Quasivariety of pseudo BCI-algebras and its properties

Petr Emanovský, Jan Kühr

Department of Algebra and Geometry Faculty of Science Palacký University at Olomouc Olomouc, Czech Republic petr.emanovsky@upol.cz, jan.kuhr@upol.cz

AAA90, Novi Sad, June 6, 2015

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A pseudo BCI-algebra is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$, where \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A, stisfying the following axioms, for all $x, y, z \in A$:

(A1)
$$(x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) = 1$$
,
(A2) $(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1$,
(A3) $1 \rightarrow x = x$,
(A4) $1 \rightsquigarrow x = x$,
(A5) if $x \rightarrow y = 1$ and $y \rightarrow x = 1$ then $x = y$.
(W. A. Dudek, Y. B. Yun, 2008)

▶ The relation $\leq = \{(x, y) \in A^2 \mid x \to y = 1\}$ is a partial order on A with 1 as a maximal element.

- If 1 is the greatest element of A then (A, →, →, 1) is a pseudo BCK-algebra (G. Georgescu, A. lorgulescu, 2001).
- If the operations → and ~ coincide then (A, →, 1) is a BCl-algebra (K. Iseki, 1980).
- Pseudo BCI-algebras form a proper quasi-variety (relatively 1-regular, relatively ideal determined, relatively congruence modular (arguesian), 1-conservative)

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

^Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

A pseudo BCI-algebra is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$, where \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A, stisfying the following axioms, for all $x, y, z \in A$:

(A1)
$$(x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) = 1,$$

(A2) $(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1,$
(A3) $1 \rightarrow x = x,$
(A4) $1 \rightsquigarrow x = x,$
(A5) if $x \rightarrow y = 1$ and $y \rightarrow x = 1$ then $x = y.$
(W. A. Dudek, Y. B. Yun, 2008)

- ▶ The relation $\leq = \{(x, y) \in A^2 \mid x \to y = 1\}$ is a partial order on A with 1 as a maximal element.
- If 1 is the greatest element of A then (A, →, →, 1) is a pseudo BCK-algebra (G. Georgescu, A. lorgulescu, 2001).
- If the operations → and ~→ coincide then (A, →, 1) is a BCI-algebra (K. Iseki, 1980).
- Pseudo BCI-algebras form a proper quasi-variety (relatively 1-regular, relatively ideal determined, relatively congruence modular (arguesian), 1-conservative)

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

- A pseudo BCI-algebra is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$, where \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A, stisfying the following axioms, for all $x, y, z \in A$:
- (A1) $(x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) = 1$, (A2) $(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1$, (A3) $1 \rightarrow x = x$, (A4) $1 \rightsquigarrow x = x$, (A5) if $x \rightarrow y = 1$ and $y \rightarrow x = 1$ then x = y. (W. A. Dudek, Y. B. Yun, 2008)
 - ▶ The relation $\leq = \{(x, y) \in A^2 \mid x \to y = 1\}$ is a partial order on A with 1 as a maximal element.
 - If 1 is the greatest element of A then (A, →, →, 1) is a pseudo BCK-algebra (G. Georgescu, A. lorgulescu, 2001).
 - If the operations → and ~→ coincide then (A, →, 1) is a BCI-algebra (K. Iseki, 1980).
 - Pseudo BCI-algebras form a proper quasi-variety (relatively 1-regular, relatively ideal determined, relatively congruence modular (arguesian), 1-conservative)

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

- A pseudo BCI-algebra is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$, where \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A, stisfying the following axioms, for all $x, y, z \in A$:
- (A1) $(x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) = 1,$ (A2) $(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1,$ (A3) $1 \rightarrow x = x,$ (A4) $1 \rightsquigarrow x = x,$ (A5) if $x \rightarrow y = 1$ and $y \rightarrow x = 1$ then x = y.(W. A. Dudek, Y. B. Yun, 2008)
 - ▶ The relation $\leq = \{(x, y) \in A^2 \mid x \to y = 1\}$ is a partial order on A with 1 as a maximal element.
 - If 1 is the greatest element of A then (A, →, →, 1) is a pseudo BCK-algebra (G. Georgescu, A. lorgulescu, 2001).
 - If the operations → and ~→ coincide then (A, →, 1) is a BCI-algebra (K. Iseki, 1980).
 - Pseudo BCI-algebras form a proper quasi-variety (relatively 1-regular, relatively ideal determined, relatively congruence modular (arguesian), 1-conservative)

