Computations in direct powers

Peter Mayr

JKU Linz, Austria peter.mayr@jku.at

Novi Sad, June 5, 2015

Supported by the Austrian Science Fund (FWF): P24285

Joint work with

- Andrei Bulatov (Vancouver)
- Jakub Bulin (Krakow)
- Markus Steindl (Linz)
- Ágnes Szendrei (Boulder)

Motivation

Question

How to represent a family of finitary relations R_1, R_2, \ldots over a set A?

-

• • • • • • • • • • • •

Question

How to represent a family of finitary relations R_1, R_2, \ldots over a set A?

If A is finite, we can list the elements of relations (space intensive).

Question

How to represent a family of finitary relations R_1, R_2, \ldots over a set A?

If A is finite, we can list the elements of relations (space intensive).

Algebraic approach

- Consider the polymorphisms F of R₁, R₂,..., i.e., the operations on A that preserve every R_i.
- Then R₁, R₂,... are subalgebras of powers (subpowers) of the algebra A := (A, F) and can be represented by their generating sets.
- In general more space efficient but: How to check that a tuple is in a relation given by generators?

Main problem

Fix a finite algebraic structure $\mathbf{A} = (A, F)$ with finite set of operations F (e.g., a group, ring, lattice, ...).

Subpower Membership Problem SMP(**A**) (Willard, 2007)

Input $a_1, \ldots, a_k, b \in A^n$ ProblemIs b in the subalgebra of \mathbf{A}^n that is generated by a_1, \ldots, a_k ?

イロト 不得下 イヨト イヨト

Main problem

Fix a finite algebraic structure $\mathbf{A} = (A, F)$ with finite set of operations F (e.g., a group, ring, lattice, ...).

Subpower Membership Problem SMP(**A**) (Willard, 2007)

Input $a_1, \ldots, a_k, b \in A^n$ ProblemIs b in the subalgebra of \mathbf{A}^n that is generated by a_1, \ldots, a_k ?

What is its complexity in terms of k and n?

- \bigcirc For vector spaces, the problem is in P (Gaussian elimination).
- Elements of B := (a₁,..., a_k) can be enumerated by a closure algorithm. Since |B| ≤ |A|ⁿ, this puts SMP(A) in EXPTIME.

Complexity hierarchy

Goal

Given A, what is the complexity of SMP(A) within the range

$\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXPTIME}$

Convention

All algebras will be finite and have finitely many basic operations.

EXPTIME

Peter Mayr (JKU Linz)

Computations in direct powers

≣ ► ≣ २९९ AAA 90 6 / 32

<ロ> (日) (日) (日) (日) (日)

SMP and term functions

Clone Membership for $\mathbf{A} = (A, F)$

 $\begin{array}{ll} \mbox{Input} & g \colon A^k \to A \mbox{ by its graph} \\ \mbox{Problem} & \mbox{Is } g \mbox{ a term function on } {\bf A}? \end{array}$

(日) (同) (三) (三)

SMP and term functions

Clone Membership for $\mathbf{A} = (A, F)$

Note

SMP generalizes Clone Membership: g: A^k → A is a term function iff g is in the subalgebra of A^{A^k} that is generated by projection maps.

SMP and term functions

Clone Membership for $\mathbf{A} = (A, F)$

 $\begin{array}{ll} \text{Input} & g \colon A^k \to A \text{ by its graph} \\ \text{Problem} & \text{Is } g \text{ a term function on } \mathbf{A}? \end{array}$

Note

- SMP generalizes Clone Membership: g: A^k → A is a term function iff g is in the subalgebra of A^{A^k} that is generated by projection maps.
- SMP asks: Is a given partial operation a term function?

$$b \in \langle a_1, \dots, a_k \rangle$$
iff $g(a_1, \dots, a_k) = b$ for some term function g
iff
$$\begin{cases} g(a_{11}, \dots, a_{k1}) = b_1, \\ \vdots & \text{defines the restriction of a term function.} \\ g(a_{1n}, \dots, a_{kn}) = b_n \end{cases}$$
eter May: (JKU Linz) Computations in direct powers AAA 90 7/32

As hard as it gets

Theorem (Kozik, 2008)

There exists **A** for which Clone Membership (and hence SMP) is EXPTIME-complete.

