Kittisak Tinpun

Institute of Mathematics, Am Neuen Palais 10, University of Potsdam, 14469 Potsdam, Germany

AAA90 6th June 2015

3 Main Results

- General Results
- $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$
- Rank($T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)$)
- Rank(*T*(Q, *Y*) : *O*(Q, *Y*))

Background

- In 2013, Fernandes, V.H., Honyam, P., Quinteiro, T.M., Singha, B., On semigroups of endomorphisms of a chain with restriced range, Semigroup Forum 89, 77-104.
- In 1992, Gomes, G.M.S., Howie, J.M., On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45, 272-282.
- In 1998, Howie, J.M., Ruskuc, N., Higgins, P.M., On relative ranks of full transformation semigroups, Communications in Algebra 26(3), 733-748.

Background

- In 2013, Fernandes, V.H., Honyam, P., Quinteiro, T.M., Singha, B., On semigroups of endomorphisms of a chain with restriced range, Semigroup Forum 89, 77-104.
- In 1992, Gomes, G.M.S., Howie, J.M., On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45, 272-282.
- In 1998, Howie, J.M., Ruskuc, N., Higgins, P.M., On relative ranks of full transformation semigroups, Communications in Algebra 26(3), 733-748.

Background

- In 2013, Fernandes, V.H., Honyam, P., Quinteiro, T.M., Singha, B., On semigroups of endomorphisms of a chain with restriced range, Semigroup Forum 89, 77-104.
- In 1992, Gomes, G.M.S., Howie, J.M., On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45, 272-282.
- In 1998, Howie, J.M., Ruskuc, N., Higgins, P.M., On relative ranks of full transformation semigroups, Communications in Algebra 26(3), 733-748.

Let *X* be a non-empty set and $Y \subseteq X$. Then a mapping α from set *X* to set *X* is called **full transformation**.

Then T(X) is the full transformation semigroup under composition.

The semigroup T(X, Y) was introduced by J.S.V. Symons in 1975, called semigroup with restricted range. If X = Y then T(X, Y) is the full transformation semigroup T(X).

Let *X* be a non-empty set and $Y \subseteq X$. Then a mapping α from set *X* to set *X* is called **full transformation**.

Then T(X) is the full transformation semigroup under composition.

The semigroup T(X, Y) was introduced by J.S.V. Symons in 1975, called semigroup with restricted range. If X = Y then T(X, Y) is the full transformation semigroup T(X).

Let *X* be a non-empty set and $Y \subseteq X$. Then a mapping α from set *X* to set *X* is called **full transformation**.

Then T(X) is the full transformation semigroup under composition.

The semigroup T(X, Y) was introduced by J.S.V. Symons in 1975, called semigroup with restricted range. If X = Y then T(X, Y) is the full transformation semigroup T(X).

Let X be an infinite chain and Y be a subchain of X. Let

$$O(X) = \{ \alpha \in T(X) : \forall x, y \in X, x \leq y \Rightarrow x \alpha \leq y \alpha \}$$

be the set of all order-preserving transformations. We define

$$O(X, Y) := O(X) \cap T(X, Y)$$

For a semigroup S, the idea of rank is concerned with finding minimum size generating sets for S, denoted rank(S).

Let X be an infinite chain and Y be a subchain of X. Let

$$O(X) = \{ \alpha \in T(X) : \forall x, y \in X, x \leq y \Rightarrow x \alpha \leq y \alpha \}$$

be the set of all order-preserving transformations. We define

$$O(X, Y) := O(X) \cap T(X, Y)$$

For a semigroup S, the idea of rank is concerned with finding minimum size generating sets for S, denoted rank(S).

For a semigroup *S*, if $A \subseteq S$ then we call the minimum cardinality of a set *B* such that $\langle A \cup B \rangle = S$ the relative rank of *S* modulo *A*, denoted rank(*S* : *A*). Let $\alpha \in T(X, Y)$.

• The set $X\alpha$ is called image of α , denoted im α .

• The cardinality of the set $im\alpha$ is called rank of α , denoted $rank\alpha := |im\alpha|$.

For a semigroup *S*, if $A \subseteq S$ then we call the minimum cardinality of a set *B* such that $\langle A \cup B \rangle = S$ the relative rank of *S* modulo *A*, denoted rank(*S* : *A*). Let $\alpha \in T(X, Y)$.

• The set $X\alpha$ is called image of α , denoted im α .

• The cardinality of the set $im\alpha$ is called rank of α , denoted $rank\alpha := |im\alpha|$.

For a semigroup *S*, if $A \subseteq S$ then we call the minimum cardinality of a set *B* such that $\langle A \cup B \rangle = S$ the relative rank of *S* modulo *A*, denoted rank(*S* : *A*). Let $\alpha \in T(X, Y)$.

