A. Pavlovi

ldealism

ldealized topologies

 $\Gamma(A) = A$

-(a) (a)

F1...

-in

Bibliography

Differences and similarities between local function and local closure function in ideal topological spaces

Aleksandar Pavlović

Department of Mathematics and Informatics, Faculty of Sciences, Novi Sad, Serbia

> 90th Workshop on General Algebra Novi Sad, Serbia, June 5-7, 2015

Local closure function

A. Pavlovi

Idealism

Idealized

Ein

Bibliography

Let au be a topology on X. Then

$$\mathrm{Cl}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for each } U \in \tau(x)\}$$

Local closure function

A. Pavlovi

Idealism

Idealized

E(A) / A*

Fin

Bibliography

Let τ be a topology on X. Then

$$\mathrm{Cl}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for each } U \in \tau(x)\}$$

We can say $A \cap U$ is not "very small"

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(A) \neq A^*$$

Fin

ΓIII

Bibliography

Let au be a topology on X. Then

$$\mathrm{Cl}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for each } U \in \tau(x)\}$$

We can say $A\cap U$ is not "very small" Instead of of that we can say it does not belong to an ideal $\mathcal I$ $\{\emptyset\}$ is an ideal

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(A) \neq A^*$$

Fin

ΓIII

Bibliograph:

Let au be a topology on X. Then

$$\mathrm{Cl}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for each } U \in \tau(x)\}$$

We can say $A\cap U$ is not "very small" Instead of of that we can say it does not belong to an ideal $\mathcal I$ $\{\emptyset\}$ is an ideal

$$A_{(\tau,\mathcal{I})}^* = \{x \in X : A \cap U \notin \mathcal{I} \text{ for each } U \in \tau(x)\}$$

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(A) = A^{\dagger}$$

 $\Gamma(A) \neq A^*$

Fin

Bibliograph

Let au be a topology on X. Then

$$\mathrm{Cl}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for each } U \in \tau(x)\}$$

We can say $A\cap U$ is not "very small" Instead of of that we can say it does not belong to an ideal $\mathcal I$ $\{\emptyset\}$ is an ideal

$$A^*_{(au,\mathcal{I})} = \{x \in X : A \cap U
otin \mathcal{I} ext{ for each } U \in au(x)\}$$

 $A^*_{(\tau,\mathcal{I})}$ (briefly A^*) is called the **local function**

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(A)=A^{3}$$

 $\Gamma(A) \neq A^*$

Fin

Bibliograph

Let au be a topology on X. Then

$$\mathrm{Cl}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for each } U \in \tau(x)\}$$

We can say $A\cap U$ is not "very small" Instead of of that we can say it does not belong to an ideal $\mathcal I$ $\{\emptyset\}$ is an ideal

$$A^*_{(\tau,\mathcal{I})} = \{x \in X : A \cap U \not\in \mathcal{I} \text{ for each } U \in \tau(x)\}$$

 $A^*_{(\tau,\mathcal{I})}$ (briefly A^*) is called the **local function** (X,τ,\mathcal{I}) is an **ideal topological space** [Kuratowski 1933].

More on local function

Local closure function

A. Paviovi

Idealism

ldealized topologies

topologies (F

 $\Gamma(A) \neq A^*$

Fin

Bibliography

(1)
$$A \subseteq B \Rightarrow A^* \subseteq B^*$$
;

- (2) $A^* = \operatorname{Cl}(A^*) \subseteq \operatorname{Cl}(A)$;
- $(3) (A^*)^* \subseteq A^*$;
- (4) $(A \cup B)^* = A^* \cup B^*$
- (5) If $I \in \mathcal{I}$, then $(A \cup I)^* = A^* = (A \setminus I)^*$.