< 4 ₽ × <

3 🕨 🖌 3

Р

Peter Mayr (JKU Linz)

Computations in direct powers

AAA 90 9 / 32

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Classical results

Theorem (Furst, Hopcroft, Luks, 1980)

 SMP is in P for groups.

Proof.

Uses Sims' stabilizer chains.

Р

Theorem (Baker, Pixley, 1975)

For **A** with *d*-ary near unanimity term, $SMP(\mathbf{A})$ is in P.

Proof

- $b \in \langle a_1, \ldots, a_k \rangle \leq \mathbf{A}^n$ iff $\pi_S(b) \in \langle \pi_S(a_1), \ldots, \pi_S(a_k) \rangle$ for all $S \subseteq [n], |S| \leq d-1.$
- **2** Need $\leq n^{d-1}$ membership tests in \mathbf{A}^{d-1} at cost O(k) each.

• • = • • = •

Theorem (Mayr, 2012)

 SMP is in P for algebras of size 2.

(日) (同) (三) (三)

Theorem (Mayr, 2012)

 SMP is in P for algebras of size 2.

Proof.

By Post's classification (1941) either A

- is unary,
- has a near unanimity term,
- ${f 3}$ is polynomially equivalent to $({\Bbb Z}_2,+)$,
- is polynomially equivalent to a semilattice,
- is one of 4 reducts of the implication algebra with term x ∨ (y ∧ z) (or their duals).

In case 5, A has a term

 $w \lor (x \land y) \lor (x \land z) \lor (y \land z)$

majority operation

12 / 32

and membership can be checked by an adaptation of Baker-Pixley. Peter Mayr (JKU Linz) Computations in direct powers AAA 90

Post's lattice

Computations in direct powers

AAA 90 13 / 32

Algebras for which all subpowers have small generating sets

A has few subpowers if \exists polynomial $p \forall n \in \mathbb{N}$: $|\{B \leq \mathbf{A}^n\}| \leq 2^{p(n)}$.

AAA 90 14 / 32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Algebras for which all subpowers have small generating sets

P

A has **few subpowers** if \exists polynomial $p \forall n \in \mathbb{N}$: $|\{B \leq \mathbf{A}^n\}| \leq 2^{p(n)}$.

Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2010) TFAE for **A**:

- **A** has few subpowers.
- **2** \exists polynomial $q \ \forall n \in \mathbb{N} \ \forall B \leq \mathbf{A}^n$: *B* is generated by $\leq q(n)$ elements.
- **O** A has an edge (cube, parallelogram) term.

Algebras for which all subpowers have small generating sets

P

A has **few subpowers** if \exists polynomial $p \forall n \in \mathbb{N}$: $|\{B \leq \mathbf{A}^n\}| \leq 2^{p(n)}$.

Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2010) TFAE for **A**:

- **1** A has few subpowers.
- **2** \exists polynomial $q \forall n \in \mathbb{N} \forall B \leq \mathbf{A}^n$: B is generated by $\leq q(n)$ elements.
- **O** A has an edge (cube, parallelogram) term.

Example

Algebras with group operation (Mal'cev term) or lattice operation (near unanimity term) have few subpowers. Equivalently, their subpowers have generating sets whose size is polynomial in the length of tuples.

イロト イヨト イヨト

Kearnes, Szendrei (2012)

A (d+3)-ary term operation p on **A** is a (1, d-1)-parallelogram term if

$$p\begin{pmatrix} x & x & y & z & y & \dots & y \\ y & x & x & y & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & y \\ y & x & x & y & \dots & y & z \end{pmatrix} \approx \begin{pmatrix} y \\ \vdots \\ \vdots \\ \vdots \\ y \end{pmatrix}.$$

٠

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Equivalent problems

For **A** with few subpowers, every $B \leq \mathbf{A}^n$ has a **compact representation** (a generating set of particular form and size polynomial in *n*, Berman, et al, 2010).

Р

- 4 同 6 4 日 6 4 日 6

Equivalent problems

For **A** with few subpowers, every $B \leq \mathbf{A}^n$ has a **compact representation** (a generating set of particular form and size polynomial in *n*, Berman, et al, 2010).