• The set $X\alpha$ is called image of α , denoted im α .

• The cardinality of the set $im\alpha$ is called rank of α , denoted $rank\alpha := |im\alpha|$.

Rank properties of transformation semigroups with restricted range Introduction and Preliminaries

Introduction and Preliminaries

 The kernel of α, denoted ker α := {(x, y) ∈ X × X : xα = yα}, is equivalence relation on X, which corresponds uniquely to a decomposition of X into blocks, called ker α-classes.

 The infinite contraction index define as the number of classes of ker α of size |X|. Rank properties of transformation semigroups with restricted range Introduction and Preliminaries

Introduction and Preliminaries

- The kernel of α, denoted ker α := {(x, y) ∈ X × X : xα = yα}, is equivalence relation on X, which corresponds uniquely to a decomposition of X into blocks, called ker α-classes.
- The infinite contraction index define as the number of classes of ker α of size |X|.

Main Results

General Results

2 Introduction and Preliminaries

3 Main Results

- General Results
- $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$
- Rank($T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)$)
- $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

(日)

8/20

Main Results

General Results

Let *X* be an infinite chain and *Y* be a non-empty subchain of *X* such that |Y| = |X| or *Y* is finite.

Proposition 1

Let X be an infinite chain and Y be a subchain of X such that there exists $X' \subseteq Y$ such that |X'| = |Y| = |X| and where any order-preserving map from X' to X' can be extended to an order-preserving map from X to Y. Then rank $(T(X') : O(X')) \le 2$ implies rank $(T(X, Y) : O(X, Y)) \le 2$.

Corollary 1

Let X be an infinite chain such that there are a well ordered subchain $X' \subseteq Y$ with |X'| = |Y| = |X| and $a \in Y$ with a > x' for all $x' \in X'$. Then rank $(T(X, Y) : O(X, Y)) \le 2$.

Main Results

General Results

Let *X* be an infinite chain and *Y* be a non-empty subchain of *X* such that |Y| = |X| or *Y* is finite.

Proposition 1

Let X be an infinite chain and Y be a subchain of X such that there exists $X' \subseteq Y$ such that |X'| = |Y| = |X| and where any order-preserving map from X' to X' can be extended to an order-preserving map from X to Y. Then rank $(T(X') : O(X')) \le 2$ implies rank $(T(X, Y) : O(X, Y)) \le 2$.

Corollary 1

Let X be an infinite chain such that there are a well ordered subchain $X' \subseteq Y$ with |X'| = |Y| = |X| and $a \in Y$ with a > x' for all $x' \in X'$. Then rank $(T(X, Y) : O(X, Y)) \le 2$.

Main Results

General Results

Next, we define $(x] := \{y \in Y : y \le x\}$ on the chain Y for $x \in Y$.

Proposition 2

Let X be an infinite chain and Y be a subchain of X with |Y| = |X|. If there is a well ordered subset $X' \subseteq Y$ such that |X'| = |X|, $\{x \in Y : x > X'\} = \emptyset$, |(x]| < |X| for all $x \in Y$, and there exists $z \in X$ with z > y for all $y \in Y$, then rank(T(X, Y) : O(X, Y)) is infinite.

Proposition 3

Let X be an infinite set and $Y \subseteq X$ be a finite set with at least two elements. Then rank(T(X, Y) : O(X, Y)) is infinite.

ヘロア ヘロア ヘビア

Main Results

General Results

Next, we define $(x] := \{y \in Y : y \le x\}$ on the chain Y for $x \in Y$.

Proposition 2

Let X be an infinite chain and Y be a subchain of X with |Y| = |X|. If there is a well ordered subset $X' \subseteq Y$ such that |X'| = |X|, $\{x \in Y : x > X'\} = \emptyset$, |(x]| < |X| for all $x \in Y$, and there exists $z \in X$ with z > y for all $y \in Y$, then rank(T(X, Y) : O(X, Y)) is infinite.

Proposition 3

Let X be an infinite set and $Y \subseteq X$ be a finite set with at least two elements. Then rank(T(X, Y) : O(X, Y)) is infinite.

Main Results

General Results

Lemma 1

Let $X \in \{\mathbb{N}, \mathbb{Z}\}$ and Y be a countable subchain of X with minimum element. If $\delta \in T(X, Y)$ such that $k(\delta|_Y) = |X|$, then there is $\gamma \in \langle O(X, Y), \delta \rangle$ such that $|B \cap Y| = |X|$ for all $B \in \ker \gamma$.