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

- A pseudo BCI-algebra is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$, where \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A, stisfying the following axioms, for all $x, y, z \in A$:
- (A1) $(x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) = 1$, (A2) $(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1$, (A3) $1 \rightarrow x = x$, (A4) $1 \rightsquigarrow x = x$, (A5) if $x \rightarrow y = 1$ and $y \rightarrow x = 1$ then x = y. (W. A. Dudek, Y. B. Yun, 2008)
 - ▶ The relation $\leq = \{(x, y) \in A^2 \mid x \to y = 1\}$ is a partial order on A with 1 as a maximal element.
 - If 1 is the greatest element of A then (A, →, →, 1) is a pseudo BCK-algebra (G. Georgescu, A. lorgulescu, 2001).
 - If the operations → and ~→ coincide then (A, →, 1) is a BCI-algebra (K. Iseki, 1980).
 - Pseudo BCI-algebras form a proper quasi-variety (relatively 1-regular, relatively ideal determined, relatively congruence modular (arguesian), 1-conservative)

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Embeding into the $\{\rightarrow, \leadsto, 1\}\text{-reduct}$ of residuated po-monoid

► Every pseudo-BCI-algebra is a {→, ~→, 1}-subreduct of an semi-integral residuated po-monoid.

Semi-integral residuated po-monoid: $(M, \leq, \cdot, \rightarrow, \rightsquigarrow, 1)$, where $(M, \cdot, 1)$ is a monoid, \leq is a

partial order on M, and \rightarrow , \rightsquigarrow are binary operations on M satisfying the *residuation law*, for all $x, y, z \in M$:

$$x \le y \to z$$
 iff $x \cdot y \le z$,

 $x \leq y \rightsquigarrow z$ iff $y \cdot x \leq z$.

The monoid identity 1 is a maximal element of the poset (M, \leq) .

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

In any pseudo BCI-algebra $(A, \rightarrow, \rightsquigarrow, 1)$ hold for all $x, y, z \in A$:

1.
$$x \to x = 1, x \rightsquigarrow x = 1,$$

2. $x \rightsquigarrow ((x \to y) \rightsquigarrow y) = 1, x \to ((x \rightsquigarrow y) \to y) = 1,$
3. $x \to y = 1$ iff $x \rightsquigarrow y = 1,$
4. $x \le y$ implies $y \to z \le x \to z$ and $y \rightsquigarrow z \le x \rightsquigarrow z,$
5. $x \le y$ implies $z \to x \le z \to y$ and $z \rightsquigarrow x \le z \rightsquigarrow y,$
6. $x \to (y \rightsquigarrow z) = y \rightsquigarrow (x \to z),$
7. $x \le y \to z$ iff $y \le x \rightsquigarrow z,$
8. $x \to y \le (y \to x) \to 1, x \rightsquigarrow y \le (y \rightsquigarrow x) \rightsquigarrow 1,$
9. $x \to 1 = x \rightsquigarrow 1,$
10. $(x \to y) \to 1 = (x \to 1) \rightsquigarrow (y \to 1),$
 $(x \rightsquigarrow y) \to 1 = (x \rightsquigarrow 1) \to (y \rightsquigarrow 1),$
11. $((x \to y) \rightsquigarrow y) \to y = x \to y,$
 $((x \rightsquigarrow y) \to y) ((z \to x) \to (z \to y)) = 1,$
 $(x \rightsquigarrow y) \rightsquigarrow ((z \to x) \rightsquigarrow (z \rightsquigarrow y)) = 1,$

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and Tilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Integral part of A ... I_A = {a ∈ A | a ≤ 1} - 1 is the top element of I_A, i.e. I_A is a pseudo BCK-algebra.

$$x \in I_A$$
 iff $((x \to 1) \to 1) \to x = x$

• Group part of $A \dots G_A = \{a \to 1 \mid a \in A\}$

 $x \in G_A$ iff $((x \to 1) \to 1) = x$

Theorem

 (G_A, \cdot) where $x \cdot y = (x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$ is a group in which 1 is the identity and $x^{-1} = x \to 1 = x \rightsquigarrow 1$ is the inverse of $x \in G_A$. The original operations \to and \sim on G_A are retrieved from \cdot by $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$.

