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Introduction Motivation

Question

How to represent a family of finitary relations R1,R2, . . . over a set A?

If A is finite, we can list the elements of relations (space intensive).

Algebraic approach

1 Consider the polymorphisms F of R1,R2, . . . , i.e., the operations on A
that preserve every Ri .

2 Then R1,R2, . . . are subalgebras of powers (subpowers) of the
algebra A := (A,F ) and can be represented by their generating sets.

3 In general more space efficient but:
How to check that a tuple is in a relation given by generators?
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Introduction SMP

Main problem

Fix a finite algebraic structure A = (A,F ) with finite set of operations F
(e.g., a group, ring, lattice, . . . ).

Subpower Membership Problem SMP(A) (Willard, 2007)

Input a1, . . . , ak , b ∈ An

Problem Is b in the subalgebra of An that is generated by a1, . . . , ak?

What is its complexity in terms of k and n?

1 For vector spaces, the problem is in P (Gaussian elimination).

2 Elements of B := 〈a1, . . . , ak〉 can be enumerated by a closure
algorithm. Since |B| ≤ |A|n, this puts SMP(A) in EXPTIME.
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Introduction SMP

Complexity hierarchy

Goal

Given A, what is the complexity of SMP(A) within the range

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

Convention

All algebras will be finite and have finitely many basic operations.
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EXPTIME

EXPTIME
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EXPTIME Clone membership

SMP and term functions

Clone Membership for A = (A,F )

Input g : Ak → A by its graph
Problem Is g a term function on A?

Note

1 SMP generalizes Clone Membership: g : Ak → A is a term function iff
g is in the subalgebra of AAk

that is generated by projection maps.

2 SMP asks: Is a given partial operation a term function?

b ∈ 〈a1, . . . , ak〉
iff g(a1, . . . , ak) = b for some term function g

iff


g(a11, . . . , ak1) = b1,

...
g(a1n, . . . , akn) = bn

defines the restriction of a term function.
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EXPTIME Clone membership

As hard as it gets

Theorem (Kozik, 2008)

There exists A for which Clone Membership (and hence SMP) is
EXPTIME-complete.
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P

P
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P Groups and NU

Classical results

Theorem (Furst, Hopcroft, Luks, 1980)

SMP is in P for groups.

Proof.

Uses Sims’ stabilizer chains.

Peter Mayr (JKU Linz) Computations in direct powers AAA 90 10 / 32



P Groups and NU

Theorem (Baker, Pixley, 1975)

For A with d-ary near unanimity term, SMP(A) is in P.

Proof

1 b ∈ 〈a1, . . . , ak〉 ≤ An iff πS(b) ∈ 〈πS(a1), . . . , πS(ak)〉 for all
S ⊆ [n], |S | ≤ d − 1.

2 Need ≤ nd−1 membership tests in Ad−1 at cost O(k) each.
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P Size 2

Theorem (Mayr, 2012)

SMP is in P for algebras of size 2.

Proof.

By Post’s classification (1941) either A

1 is unary,

2 has a near unanimity term,

3 is polynomially equivalent to (Z2,+),

4 is polynomially equivalent to a semilattice,

5 is one of 4 reducts of the implication algebra with term x ∨ (y ∧ z)
(or their duals).

In case 5, A has a term

w ∨ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)︸ ︷︷ ︸
majority operation

and membership can be checked by an adaptation of Baker-Pixley.
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P Size 2

Post’s lattice
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P Few subpowers

Algebras for which all subpowers have small generating sets

A has few subpowers if ∃ polynomial p ∀n ∈ N: |{B ≤ An}| ≤ 2p(n).

Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2010)

TFAE for A:

1 A has few subpowers.

2 ∃ polynomial q ∀n ∈ N ∀B ≤ An: B is generated by ≤ q(n) elements.

3 A has an edge (cube, parallelogram) term.

Example

Algebras with group operation (Mal’cev term) or lattice operation (near
unanimity term) have few subpowers. Equivalently, their subpowers have
generating sets whose size is polynomial in the length of tuples.
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P Few subpowers

Kearnes, Szendrei (2012)

A (d + 3)-ary term operation p on A is a (1, d − 1)-parallelogram term if

p
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P SIP

Equivalent problems

For A with few subpowers, every B ≤ An has a compact representation
(a generating set of particular form and size polynomial in n, Berman, et
al, 2010).

Lemma (Idziak, Markovic, McKenzie, Valeriote, Willard, 2010)

For A with few subpowers and B ≤ An given by compact representation,
deciding membership in B is in P.

Lemma (Mayr, 2014)

For A with few subpowers the following are equivalent under polynomial
reduction:

1 SMP.

2 Given a subpower B by arbitrary generators, determine a compact
representation of B.

3 Given subpowers B,C by generators, determine generators of B ∩ C .
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P Results

Results

Lemma (Mayr, 2014)

SMP is in NP for algebras with few subpowers.

Proof.

Uses compact representations.
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P Results

Theorem (Mayr, 2012)

SMP is in P for expansions of p-groups (more generally, of nilpotent
Mal’cev algebras of prime power size).

Proof.

Uses structure of nilpotent Mal’cev algebras (Freese, McKenzie, 1987) and
group representation theory.
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P Results

Reduction lemmas

Lemma (Bulatov, Mayr, Szendrei, 2014)

For A with few subpowers, SMP(A) reduces to membership problems for
B ≤sd B1 × · · · × Bn where for all i 6= j :

1 Bi ∈ HS(A) is subdirectly irreducible with abelian monolith µi ,

2 πij(B)/(0 : µi )× (0 : µj) is the graph of an isomorphism.

Proof.

Uses critical relations (Kearnes, Szendrei, 2012).