Main Results

 $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$

Outline

2 Introduction and Preliminaries

- General Results
- $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$
- Rank($T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)$)
- $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Main Results

 $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$

$\operatorname{rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$

Proposition 4

Let Y be a non-empty countable subset of \mathbb{N} . Then $\langle O(\mathbb{N}, Y), \delta \rangle = T(\mathbb{N}, Y)$ such that $\delta \in T(\mathbb{N}, Y)$ with $k(\delta|_Y)$ is infinite, i.e. rank $(T(\mathbb{N}, Y) : O(\mathbb{N}, Y)) = 1$.

Theorem [•]

Let Y be a non-empty countable subset of \mathbb{N} and let $\delta \in T(\mathbb{N}, Y)$. Then $\langle O(\mathbb{N}, Y), \delta \rangle = T(\mathbb{N}, Y)$ if and only if $k(\delta|_Y) = |\mathbb{N}|$.

Main Results

 $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$

$$\operatorname{rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$$

Proposition 4

Let Y be a non-empty countable subset of \mathbb{N} . Then $\langle O(\mathbb{N}, Y), \delta \rangle = T(\mathbb{N}, Y)$ such that $\delta \in T(\mathbb{N}, Y)$ with $k(\delta|_Y)$ is infinite, i.e. rank $(T(\mathbb{N}, Y) : O(\mathbb{N}, Y)) = 1$.

Theorem 1

Let Y be a non-empty countable subset of \mathbb{N} and let $\delta \in T(\mathbb{N}, Y)$. Then $\langle O(\mathbb{N}, Y), \delta \rangle = T(\mathbb{N}, Y)$ if and only if $k(\delta|_Y) = |\mathbb{N}|$.

Main Results

 $\operatorname{Rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

Outline

Main Results

- General Results
- Rank($T(\mathbb{N}, Y) : O(\mathbb{N}, Y)$)
- Rank($T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)$)
- Rank($T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)$)

Main Results

 $\operatorname{Rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

$\operatorname{rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

Proposition 5

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has minimum element or maximum element then rank($T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)$) > 1, i.e. $\langle O(\mathbb{Z}, Y), \delta \rangle \neq T(\mathbb{Z}, Y)$ where $\delta \in T(\mathbb{Z}, Y) \setminus O(\mathbb{Z}, Y)$.

Proposition 6

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has minimum element or maximum element then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) \leq 2$.

Corollary 2

 $rank(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) = 2.$

Main Results

 $\operatorname{Rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

$\operatorname{rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

Proposition 5

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has minimum element or maximum element then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) > 1$, i.e. $\langle O(\mathbb{Z}, Y), \delta \rangle \neq T(\mathbb{Z}, Y)$ where $\delta \in T(\mathbb{Z}, Y) \setminus O(\mathbb{Z}, Y)$.

Proposition 6

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has minimum element or maximum element then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) \le 2$.

Corollary 2

 $rank(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) = 2.$

Main Results

 $\operatorname{Rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

$\operatorname{rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

Proposition 5

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has minimum element or maximum element then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) > 1$, i.e. $\langle O(\mathbb{Z}, Y), \delta \rangle \neq T(\mathbb{Z}, Y)$ where $\delta \in T(\mathbb{Z}, Y) \setminus O(\mathbb{Z}, Y)$.

Proposition 6

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has minimum element or maximum element then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) \le 2$.

Corollary 2

 $rank(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) = 2.$

Main Results

 $\operatorname{Rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

$\operatorname{rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

Theorem 2

Let Y be a non-empty subset of \mathbb{Z} with Y has minimum element or maximum element such that $|Y| = |\mathbb{Z}|$ and let $\varphi, \delta \in T(\mathbb{Z}, Y)$. Then $\langle O(\mathbb{Z}, Y), \varphi, \delta \rangle = T(\mathbb{Z}, Y)$ if and only if φ is injective and $k(\delta|_Y) = |\mathbb{Z}|$.

Proposition 7

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has neither maximum element nor minimum element, then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) = 1$.

Main Results

 $\operatorname{Rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

$\operatorname{rank}(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y))$

Theorem 2

Let Y be a non-empty subset of \mathbb{Z} with Y has minimum element or maximum element such that $|Y| = |\mathbb{Z}|$ and let $\varphi, \delta \in T(\mathbb{Z}, Y)$. Then $\langle O(\mathbb{Z}, Y), \varphi, \delta \rangle = T(\mathbb{Z}, Y)$ if and only if φ is injective and $k(\delta|_Y) = |\mathbb{Z}|$.

Proposition 7

Let Y be a non-empty subset of \mathbb{Z} with $|Y| = |\mathbb{Z}|$. If Y has neither maximum element nor minimum element, then rank $(T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)) = 1$.