Proposition

For every $a \in A$, $(a \to 1) \to 1$ is the only element $g \in G_A$ with $a \leq g$ and G_A is the set of all maximal elements of A.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Integral part of A ... I_A = {a ∈ A | a ≤ 1} - 1 is the top element of I_A, i.e. I_A is a pseudo BCK-algebra.

$$x \in I_A$$
 iff $((x \to 1) \to 1) \to x = x$

• Group part of $A \dots G_A = \{a \to 1 \mid a \in A\}$

 $x \in G_A$ iff $((x \to 1) \to 1) = x$

Theorem

 (G_A, \cdot) where $x \cdot y = (x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$ is a group in which 1 is the identity and $x^{-1} = x \to 1 = x \rightsquigarrow 1$ is the inverse of $x \in G_A$. The original operations \to and \sim on G_A are retrieved from \cdot by $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$.

Proposition

For every $a \in A$, $(a \to 1) \to 1$ is the only element $g \in G_A$ with $a \leq g$ and G_A is the set of all maximal elements of A

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Integral part of A ... I_A = {a ∈ A | a ≤ 1} - 1 is the top element of I_A, i.e. I_A is a pseudo BCK-algebra.

$$x \in I_A$$
 iff $((x \to 1) \to 1) \to x = x$

• Group part of $A \dots G_A = \{a \rightarrow 1 \mid a \in A\}$

$$x \in G_A$$
 iff $((x \to 1) \to 1) = x$

Theorem

 (G_A, \cdot) where $x \cdot y = (x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$ is a group in which 1 is the identity and $x^{-1} = x \to 1 = x \rightsquigarrow 1$ is the inverse of $x \in G_A$. The original operations \to and \sim on G_A are retrieved from \cdot by $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$.

Proposition

For every $a \in A$, $(a \to 1) \to 1$ is the only element $g \in G_A$ with $a \leq g$ and G_A is the set of all maximal elements of A.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

► Integral part of A ... I_A = {a ∈ A | a ≤ 1} - 1 is the top element of I_A, i.e. I_A is a pseudo BCK-algebra.

$$x \in I_A$$
 iff $((x \to 1) \to 1) \to x = x$

• Group part of
$$A \dots G_A = \{a \to 1 \mid a \in A\}$$

$$x \in G_A$$
 iff $((x \to 1) \to 1) = x$

Theorem

 (G_A, \cdot) where $x \cdot y = (x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$ is a group in which 1 is the identity and $x^{-1} = x \to 1 = x \rightsquigarrow 1$ is the inverse of $x \in G_A$. The original operations \to and \rightsquigarrow on G_A are retrieved from \cdot by $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$.

Proposition

For every $a \in A$, $(a \to 1) \to 1$ is the only element $g \in G_A$ with $a \leq g$ and G_A is the set of all maximal elements of A. Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

► Integral part of A ... I_A = {a ∈ A | a ≤ 1} - 1 is the top element of I_A, i.e. I_A is a pseudo BCK-algebra.

$$x \in I_A$$
 iff $((x \to 1) \to 1) \to x = x$

• Group part of
$$A \dots G_A = \{a \to 1 \mid a \in A\}$$

$$x \in G_A$$
 iff $((x \to 1) \to 1) = x$

Theorem

 (G_A, \cdot) where $x \cdot y = (x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$ is a group in which 1 is the identity and $x^{-1} = x \to 1 = x \rightsquigarrow 1$ is the inverse of $x \in G_A$. The original operations \to and \rightsquigarrow on G_A are retrieved from \cdot by $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$.

Proposition

For every $a \in A$, $(a \to 1) \to 1$ is the only element $g \in G_A$ with $a \leq g$ and G_A is the set of all maximal elements of A. Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Example:

The set $A = \{0, 1, 2, 3, 4, 5\}$ equipped with the operations \rightarrow and \rightsquigarrow given by the following tables is a proper pseudo BCI-algebra:

