms, and asks whether B |= Φ.

QCSP(B) is always in Pspace.

• QCSPs used in AI to model non-monotonic reasoning.
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Previous classifications

QCSP classifications are harder than CSP classifications.

• Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

• Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

• Various digraphs Dichotomies and trichotomies NL,
NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011,
2013; Dapić, Marković, M. 2014 etc.)

• Structures with 2-semilattice polymorphism. Dichotomy P,
coNP-hard. (Chen 2004.)
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The recent advances in CSP complexity classification are due to
the algebraic approach.

• a k-ary polymorphism of B is a homomorphism from Bk to B.

The key to this approach is the Galois correspondence

Inv(Pol(B)) = 〈B〉pp

whose consequence is

Pol(B) ⊆ Pol(B′)⇒ CSP(B′) ≤P CSP(B)
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The algebraic approach exists also for the QCSP.

Inv(sPol(B)) = 〈B〉pH

whose consequence is

sPol(B) ⊆ sPol(B′)⇒ QCSP(B′) ≤P QCSP(B).

It appears to be weaker (surjective operations are not closed under
composition) and we have fewer combinatorial constructs.

• Important?

• Königsproblem?

Assume henceforth that finite B contains constants naming each
element. Now all polymorphisms are idempotent and
sPol(B) = Pol(B).
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Following Chen, for z ∈ B, call B

• logically k-collapsible from source {z}
if truth of a pH sentence can be decided by sub-sentences in which
all but k universal variables are forced to z .

E.g. k := 2 and for the pH sentence

∀x1∀x2∃y1∀x3∀x4∃y2 E (x1, y1) ∧ E (x2, y1) ∧ E (x3, y2) ∧ E (x4, y2),

we obtain the 2-collapsings

∀x1∀x2∃y1∃y2 E (x1, y1) ∧ E (x2, y1) ∧ E (z , y2) ∧ E (z , y2)
∀x1∃y1∀x3∃y2 E (x1, y1) ∧ E (z , y1) ∧ E (x3, y2) ∧ E (z , y2)
∀x1∃y1∀x4∃y2 E (x1, y1) ∧ E (z , y1) ∧ E (z , y2) ∧ E (x4, y2)
∀x2∃y1∀x3∃y2 E (z , y1) ∧ E (x2, y1) ∧ E (x3, y2) ∧ E (z , y2)
∀x2∃y1∀x4∃y2 E (z , y1) ∧ E (x2, y1) ∧ E (z , y2) ∧ E (x4, y2)
∃y1∀x3∀x5∃y2 E (z , y1) ∧ E (z , y1) ∧ E (x3, y2) ∧ E (x4, y2)
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If B is logically k-collapsible, then QCSP(B) “collapses” to an
ensemble of instances of CSP(B) and QCSP(B) is in NP.

Call an idempotent clone B
• algebraically k-collapsible from source {z}

if it contains f so that for each m, the image under f of set tuples
that are co-ordinate permutations of

(

k times︷ ︸︸ ︷
B, . . . ,B,

m−k times︷ ︸︸ ︷
{z}, . . . , {z})

is

(

m times︷ ︸︸ ︷
B, . . . ,B).
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E.g. m := 4, k := 2.

{z} {z} {z} B B B B
{z} B B {z} {z} B f B
B {z} B {z} B {z} −→ B
B B {z} B {z} {z} B

Theorem (Chen 2006)

If Pol(B) is algebraically k-collapsible from source Z , then B is
logically k-collapsible from source Z .

Theorem (Carvalho, Madelaine, M. 2015)

If B is logically k-collapsible from source Z , then Pol(B) is
algebraically k-collapsible from source Z .
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In many QCSP classiifications, all NP memberships can be
explained uniformly by collapsibility. For example, this is true of all
the classifications we already saw. But,

Theorem (Chen 2008)

There is B on 3-elements so that Pol(B) is “switchable” but not
collapsible, and QCSP(B) is in NP.
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Collapsibility looks like a form of the polynomal generated powers
property (PGP): E.g. m := 4, k := 2.

{z} {z} {z} B B B B
{z} B B {z} {z} B f B
B {z} B {z} B {z} −→ B
B B {z} B {z} {z} B

Imagine for |B| = 2 that each column becomes

{z} z z z z
{z} ⇒ z z z z
B ⇒ b1 b1 b2 b2

B b1 b2 b1 b2

and for each x1, x2, x3, x4 ∈ B there exists an f (i.e. this function is
no longer uniform).
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This is saying that Bm is generated, in Pol(B), from the set of
tuples of the form of co-orindate permutations of
(b1, . . . , bk , z , . . . , z), a set that we call Cm

{z}.

Theorem (Carvalho, Madelaine, M. 2015)

Pol(B) is algebraically k-collapsible from source Z iff, for all m,
Bm is generated in Pol(B) by Cm

Z .

Message: Collapsibility well understood in idempotent singleton
source case; and quite well understood in general idempotent case.

Conjecture (Chen)

QCSP(B) in NP iff Pol(B) has the PGP; and Pspace-complete
otherwise.
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