Lemma (Idziak, Markovic, McKenzie, Valeriote, Willard, 2010)

For **A** with few subpowers and $B \leq \mathbf{A}^n$ given by compact representation, deciding membership in B is in P.

Р

Equivalent problems

For **A** with few subpowers, every $B \leq \mathbf{A}^n$ has a **compact representation** (a generating set of particular form and size polynomial in *n*, Berman, et al, 2010).

Lemma (Idziak, Markovic, McKenzie, Valeriote, Willard, 2010)

For **A** with few subpowers and $B \leq \mathbf{A}^n$ given by compact representation, deciding membership in B is in P.

Lemma (Mayr, 2014)

For **A** with few subpowers the following are equivalent under polynomial reduction:

- **1** SMP.
- Given a subpower B by arbitrary generators, determine a compact representation of B.
- **③** Given subpowers B, C by generators, determine generators of $B \cap C$.

Р

Lemma (Mayr, 2014)

 SMP is in NP for algebras with few subpowers.

Proof.

Uses compact representations.

Results

- 4 同 6 4 日 6 4 日 6

P

Theorem (Mayr, 2012)

 SMP is in P for expansions of *p*-groups (more generally, of nilpotent Mal'cev algebras of prime power size).

Proof.

Uses structure of nilpotent Mal'cev algebras (Freese, McKenzie, 1987) and group representation theory. $\hfill\square$

Results

P

Reduction lemmas

Lemma (Bulatov, Mayr, Szendrei, 2014)

For **A** with few subpowers, SMP(**A**) reduces to membership problems for $B \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ where for all $i \neq j$:

- **0** $\mathbf{B}_i \in HS(\mathbf{A})$ is subdirectly irreducible with abelian monolith μ_i ,
- 2 $\pi_{ij}(B)/(0:\mu_i) \times (0:\mu_j)$ is the graph of an isomorphism.

Results

P

Reduction lemmas

Lemma (Bulatov, Mayr, Szendrei, 2014)

For **A** with few subpowers, SMP(**A**) reduces to membership problems for $B \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ where for all $i \neq j$:

- **9** $\mathbf{B}_i \in HS(\mathbf{A})$ is subdirectly irreducible with abelian monolith μ_i ,
- 2 $\pi_{ij}(B)/(0:\mu_i) \times (0:\mu_j)$ is the graph of an isomorphism.

Proof.

Uses critical relations (Kearnes, Szendrei, 2012).

.

Results

Р

Reduction lemmas

Lemma (Bulatov, Mayr, Szendrei, 2014)

For **A** with few subpowers, SMP(**A**) reduces to membership problems for $B \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ where for all $i \neq j$:

- **9** $\mathbf{B}_i \in HS(\mathbf{A})$ is subdirectly irreducible with abelian monolith μ_i ,
- 2 $\pi_{ij}(B)/(0:\mu_i) \times (0:\mu_j)$ is the graph of an isomorphism.

Proof.

Uses critical relations (Kearnes, Szendrei, 2012).

Lemma (Bulatov, Mayr, Szendrei, 2014)

Membership for *B* as above reduces to membership for $C \leq_{sd} \mathbf{C}_1 \times \cdots \times \mathbf{C}_m$ with $\mathbf{C}_1, \ldots, \mathbf{C}_m$ subdirectly irreducible with central monoliths and with edge term.

Proof.

Blocks for centralizers $(0: \mu_i)$ are turned into algebras C_i .

Peter Mayr (JKU Linz)

Computations in direct powers

P

Main result

Theorem (Bulatov, Mayr, Szendrei, 2014)

Let **A** with few subpowers such that every subdirectly irreducible $\mathbf{B} \in HS(\mathbf{A})$ has a monolith with supernilpotent centralizer. Then SMP(**A**) is in P.

Proof.

By our Reduction Lemmas SMP(**A**) reduces to membership problems for $C \leq_{sd} \mathbf{C}_1 \times \cdots \times \mathbf{C}_m$ with supernilpotent Mal'cev algebras $\mathbf{C}_1, \ldots, \mathbf{C}_m$. These are in P by Mayr, 2012.

< 同 ト く ヨ ト く ヨ ト

Corollary (Bulatov, Mayr, Szendrei, 2014)

 SMP is in P for algebras with few subpowers in a residually finite variety.