\rightarrow	0	2	3	4	5	1		
0	3	3	4	2	4	1		
2	0	1	3	4	4	1		
3	4	4	1	3	3	4		
4	3	3	4	1	0	3		
5	3	3	4	1	1	3		
1	0	2	3	4	5	1		
$\sim \rightarrow$	0	2	3	4	5	1		
0	3	3	2	4	2	1		
2	0	1	3	4	5	1		
3	4	4	1	3	3	4		
4	3	3	4	1	2	3		
5	3	3	4	1	1	3		
1	0	2	3	4	5	1		
				•		< ⊡ >	★ 臣 ▶ ★ 臣	▶ 电

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

For the pseudo BCI-algebra we have $I_A = \{0, 1, 2\}$ and $G_A = \{1, 3, 4\}$ with the group operation \cdot given by the following table:

•	1	3	4
1	1	3	4
3	3	4	1
4	4	1	3

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Given a pseudo-BCI-algebra $A = (A, \rightarrow, \rightsquigarrow, 1)$, the algebra $A^* = (A, \rightsquigarrow, \rightarrow, 1)$ is a pseudo-BCI-algebra, too. A and A^* have the same underlying poset (A, \leq) , but it can easily happen that the algebras A and A^* are *not* isomorphic. For example, the "prelinearity identities" $(x \rightarrow y) \rightarrow z \leq ((y \rightarrow x) \rightarrow z) \rightarrow z$ and $(x \rightsquigarrow y) \rightsquigarrow z \leq ((y \rightsquigarrow x) \rightsquigarrow z) \rightsquigarrow z)$ are independent in general.

Group part $G_A^{\star} = (G_A, \rightsquigarrow, \rightarrow, 1)$:

 (G_A, \star) , where $g \star h = h \cdot g$ for all $g, h \in G_A$, is a group isomorphic to (G_A, \cdot) (isomorphism $g \mapsto g^{-1}$).

$$G^{\star}_A=(G_A, \leadsto, \rightarrow, 1) \ ... \ g \rightsquigarrow h=h \star g^{-1}$$
 , $g \rightarrow h=g^{-1} \star h$

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Relative congruences, filters and prefilters

Let \mathscr{K} be a class of algebras of type F, $A \in \mathscr{K}$ and $\theta \in \operatorname{Con}(A)$. We say that θ is a <u>relative congruence</u> (or <u> \mathscr{K} -congruence</u>) on A if $A/\theta \in \mathscr{K}$.

Denote $\operatorname{Con}_{\mathscr{K}}(A)$ the set of all relative congruences on A.

A prefilter in a pseudo BCI-algebra A is $D \subseteq A$ such that (i) $1 \in D$, (ii) if $x \in D$ and $x \to y \in D$, then $y \in D$, (iii) for all $x \in A$, if $x \in D$ then $x \to 1 \in D$.

A prefilter D is a filter if, for all $x,y\in A$

 $x \to y \in D$ iff $x \rightsquigarrow y \in D$.

Denote $\mathscr{F}(A)$ the set of all filters on A. I_A is always a filter of A.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Relative congruences, filters and prefilters

Let \mathscr{K} be a class of algebras of type F, $A \in \mathscr{K}$ and $\theta \in \operatorname{Con}(A)$. We say that θ is a <u>relative congruence</u> (or <u> \mathscr{K} -congruence</u>) on A if $A/\theta \in \mathscr{K}$.

Denote $\operatorname{Con}_{\mathscr{K}}(A)$ the set of all relative congruences on A.

A prefilter in a pseudo BCI-algebra A is $D \subseteq A$ such that (i) $1 \in D$, (ii) if $x \in D$ and $x \to y \in D$, then $y \in D$, (iii) for all $x \in A$, if $x \in D$ then $x \to 1 \in D$.

A prefilter D is a filter if, for all $x, y \in A$,

 $x \to y \in D$ iff $x \rightsquigarrow y \in D$.

Denote $\mathscr{F}(A)$ the set of all filters on A. I_A is always a filter of A. Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Relative congruences, filters and prefilters

Let \mathscr{K} be a class of algebras of type F, $A \in \mathscr{K}$ and $\theta \in \operatorname{Con}(A)$. We say that θ is a <u>relative congruence</u> (or <u> \mathscr{K} -congruence</u>) on A if $A/\theta \in \mathscr{K}$.

Denote $\operatorname{Con}_{\mathscr{K}}(A)$ the set of all relative congruences on A.

A prefilter in a pseudo BCI-algebra A is $D \subseteq A$ such that (i) $1 \in D$, (ii) if $x \in D$ and $x \to y \in D$, then $y \in D$, (iii) for all $x \in A$, if $x \in D$ then $x \to 1 \in D$.