More on local function

Local closure function

A. Pavlovi

Idealism

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^{\dagger}$

Fin

Fin

Bibliography

(1) $A \subseteq B \Rightarrow A^* \subseteq B^*$;

(2)
$$A^* = \operatorname{Cl}(A^*) \subseteq \operatorname{Cl}(A)$$
;

(3)
$$(A^*)^* \subseteq A^*$$
;

(4)
$$(A \cup B)^* = A^* \cup B^*$$

(5) If
$$I \in \mathcal{I}$$
, then $(A \cup I)^* = A^* = (A \setminus I)^*$.

$$\mathrm{Cl}^*(A) = A \cup A^*$$

is a closure operator on P(X) and it generates a topology $\tau^*(\mathcal{I})$ (briefly τ^*) on X where

$$\tau^*(\mathcal{I}) = \{U \subseteq X : \mathrm{Cl}^*(X \setminus U) = X \setminus U\}.$$

More on local function

Local closure function

A. Pavlovi

Idealism

ldealized topologie:

 $\Gamma(\Delta) - \Delta^*$

 $\Gamma(A) \rightarrow A$

1 (A) ≠ A

FII

Bibliography

(1) $A \subseteq B \Rightarrow A^* \subseteq B^*$;

 $(2) A^* = \operatorname{Cl}(A^*) \subseteq \operatorname{Cl}(A);$

(3) $(A^*)^* \subseteq A^*$;

(4) $(A \cup B)^* = A^* \cup B^*$

(5) If $I \in \mathcal{I}$, then $(A \cup I)^* = A^* = (A \setminus I)^*$.

$$\mathrm{Cl}^*(A) = A \cup A^*$$

is a closure operator on P(X) and it generates a topology $\tau^*(\mathcal{I})$ (briefly τ^*) on X where

$$\tau^*(\mathcal{I}) = \{U \subseteq X : \mathrm{Cl}^*(X \setminus U) = X \setminus U\}.$$

$$\tau \subseteq \tau^* \subseteq P(X)$$

Local closure function

A. Pavlovi

Idealism

ldealized topologies

-(4)

Ein

Bibliography

U is a θ -open [Veličko 1966] iff for every $x \in U$ exists $V \in \tau(x)$ s.t. $\mathrm{Cl}(V) \subseteq U$

Local closure function

A. Pavlovi

ldealism

ldealized topologies

$$\Gamma(\Lambda) \neq \Lambda^*$$

F1...

Bibliography

U is a θ -open [Veličko 1966] iff for every $x \in U$ exists $V \in \tau(x)$ s.t. $\mathrm{Cl}(V) \subseteq U$

A is θ -closed iff $X \setminus A$ is θ -open iff

$$A = \mathrm{Cl}_{\theta}(A) = \{x \in X : \mathrm{Cl}(U) \cap A \neq \emptyset \text{ for each } U \in \tau(x)\}$$

Local closure function

A. Pavlovi

Idealism

ldealized topologies

-(4)

 $\Gamma(A) \neq A^{\circ}$

Fin

Bibliography

U is a θ -open [Veličko 1966] iff for every $x \in U$ exists $V \in \tau(x)$ s.t. $\mathrm{Cl}(V) \subseteq U$

A is θ -closed iff $X \setminus A$ is θ -open iff

$$A = \operatorname{Cl}_{\theta}(A) = \{x \in X : \operatorname{Cl}(U) \cap A \neq \emptyset \text{ for each } U \in \tau(x)\}$$

heta-open sets forms a topology $au_{ heta}$ on X

$$\tau_{\theta} \subseteq \tau$$

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(\Lambda) \neq \Lambda^*$$

_.

' '''

Bibliography

U is a θ -open [Veličko 1966] iff for every $x \in U$ exists $V \in \tau(x)$ s.t. $\mathrm{Cl}(V) \subseteq U$

A is θ -closed iff $X \setminus A$ is θ -open iff

$$A = \operatorname{Cl}_{\theta}(A) = \{x \in X : \operatorname{Cl}(U) \cap A \neq \emptyset \text{ for each } U \in \tau(x)\}$$

heta-open sets forms a topology $au_{ heta}$ on X

$$\tau_{\theta} \subseteq \tau$$

$$\langle X, au
angle$$
 is T_3 : open $\Rightarrow heta$ -open, $au = au_{ heta}$

Local closure function

A. Pavlovi

Idealism

ldealized topologies

 $\Gamma(\Lambda) = \Lambda^*$

 $\Gamma(\Lambda) \neq \Lambda^*$

<u>_</u>,

' '''