Results

Peter Mayr (JKU Linz)

Computations in direct powers

AAA 90 21 / 32

► < ∃ ►</p>

P

Consequences

Corollary (Bulatov, Mayr, Szendrei, 2014)

 SMP is in P for algebras with few subpowers in a residually finite variety.

Corollary (Bulatov, Mayr, Szendrei, 2014) SMP(**A**) is in P for Mal'cev algebras **A** with $|A| \le 3$.

Peter Mayr (JKU Linz)

AAA 90 21 / 32

Can we compute efficiently with generators of subpowers?

Р

Question (Willard, 2007; Idziak, et al, 2010)

Is SMP in P for every algebra with few subpowers?

Still open in general, even for Mal'cev algebras, expansions of groups.

NP

AAA 90 23 / 32

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

NP

Semigroups are hard

Example (Bulatov, 2014)

The semigroup $S^1 := (\{0, a, 1\}, \cdot)$ with

$$\begin{array}{c|cccc} \cdot & 0 & a & 1 \\ \hline 0 & 0 & 0 & 0 \\ a & 0 & 0 & a \\ 1 & 0 & a & 1 \\ \end{array}$$

-

has NP-complete SMP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Proof.

Since S^1 is commutative, SMP(S^1) is in NP.

For $\operatorname{NP}\xspace$ hardness, we reduce the following $\operatorname{NP}\xspace$ complete problem to $\operatorname{SMP}\xspace$.

Set Covering Problem

Input subsets T_1, \ldots, T_k of $[n] = \{1, \ldots, n\}$ Problem Is [n] a disjoint union of some of the T_1, \ldots, T_k ?

Proof.

Since S^1 is commutative, $SMP(S^1)$ is in NP. For NP-hardness, we reduce the following NP-complete problem to SMP.

Set Covering Problem

Input subsets T_1, \ldots, T_k of $[n] = \{1, \ldots, n\}$ Problem Is [n] a disjoint union of some of the T_1, \ldots, T_k ?

For $T \subseteq [n]$, consider its characteristic function $a_T \in (S^1)^n$,

$$a_T(i) := egin{cases} a & ext{if } i \in T, \ 1 & ext{else.} \end{cases}$$

Recall $a^2 = 0$. Then $[n] = T_{i_1} \cup \cdots \cup T_{i_\ell}$ iff $a_{[n]} = a_{T_{i_1}} \cdots a_{T_{i_\ell}}$.

A (10) N (10)

A dichotomy for commutative semigroups

Theorem (Bulatov, Mayr, Steindl, 2015)

Let **S** be a commutative semigroup. Then SMP(S) is in P if **S** embeds into a direct product of a nilpotent semigroup and a Clifford semigroup; NP-complete otherwise.

NP

PSPACE

Peter Mayr (JKU Linz)

Computations in direct powers

▲ ■ ● ● Q @ AAA 90 27 / 32

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Semigroups are PSPACE -easy

Theorem (Bulatov, Mayr, Steindl, 2015) SMP for semigroups is in PSPACE.

▲AA 90 28 / 32

- 4 同 1 - 4 三 1 - 4 三

Semigroups are PSPACE -easy

Theorem (Bulatov, Mayr, Steindl, 2015) SMP for semigroups is in PSPACE.

Proof

- If $b \in \langle a_1, \ldots, a_k \rangle$, then $b = a_{i_1} \ldots a_{i_m}$ for $i_1, \ldots, i_m \in [k]$.
- A nondeterministic Turing machine can guess factors a_{ij} one by one saving only the last partial product a_{i1}...a_{ij} until it reaches b. This takes space O(n).
- Hence SMP is in NPSPACE (which is equal to PSPACE by Savitch's Theorem).