A prefilter D is a filter if, for all $x, y \in A$,

 $x \to y \in D$ iff $x \rightsquigarrow y \in D$.

Denote $\mathscr{F}(A)$ the set of all filters on A. I_A is always a filter of A. Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Lemma

Let $(A, \rightarrow, \leadsto, 1)$ be a pseudo BCI-algebra.

- 1. Any prefiltr is an order-filter, i.e., $x \in D$ and $x \leq y$ imply $y \in D$.
- 2. Any prefilter is a subalgebra of $(A, \rightarrow, \rightsquigarrow, 1)$.
- 3. $D \subseteq A$ is a prefilter if and only if $1 \in D$ and

(ii') for all $x, y \in A$, if $x \rightsquigarrow y \in D$ and $x \in D$ then $y \in D$. (iii') for all $x \in A$, if $x \in D$ then $x \rightsquigarrow 1 \in D$.

The filters correspond to the relative congruences: for every filter D,

$$\theta_D = \{ (x, y) \mid x \to y \in D \text{ and } y \to x \in D \}$$

is the only relative congruence such that $[1]_{\theta_D} = D$.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Lemma

Let $(A, \rightarrow, \leadsto, 1)$ be a pseudo BCI-algebra.

- 1. Any prefiltr is an order-filter, i.e., $x \in D$ and $x \leq y$ imply $y \in D$.
- 2. Any prefilter is a subalgebra of $(A, \rightarrow, \rightsquigarrow, 1)$.
- 3. $D \subseteq A$ is a prefilter if and only if $1 \in D$ and
- (ii') for all $x, y \in A$, if $x \rightsquigarrow y \in D$ and $x \in D$ then $y \in D$. (iii') for all $x \in A$, if $x \in D$ then $x \rightsquigarrow 1 \in D$.

The filters correspond to the relative congruences: for every filter D,

$$\theta_D = \{(x, y) \mid x \to y \in D \text{ and } y \to x \in D\}$$

is the only relative congruence such that $[1]_{\theta_D} = D$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Remark

It is easy to show that

$$\theta = \{(x,y) \mid x \to 1 = y \to 1\}$$

is a congruence on A such that $[1]_{\theta} = I_A$, i.e. $\theta = \theta_{I_A}$.

Remark

The map $\alpha : a \mapsto a \to 1 = a \rightsquigarrow 1$ is a homomorphism of $(A, \to, \rightsquigarrow, 1)$ onto $(G_A, \rightsquigarrow, \to, 1)$ with kernel congruence θ , i.e. $(A, \to, \rightsquigarrow, 1)/\theta \cong (G_A, \rightsquigarrow, \to, 1)$.

The map $\beta : a \mapsto (a \to 1) \to 1$ is a homomorphism of $(A, \to, \rightsquigarrow, 1)$ onto $(G_A, \to, \rightsquigarrow, 1)$ with kernel congruence θ i.e. $(A, \to, \rightsquigarrow, 1)/\theta \cong (G_A, \to, \rightsquigarrow, 1)$.

 $\begin{array}{l} x \rightarrow 1 = y \rightarrow 1 \text{ iff } (x \rightarrow 1) \rightarrow 1 = (y \rightarrow 1) \rightarrow 1 \text{ iff } \\ x \rightarrow y, y \rightarrow x \in I_A \end{array}$

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Remark

It is easy to show that

$$\theta = \{(x,y) \mid x \to 1 = y \to 1\}$$

is a congruence on A such that $[1]_{\theta} = I_A$, i.e. $\theta = \theta_{I_A}$.

Remark

The map $\alpha : a \mapsto a \to 1 = a \rightsquigarrow 1$ is a homomorphism of $(A, \to, \rightsquigarrow, 1)$ onto $(G_A, \rightsquigarrow, \to, 1)$ with kernel congruence θ , i.e. $(A, \to, \rightsquigarrow, 1)/\theta \cong (G_A, \rightsquigarrow, \to, 1)$.

The map $\beta: a \mapsto (a \to 1) \to 1$ is a homomorphism of $(A, \to, \rightsquigarrow, 1)$ onto $(G_A, \to, \rightsquigarrow, 1)$ with kernel congruence θ , i.e. $(A, \to, \rightsquigarrow, 1)/\theta \cong (G_A, \to, \rightsquigarrow, 1)$.