Bibliography

U is a θ -open [Veličko 1966] iff for every $x \in U$ exists $V \in \tau(x)$ s.t. $\mathrm{Cl}(V) \subseteq U$

A is θ -closed iff $X \setminus A$ is θ -open iff

$$A = \operatorname{Cl}_{\theta}(A) = \{x \in X : \operatorname{Cl}(U) \cap A \neq \emptyset \text{ for each } U \in \tau(x)\}$$

heta-open sets forms a topology $au_{ heta}$ on X

$$\tau_{\theta} \subseteq \tau$$

 $\langle X, \tau \rangle$ is T_3 : open $\Rightarrow \theta$ -open, $\tau = \tau_{\theta}$ [Janković 1980] Space is T_2 iff every compact set is θ -closed

Local closure function

A. Pavlovio

Idealism

ldealized topologies

Fin

Bibliography

$$A_{(\tau,\mathcal{I})}^* = \{x \in X : A \cap U \notin \mathcal{I} \text{ for each } U \in \tau(x)\}$$

 $\mathrm{Cl}_{\theta}(A) = \{x \in X : A \cap \mathrm{Cl}(U) \neq \emptyset \text{ for each } U \in \tau(x)\}$

Local closure function

A. Pavlović

Idealism

ldealized topologies

_.

Fin

Bibliography

$$A^*_{(au,\mathcal{I})} = \{x \in X : A \cap U
ot\in \mathcal{I} \text{ for each } U \in au(x)\}$$

$$\mathrm{Cl}_{\theta}(A) = \{x \in X : A \cap \mathrm{Cl}(U) \neq \emptyset \text{ for each } U \in \tau(x)\}$$

Combining these two we get

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(A) = A^*$$

F(A) -/ A*

<u>_.</u>

Fin

Bibliography

$$A^*_{(\tau,\mathcal{I})} = \{x \in X : A \cap U \not\in \mathcal{I} \text{ for each } U \in \tau(x)\}$$

$$\mathrm{Cl}_{\theta}(A) = \{x \in X : A \cap \mathrm{Cl}(U) \neq \emptyset \text{ for each } U \in \tau(x)\}$$

Combining these two we get

$$\Gamma_{(\tau,\mathcal{I})}(A) = \{x \in X : A \cap \mathrm{Cl}(U) \not\in \mathcal{I} \text{ for each } U \in \tau(x)\}.$$

 $\Gamma_{(\tau,\mathcal{I})}(A)$ (briefly $\Gamma(A)$) is local closure function [Al-Omari, Noiri 2014]

$\Gamma(A)$ and $\psi_{\Gamma}(A)$

Local closure function

A. Pavlovi

Idealism

ldealized topologies

$$\Gamma(A) = A^*$$

 $\Gamma(\Delta) \neq \Delta^*$

Fin

Bibliography

(1) $A^* \subseteq \Gamma(A)$;

(2) $\Gamma(A) = \operatorname{Cl}(\Gamma(A)) \subseteq \operatorname{Cl}_{\theta}(A)$;

(3) $\Gamma(A \cup B) = \Gamma(A) \cup \Gamma(B)$;

(4) $\Gamma(A \cup I) = \Gamma(A) = \Gamma(A \setminus I)$ for each $I \in \mathcal{I}$.

$\Gamma(A)$ and $\psi_{\Gamma}(A)$

Local closure function

A. Pavlovi

ldealism

ldealized topologies

 $\Gamma(\Lambda) \rightarrow \Lambda^*$

Fin

Bibliography

(1) $A^* \subseteq \Gamma(A)$;

(2)
$$\Gamma(A) = \operatorname{Cl}(\Gamma(A)) \subseteq \operatorname{Cl}_{\theta}(A)$$
;

(3)
$$\Gamma(A \cup B) = \Gamma(A) \cup \Gamma(B)$$
;

(4)
$$\Gamma(A \cup I) = \Gamma(A) = \Gamma(A \setminus I)$$
 for each $I \in \mathcal{I}$.