AAA 90 28 / 32

・ 何 ト ・ ヨ ト ・ ヨ ト

PSPACE-hard semigroup

Theorem (Bulatov, Mayr, Steindl, 2015)

 ${\rm SMP}$ for the full transformation semigroup \textbf{T}_5 on 5 letters is ${\rm PSPACE}\text{-}{\rm complete}.$

- ×

PSPACE-hard semigroup

Theorem (Bulatov, Mayr, Steindl, 2015)

 ${\rm SMP}$ for the full transformation semigroup \textbf{T}_5 on 5 letters is ${\rm PSPACE}\text{-}{\rm complete}.$

Proof

We reduce Quantified SAT (which is PSPACE -complete) to SMP . Given an instance of 3QSAT

$$\Phi := \forall x_1 \exists y_1 \dots \forall x_n \exists y_n (\bigvee C_1) \land \dots \land (\bigvee C_m)$$

with clauses C_1, \ldots, C_m of length 3, define an instance of $\mathrm{SMP}(\mathsf{T}_5)$ such that

$$\Phi$$
 is true iff $e \in \langle G \rangle$.

< (17) > < (17) > (17)

Recall $\Phi = \forall x_1 \exists y_1 \dots \forall x_n \exists y_n (\bigvee C_1) \land \dots \land (\bigvee C_m)$

$$G := \{a, a_1, \dots, a_n, b_1^{-1/0/+1}, \dots, b_n^{-1/0/+1}, c, d\}$$
 and e are in T_5^{3n+m}

AAA 90 30 / 32

📃 ૧૧૯

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\mathsf{Recall} \ \Phi = \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \ (\bigvee C_1) \land \dots \land (\bigvee C_m)$$

$$G := \{a, a_1, \dots, a_n, b_1^{-1/0/+1}, \dots, b_n^{-1/0/+1}, c, d\}$$
 and e are in T_5^{3n+m}

Basic ideas:

The first 2n coordinates encode assignments 0, 1 of the variables, the next m give the number 0, 1, 2, 3 of literals satisfied in each clause, the rest governs the order of multiplication of generators. Recall $\Phi = \forall x_1 \exists y_1 \dots \forall x_n \exists y_n (\bigvee C_1) \land \dots \land (\bigvee C_m)$

 $G := \{a, a_1, \dots, a_n, b_1^{-1/0/+1}, \dots, b_n^{-1/0/+1}, c, d\}$ and e are in T_5^{3n+m}

Basic ideas:

- The first 2n coordinates encode assignments 0, 1 of the variables, the next m give the number 0, 1, 2, 3 of literals satisfied in each clause, the rest governs the order of multiplication of generators.
- 2 a_i changes universal variables, $b_i^{-1/0/+1}$ changes existential variables.

イロト イポト イヨト イヨト 二日

Recall $\Phi = \forall x_1 \exists y_1 \dots \forall x_n \exists y_n (\bigvee C_1) \land \dots \land (\bigvee C_m)$

 $G := \{a, a_1, \dots, a_n, b_1^{-1/0/+1}, \dots, b_n^{-1/0/+1}, c, d\}$ and e are in T_5^{3n+m}

Basic ideas:

- The first 2n coordinates encode assignments 0, 1 of the variables, the next m give the number 0, 1, 2, 3 of literals satisfied in each clause, the rest governs the order of multiplication of generators.
- 2 a_i changes universal variables, $b_i^{-1/0/+1}$ changes existential variables.
- e ∈ ⟨G⟩ iff g₁...g_ℓ = e for some g₁,...,g_ℓ ∈ G with partial products encoding satisfying assignments for the existential variables for all 2ⁿ choices for the universal variables.

Product of automata

Automata Intersection Problem

Input F_1, \ldots, F_n deterministic finite state automata with common alphabet Σ Problem Is there a word in Σ^* that is accepted by all of F_1, \ldots, F_n ?

AAA 90 31 / 32

< ロト < 同ト < ヨト < ヨト

Product of automata

Automata Intersection Problem

Input F_1, \ldots, F_n deterministic finite state automata with common alphabet Σ Problem Is there a word in Σ^* that is accepted by all of F_1, \ldots, F_n ?

Theorem (Kozen, 1977)

The Automata Intersection Problem is PSPACE-complete.

Note

PSPACE-complete even if F_1, \ldots, F_n have only 4 states (Bulatov, Mayr, Steindl, 2015).

・ロン ・四 ・ ・ ヨン ・ ヨン

Conclusion

$\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXPTIME}$

- SMP(A) is always in EXPTIME and is EXPTIME-complete for some A.
- SMP for A with few subpowers is in NP, not known to be in P in general.
- There are semigroups for which SMP is in P, NP-complete, or PSPACE-complete.