 $\begin{array}{l} x \to 1 = y \to 1 \text{ iff } (x \to 1) \to 1 = (y \to 1) \to 1 \text{ iff } \\ x \to y, y \to x \in I_A \end{array}$

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem

Let (G, \cdot) be a group with the identity e and define $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$. Then $(G, \to, \rightsquigarrow, e)$ is a trivially ordered pseudo BCI- algebra where $\emptyset \neq H \subseteq G$ is a prefilter iff it is a subgroup of (G, \cdot) and H is a filter iff it is a normal subgroup of (G, \cdot) .

Corollary

The lattice of prefilters need not be modular. The lattice of filters need not be distributive.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

・ロト・日本・山田・ 山田・ 山田・

Theorem

Let (G, \cdot) be a group with the identity e and define $x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$. Then $(G, \to, \rightsquigarrow, e)$ is a trivially ordered pseudo BCI- algebra where $\emptyset \neq H \subseteq G$ is a prefilter iff it is a subgroup of (G, \cdot) and H is a filter iff it is a normal subgroup of (G, \cdot) .

Corollary

The lattice of prefilters need not be modular. The lattice of filters need not be distributive.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

・ロト・日本・山田・ 山田・ 山田・

The direct product of I_A and G_A

For any $a, b \in A$ we define $x \circ y = (x \to 1) \rightsquigarrow y$, $x \star y = (y \rightsquigarrow 1) \to x$.

For the operations \circ and \star we have

1.
$$1 \circ x = x, x \star 1 = x,$$

2. $x \circ (x \to 1) = 1, (x \rightsquigarrow 1) \star x = 1$
3. $x \circ (y \star z) = (x \circ y) \star z,$
4. $(x \circ y) \circ z \leq x \circ (y \circ z),$
5. $x \star (y \star z) \leq (x \star y) \star z.$

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The direct product of I_A and G_A

For any $a, b \in A$ we define $x \circ y = (x \to 1) \rightsquigarrow y$, $x \star y = (y \rightsquigarrow 1) \to x$.

For the operations \circ and \star we have

1.
$$1 \circ x = x, \ x \star 1 = x,$$

2. $x \circ (x \to 1) = 1, \ (x \rightsquigarrow 1) \star x = 1,$
3. $x \circ (y \star z) = (x \circ y) \star z,$
4. $(x \circ y) \circ z \le x \circ (y \circ z),$
5. $x \star (y \star z) \le (x \star y) \star z.$

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lemma

For any pseudo-BCI-algebra A, the following are equivalent:

(1) The operation ∘ is associative;
 (2) (g ∘ h) ∘ x = g ∘ (h ∘ x) for all g, h ∈ G_A and x ∈ A;
 (3) g⁻¹ → (g → x) = x for all g ∈ G_A and x ∈ A;
 (4) The operation * is associative;
 (5) x * (h * g) = (x * h) * g for all g, h ∈ G_A and x ∈ A;
 (6) g⁻¹ → (g → x) = x for all g ∈ G_A and x ∈ A.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Lemma

Let A be a pseudo-BCI-algebra. Then for all $x \in A$ and $g, h \in G_A$:

(i)
$$x \to g = (g \to x) \to 1$$
, $x \rightsquigarrow g = (g \rightsquigarrow x) \to 1$;
(ii) $g \to x = x \star g^{-1}$, $g \rightsquigarrow x = g^{-1} \circ x$;
(iii) $(x \to g) \to 1 = x \circ g^{-1}$, $(x \rightsquigarrow g) \to 1 = g^{-1} \star x$.

Proof.