Main Results

 $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Outline

Introduction and Preliminaries

Main Results

- General Results
- $\operatorname{Rank}(T(\mathbb{N}, Y) : O(\mathbb{N}, Y))$
- Rank($T(\mathbb{Z}, Y) : O(\mathbb{Z}, Y)$)
- $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Main Results

 $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

 $\operatorname{rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Proposition 8

Let $Y \subseteq \mathbb{Q}$ with $|Y| = |\mathbb{Q}|$ such that there is $a \in Y$ with $\{y \in Y : y \leq a\}$ is infinite or there is no $x \in \mathbb{Q}$ with x > y for all $y \in Y$. Then rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$.

Proposition 9

Let $Y \subseteq \mathbb{Q}$ with $|Y| = |\mathbb{Q}|$ such that there is $a \in Y$ with $\{y \in Y : y \leq a\}$ is infinite or there is no $x \in \mathbb{Q}$ with x > y for all $y \in Y$. Then the following statements are equivalent: **1** rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$, **2** $|Y| = |\mathbb{Q}|$.

Main Results

 $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

$$\operatorname{rank}(T(\mathbb{Q},Y):O(\mathbb{Q},Y))$$

Proposition 8

Let $Y \subseteq \mathbb{Q}$ with $|Y| = |\mathbb{Q}|$ such that there is $a \in Y$ with $\{y \in Y : y \leq a\}$ is infinite or there is no $x \in \mathbb{Q}$ with x > y for all $y \in Y$. Then rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$.

Proposition 9

Let $Y \subseteq \mathbb{Q}$ with $|Y| = |\mathbb{Q}|$ such that there is $a \in Y$ with $\{y \in Y : y \leq a\}$ is infinite or there is no $x \in \mathbb{Q}$ with x > y for all $y \in Y$. Then the following statements are equivalent: **1** rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$, **2** $|Y| = |\mathbb{Q}|$.

Main Results

 $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

 $\operatorname{rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Let $X = \mathbb{Q}$. For $a, b \in X$ with a < b, we define

$$[a,b] = \{z \in X : a \le z \le b\}, (a,b) = \{z \in X : a < z < b\}, (a,b] = \{z \in X : a < z < b\}, (a,b] = \{z \in X : a < z \le b\}, [a,b) = \{z \in X : a \le z < b\}.$$

We call these sets intervals that delimited by *a* and *b*.

Proposition 10

Let $Y \subseteq \mathbb{Q}$ be any interval. Then rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$.

Theorem 3

Let $Y = [a, b] \subseteq \mathbb{Q}$ for some $a, b \in \mathbb{Q}$ such that a < b and $|Y| = |\mathbb{Q}|$. Then rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) = 1$.

Main Results

 $\operatorname{Rank}(\overline{T(\mathbb{Q}, Y)} : O(\overline{\mathbb{Q}, Y}))$

 $\operatorname{rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Let $X = \mathbb{Q}$. For $a, b \in X$ with a < b, we define

$$[a,b] = \{z \in X : a \le z \le b\}, (a,b) = \{z \in X : a < z < b\}, (a,b] = \{z \in X : a < z < b\}, (a,b] = \{z \in X : a < z < b\}, [a,b] = \{z \in X : a \le z < b\}.$$

We call these sets intervals that delimited by *a* and *b*.

Proposition 10

Let $Y \subseteq \mathbb{Q}$ be any interval. Then $rank(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$.

Theorem 3

Let $Y = [a, b] \subseteq \mathbb{Q}$ for some $a, b \in \mathbb{Q}$ such that a < b and $|Y| = |\mathbb{Q}|$. Then rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) = 1$.

Main Results

 $\operatorname{Rank}(\overline{T(\mathbb{Q}, Y)} : O(\overline{\mathbb{Q}, Y}))$

 $\operatorname{rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

Let $X = \mathbb{Q}$. For $a, b \in X$ with a < b, we define

$$[a,b] = \{z \in X : a \le z \le b\}, (a,b) = \{z \in X : a < z < b\}, (a,b] = \{z \in X : a < z < b\}, (a,b] = \{z \in X : a < z < b\}, [a,b] = \{z \in X : a \le z < b\}.$$

We call these sets intervals that delimited by *a* and *b*.

Proposition 10

Let $Y \subseteq \mathbb{Q}$ be any interval. Then $rank(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) \leq 2$.

Theorem 3

Let $Y = [a, b] \subseteq \mathbb{Q}$ for some $a, b \in \mathbb{Q}$ such that a < b and $|Y| = |\mathbb{Q}|$. Then rank $(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y)) = 1$.

Main Results

 $\operatorname{Rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

 $\operatorname{rank}(T(\mathbb{Q}, Y) : O(\mathbb{Q}, Y))$

THANK YOU FOR YOUR ATTENTION.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへ(~ 20/20