$$\psi_{\Gamma}(A) = X \setminus \Gamma(X \setminus A)$$
 [Al-Omari, Noiri 2014]

$\Gamma(A)$ and $\psi_{\Gamma}(A)$

Local closure function

A. Pavlovi

Idealism

ldealized topologie

Γ(Λ) — Λ*

Γ(Λ) -/ Λ*

Fin

Bibliography

(1) $A^* \subseteq \Gamma(A)$;

- (2) $\Gamma(A) = \operatorname{Cl}(\Gamma(A)) \subseteq \operatorname{Cl}_{\theta}(A)$;
- (3) $\Gamma(A \cup B) = \Gamma(A) \cup \Gamma(B)$;
- (4) $\Gamma(A \cup I) = \Gamma(A) = \Gamma(A \setminus I)$ for each $I \in \mathcal{I}$.

 $\psi_{\Gamma}(A) = X \setminus \Gamma(X \setminus A)$ [Al-Omari, Noiri 2014]

- (1) $\psi_{\Gamma}(A) = \operatorname{Int}(\psi_{\Gamma}(A));$
- (2) $\psi_{\Gamma}(A \cap B) = \psi_{\Gamma}(A) \cap \psi_{\Gamma}(B)$;
- (3) $\psi_{\Gamma}(A \cup I) = \psi_{\Gamma}(A) = \psi_{\Gamma}(A \setminus I)$ for each $I \in \mathcal{I}$;
- (4) If U is θ -open, then $U \subseteq \psi_{\Gamma}(U)$.

Ideals

Local closure function

A. Pavlović

Idealism

ldealized topologies

 $\Gamma(A) =$

 $\Gamma(A) \neq A^{\dagger}$

Fin

Bibliography

 $\langle X, au
angle$ - topological space

Fin - ideal of finite sets

 $\mathcal{I}_{\textit{ctble}}$ -ideal of countable sets

 \mathcal{I}_{cd} - ideal of closed discrete sets.

S is scattered if each nonempty subset of S contains an isolated point.

 \mathcal{I}_{sc} - ideal of scattered sets (if X is \mathcal{T}_1)

A is relatively compact if Cl(A) is compact.

A is relatively compact in O(A) is compact

 \mathcal{I}_K - ideal of relatively compact sets

A is nowhere dense if $Int(Cl(A)) = \emptyset$

 \mathcal{I}_{nwd} - ideal of nowhere dense sets

Countable union of nowhere dense sets is called a meager set

 \mathcal{I}_{mg} - ideal of meager sets

Local closure function.

ldealized topologies

Local closure function

A. Pavlovi

ldeal ism

ldealized topologies

 $\Gamma(\Lambda) \rightarrow \Lambda$

Fin

Bibliography

$$A\in\sigma\Leftrightarrow A\subseteq\psi_{\Gamma}(A)$$

Local closure function

4. Pavlovio

Idealism

ldealized topologies

 $F(A) \neq A$

Fin

Bibliography

$$A\in\sigma\Leftrightarrow A\subseteq\psi_{\Gamma}(A)$$

$$A \in \sigma_0 \Leftrightarrow A \subseteq \operatorname{Int}(\operatorname{Cl}(\psi_{\Gamma}(A))).$$

Local closure function

A. Pavlovi

ldealisn

ldealized topologies

E(A) (A

Fin

Bibliography

$$A \in \sigma \Leftrightarrow A \subseteq \psi_{\Gamma}(A)$$

$$A \in \sigma_0 \Leftrightarrow A \subseteq \operatorname{Int}(\operatorname{Cl}(\psi_{\Gamma}(A))).$$

$$\tau_{\theta} \subset \tau \subset \tau^* \subset P(X)$$

 \cap

$$\sigma \subseteq \sigma_0$$

Local closure function

A. Pavlovi

ldealism

ldealized topologies

topologie

E(A) / A

Fin

Bibliography

Question [Al-Omari, Noiri 2014]: $\sigma \subsetneq \sigma_0$?