We have
$$(g \to x) \to 1 = (g \to 1) \rightsquigarrow (x \to 1) = x \to ((g \to 1) \rightsquigarrow 1) = x \to g$$
, and similarly, $(g \rightsquigarrow x) \to 1 = x \rightsquigarrow g$.
Clearly, $x \star g^{-1} = (g^{-1} \rightsquigarrow 1) \to x = g \to x$,
 $g^{-1} \circ x = (g^{-1} \to 1) \rightsquigarrow x = g \rightsquigarrow x$,
 $x \circ g^{-1} = (x \to 1) \rightsquigarrow (g \to 1) = (x \to g) \to 1$ and
 $g^{-1} \star x = (x \rightsquigarrow 1) \to (g \rightsquigarrow 1) = (x \rightsquigarrow g) \to 1$.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem

Let A be a pseudo-BCI-algebra. The following statements are equivalent:

(1)
$$A \cong I_A \times G_A \cong I_A \times G_A^*$$
;

- (2) G_A is a filter of A;
- (3) A satisfies the equivalent conditions (1) (6) of the Lemma and

$$g \to x = g \rightsquigarrow x$$
 for all $g \in G_A$, $x \in I_A$.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Properties of quasivariety of pseudo BCI-algebras

1) Quasivariety of pseudo BCI-algebras is relatively regular in 1

A quasi-variety \mathscr{K} with a constant term 1 is said to be <u>relatively regular in 1</u>, if $[1]_{\theta} = [1]_{\phi}$ implies $\theta = \phi$ for all $\overline{\theta, \phi \in \operatorname{Con}_{\mathscr{K}}(A)}$.

It is known that a quasi-variety \mathscr{K} is relatively regular in 1 iff there exist the terms $d_1(x, y), \ldots, d_n(x, y)$ in \mathscr{K} such that $d_1(x, y) = 1, \ldots, d_n(x, y) = 1$ implies x = y.

Obviously, for the quasi-variety of all pseudo-BCI-algebras we can take n = 2, $d_1(x, y) = x \rightarrow y$ and $d_2(x, y) = y \rightarrow x$.

・ロト・日本・山田・ 山田・ 山田・

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

^properties of pseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

2) Quasivariety of pseudo BCI-algebras is relatively ideal determined

Let \mathscr{K} be a class of algebras of type F with a constant 1. A term $t(x_1, \ldots, x_m, y_1, \ldots, y_n)$ of type F is called an *ideal term* in y_1, \ldots, y_n if $\mathscr{K} \models t(x_1, \ldots, x_m, 1, \ldots, 1) = 1$. A non-empty subset I of A is said to be <u>closed under the ideal term</u> $t(x_1, \ldots, x_m, y_1, \ldots, y_n)$ in y_1,\ldots,y_n if $t(a_1,\ldots,a_m,b_1,\ldots,b_n) \in I$ whenever $b_1,\ldots,b_n\in I.$ We say that $\emptyset \neq I \subseteq A$ is an *ideal* in A if it is closed under all ideal terms. The class \mathcal{K} is called *relatively ideal determined* if for each $A \in \mathcal{K}$, every ideal in A is the kernel of a unique relative congruence on A.

Denote $\mathscr{I}(A)$ the set of all ideals on A.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

Theorem

Let A be a pseudo BCI-algebra and $I \subseteq A$ with $1 \in I$. The following statements are equivalent:

(i) I is a filter of A.

(ii)
$$I = [1]_{\theta}$$
 for some $\theta \in \operatorname{Con}_{\mathscr{K}}(A)$

(iii) I is an ideal of A.

1

(iv) I is closed with respect to the ideal terms

$$\begin{split} t_1(x_1,x_2,y_1,y_2) &= (((y_1 \to (y_2 \to x_1)) \to x_1) \rightsquigarrow x_2) \rightsquigarrow x_2 \stackrel{\text{Properties of quasivariety of pseudo}}{t_2(y) = y \to 1} \end{split}$$

(v) I is closed with respect to the ideal terms

$$w_1(x, y_1, y_2) = (y_1 \to (y_2 \to x)) \to x$$
$$w_2(x, y) = (y \rightsquigarrow x) \rightsquigarrow x$$
$$t_2(y) = y \to 1$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Pseudo **BCI-algebras**

Petr Emanovský. Jan Kühr

Corollary

 $\operatorname{Con}_{\mathscr{K}}(A) \cong \mathscr{I}(A) = \mathscr{F}(A).$

Let \mathscr{K} be a relatively regular in 1 quasivarity in which there is a one-one correspondence between ideals and relative congruences, that is, for every algebra $A \in \mathscr{K}$, the map $\theta \mapsto [1]_{\theta}$ is an isomorphism of $\operatorname{Con}_{\mathscr{K}}(A)$ onto $\mathscr{I}(A)$. Then the following lemma holds:

Lemma

Let $\alpha, \beta \in \operatorname{Con}_{\mathscr{K}}(A)$. Then $[1]_{\alpha} \vee [1]_{\beta} = \{a \in A \mid (a, b) \in \alpha \text{ for some } b \in [1]_{\beta}\} =$ $= \{a \in A \mid (a, b) \in \beta \text{ for some } b \in [1]_{\alpha}\}, \text{ i.e. } a \in [1]_{\alpha} \vee [1]_{\beta}$ iff $(a, 1) \in \alpha \circ \beta$ iff $(a, 1) \in \beta \circ \alpha$.