Lemma (Bulatov, Mayr, Szendrei, 2014)

Membership for B as above reduces to membership for
C ≤sd C1 × · · · × Cm with C1, . . . ,Cm subdirectly irreducible with central
monoliths and with edge term.

Proof.

Blocks for centralizers (0 : µi ) are turned into algebras Cj .
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P Results

Main result

Theorem (Bulatov, Mayr, Szendrei, 2014)

Let A with few subpowers such that every subdirectly irreducible
B ∈ HS(A) has a monolith with supernilpotent centralizer. Then SMP(A)
is in P.

Proof.

By our Reduction Lemmas SMP(A) reduces to membership problems for
C ≤sd C1 × · · · × Cm with supernilpotent Mal’cev algebras C1, . . . ,Cm.
These are in P by Mayr, 2012.
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P Results

Consequences

Corollary (Bulatov, Mayr, Szendrei, 2014)

SMP is in P for algebras with few subpowers in a residually finite variety.

Corollary (Bulatov, Mayr, Szendrei, 2014)

SMP(A) is in P for Mal’cev algebras A with |A| ≤ 3.
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P Problems

Can we compute efficiently with generators of subpowers?

Question (Willard, 2007; Idziak, et al, 2010)

Is SMP in P for every algebra with few subpowers?

Still open in general, even for Mal’cev algebras, expansions of groups.
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NP

NP
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NP Semigroups

Semigroups are hard

Example (Bulatov, 2014)

The semigroup S1 := ({0, a, 1}, ·) with

· 0 a 1

0 0 0 0
a 0 0 a
1 0 a 1

has NP-complete SMP.
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NP Semigroups

Proof.

Since S1 is commutative, SMP(S1) is in NP.
For NP-hardness, we reduce the following NP-complete problem to SMP.

Set Covering Problem

Input subsets T1, . . . ,Tk of [n] = {1, . . . , n}
Problem Is [n] a disjoint union of some of the T1, . . . ,Tk?

For T ⊆ [n], consider its characteristic function aT ∈ (S1)n,

aT (i) :=

{
a if i ∈ T ,

1 else.

Recall a2 = 0.
Then [n] = Ti1 ·∪ · · · ·∪Ti` iff a[n] = aTi1

· · · aTi`
.
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NP Commutative semigroups

A dichotomy for commutative semigroups

Theorem (Bulatov, Mayr, Steindl, 2015)

Let S be a commutative semigroup. Then SMP(S) is in P if S embeds
into a direct product of a nilpotent semigroup and a Clifford semigroup;
NP-complete otherwise.
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PSPACE

PSPACE
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PSPACE Semigroups

Semigroups are PSPACE-easy

Theorem (Bulatov, Mayr, Steindl, 2015)

SMP for semigroups is in PSPACE.

Proof

1 If b ∈ 〈a1, . . . , ak〉, then b = ai1 . . . aim for i1, . . . , im ∈ [k].

2 A nondeterministic Turing machine can guess factors aij one by one
saving only the last partial product ai1 . . . aij until it reaches b.
This takes space O(n).

3 Hence SMP is in NPSPACE (which is equal to PSPACE by
Savitch’s Theorem).
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PSPACE Semigroups

PSPACE-hard semigroup

Theorem (Bulatov, Mayr, Steindl, 2015)

SMP for the full transformation semigroup T5 on 5 letters is
PSPACE-complete.

Proof

We reduce Quantified SAT (which is PSPACE-complete) to SMP.
Given an instance of 3QSAT

Φ := ∀x1∃y1 . . . ∀xn∃yn (
∨

C1) ∧ · · · ∧ (
∨

Cm)

with clauses C1, . . . ,Cm of length 3, define an instance of SMP(T5) such
that

Φ is true iff e ∈ 〈G 〉.
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PSPACE Semigroups

Recall Φ = ∀x1∃y1 . . . ∀xn∃yn (
∨
C1) ∧ · · · ∧ (

∨
Cm)

G := {a, a1, . . . , an, b−1/0/+1
1 , . . . , b

−1/0/+1
n , c , d} and e are in T 3n+m

5

Basic ideas:

1 The first 2n coordinates encode assignments 0, 1 of the variables,
the next m give the number 0, 1, 2, 3 of literals satisfied in each clause,
the rest governs the order of multiplication of generators.

2 ai changes universal variables, b
−1/0/+1
i changes existential variables.

3 e ∈ 〈G 〉 iff g1 . . . g` = e for some g1, . . . , g` ∈ G with partial products
encoding satisfying assignments for the existential variables for all 2n

choices for the universal variables.
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5

Basic ideas:

1 The first 2n coordinates encode assignments 0, 1 of the variables,
the next m give the number 0, 1, 2, 3 of literals satisfied in each clause,
the rest governs the order of multiplication of generators.

2 ai changes universal variables, b
−1/0/+1
i changes existential variables.

3 e ∈ 〈G 〉 iff g1 . . . g` = e for some g1, . . . , g` ∈ G with partial products
encoding satisfying assignments for the existential variables for all 2n

choices for the universal variables.
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PSPACE Automata

Product of automata

Automata Intersection Problem

Input F1, . . . ,Fn deterministic finite state automata with
common alphabet Σ

Problem Is there a word in Σ∗ that is accepted by all of F1, . . . ,Fn?

Theorem (Kozen, 1977)

The Automata Intersection Problem is PSPACE-complete.

Note

PSPACE-complete even if F1, . . . ,Fn have only 4 states (Bulatov, Mayr,
Steindl, 2015).
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Conclusion

Conclusion

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

1 SMP(A) is always in EXPTIME and is EXPTIME-complete for
some A.

2 SMP for A with few subpowers is in NP, not known to be in P in
general.

3 There are semigroups for which SMP is in P, NP-complete, or
PSPACE-complete.
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