Corollary

The lattices $\operatorname{Con}_{\mathscr{K}}(A) \cong \mathscr{I}(A) = \mathscr{F}(A)$ are modular.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of oseudo BCI-algebras

Prefilters and ilters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3) Quasivariety of pseudo BCI-algebras is 1-conservative

A quasivariety \mathscr{Q} with a constant 1 is said to be <u>1-conservative</u> if \mathscr{Q} and the variety $\mathrm{HSP}(\mathscr{Q})$ generated by \mathscr{Q} satisfy the same quasi-identities of the form

$$\bigwedge_{i=1}^n s_i(x_1,\ldots,x_k) = 1 \quad \Rightarrow \quad t(x_1,\ldots,x_k) = 1.$$

Proposition

Let \mathscr{Q} be a relatively 1-regular quasivariety. Then \mathscr{Q} is relatively ideal determined if and only if \mathscr{Q} is 1-conservative and has a subtractive term (a binary term s(x, y) such that \mathscr{Q} satisfies the identities s(x, x) = 1 and s(x, 1) = x).

Corollary

Quasivariety of pseudo BCI-algebras is 1-conservative (substractive term $s(x, y) = y \rightarrow x$).

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

- W. J. Blok, J. G. Raftery: Ideals in quasivarieties of algebras, Models, Algebras and Proofs, Lecture Notes in Pure and Applied Mathematics, Vol. 203, Marcel Dekker, New York, 1999, 167-186.
- W. J. Blok, J. G. Raftery: On the quasivariety of BCK-algebras and its subvarieties, Alg. Univer. Vol. 33, No. 1, 68-90.
- W. A. Dudek, Y. B. Jun: Pseudo BCI-algebras. East Asian Mathematical Journal, 2008, 24(2), 187-190.
- G. Georgescu, A. lorgulescu: Pseudo-BCK algebras: An extension of BCK algebras, Combinatorics, Computability and Logic, Proc. DMTCS'01, Springer, London, 2001, 97-114.
- V. A. Gorbunov: Algebraic Theory of Quasivarieties, Siberian school of algebra and logic, Plenum Publishing Corporation, New York, 1998.

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of oseudo BCI-algebras

Prefilters and filters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

R. Halaš: Annihilators in BCK-algebras, Czech. Math. J. 53 (2003), 1001-1007.

- R. Halaš, J. Kühr: Deductive systems and annihilators of pseudo BCK-algebras, Italian J. of Pure and Appl. Math. 25 (2009),
- A. lorgulescu: On pseudo-BCK algebras and porims, Sci. Math. Japon. 10 (2004), 293-305.
- K. Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125130.
- K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23 (1978), 126.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ilters of pseudo 3CI-algebras

Properties of quasivariety of pseudo BCI-algebras

Y. B. Jun, H. S. Kim, J. Neggers: On pseudo-BCI ideals of pseudo-BCI algebras, Matematicki Vestnik, 58 (2006), 39-46.

- J. Kühr: Pseudo BCK-algebras and residuated lattices, Contr. Gen. Alg. 16 (2005), 139-144.
- J. G. Raftery, C. J. van Alten: Residuation in commutative ordered monoids with minimal zero, Reports on Mathematical Logic, 34 (2000), 23-57.
 - A. Wroński: BCK-algebras do not form a variety, Math. Jap. 28 (1983), 211-213.

Pseudo BCI-algebras

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of oseudo BCI-algebras

Prefilters and ilters of pseudo 3CI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Petr Emanovský, Jan Kühr

Definition of pseudo BCI-algebras

Properties of pseudo BCI-algebras

Prefilters and ïlters of pseudo BCI-algebras

Properties of quasivariety of pseudo BCI-algebras

The End

THANK YOU FOR YOUR ATTENTION!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●