Local closure function

A. Pavlović

ldealism

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^*$

Fin

Bibliography

Question [Al-Omari, Noiri 2014]: $\sigma \subsetneq \sigma_0$?

Lemma

If $\sigma \subsetneq \sigma_0$, then there exists a set A and a point $x \in A$ such that:

- (1) $\operatorname{Cl}(U) \setminus A \notin \mathcal{I}$, for each $U \in \tau(x)$, and
- (2) there exist $V \in \tau(x)$ and an open set $W \subseteq V$ such that $Cl(W) \setminus A \in \mathcal{I}$.

Local closure function

A. Pavlović

ldealism

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^*$

Fin

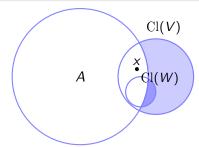
Bibliograph

Question [Al-Omari, Noiri 2014]: $\sigma \subsetneq \sigma_0$?

Lemma

If $\sigma \subsetneq \sigma_0$, then there exists a set A and a point $x \in A$ such that:

- (1) $\operatorname{Cl}(U) \setminus A \not\in \mathcal{I}$, for each $U \in \tau(x)$, and
- (2) there exist $V \in \tau(x)$ and an open set $W \subseteq V$ such that $Cl(W) \setminus A \in \mathcal{I}$.



Local closure function

A. Pavlovi

ldealisn

ldealized topologies

topologie

E(A) / A³

Ein

Example

$$\textit{X} = \omega \cup \{\omega\}; \ \tau = \textit{P}(\omega) \cup \big\{\{\omega\} \cup \omega \setminus \textit{K} : \textit{K} \in [\omega]^{<\aleph_0}\big\}; \ \mathcal{I} = \textit{Fin}.$$

Local closure function

A. Pavlovio

ldealism

ldealized topologies

 $\Gamma(A) = A^3$

 $\Gamma(A) \neq A^*$

Fin

Bibliography

Example

 $X = \omega \cup \{\omega\}; \ \tau = P(\omega) \cup \{\{\omega\} \cup \omega \setminus K : K \in [\omega]^{<\aleph_0}\}; \ \mathcal{I} = Fin.$

Condition from Lemma fulfilled

Each open neighborhood of the point ω has the form $U = \{\omega\} \cup (\omega \setminus K)$, and $\mathrm{Cl}(U) \setminus \{\omega\} = \omega \setminus K \not\in \mathit{Fin}$. But there exists $n_0 \in U$, so $\{n_0\}$ is a clopen singleton, such that $\mathrm{Cl}(\{n_0\}) \setminus A = \{n_0\} \in \mathit{Fin}$.

Local closure function

A. Pavlovi

ldealism

ldealized topologies

 $\Gamma(A) = A^{*}$

 $\Gamma(A) \neq A^*$

Fin

Bibliograph

Example

$X = \omega \cup \{\omega\}; \ \tau = P(\omega) \cup \{\{\omega\} \cup \omega \setminus K : K \in [\omega]^{<\aleph_0}\}; \ \mathcal{I} = Fin.$

Condition from Lemma fulfilled

Each open neighborhood of the point ω has the form $U = \{\omega\} \cup (\omega \setminus K)$, and $\mathrm{Cl}(U) \setminus \{\omega\} = \omega \setminus K \not\in \mathit{Fin}$. But there exists $n_0 \in U$, so $\{n_0\}$ is a clopen singleton, such that $\mathrm{Cl}(\{n_0\}) \setminus A = \{n_0\} \in \mathit{Fin}$.

$$\{\omega\} \not\in \sigma$$
.

Local closure function

A. Pavlovi

ldealisn

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^*$

Fin

r III

Bibliography

Example

$X = \omega \cup \{\omega\}; \ \tau = P(\omega) \cup \{\{\omega\} \cup \omega \setminus K : K \in [\omega]^{<\aleph_0}\}; \ \mathcal{I} = Fin.$

Condition from Lemma fulfilled

Each open neighborhood of the point ω has the form $U=\{\omega\}\cup(\omega\setminus K)$, and $\mathrm{Cl}(U)\setminus\{\omega\}=\omega\setminus K\not\in\mathit{Fin}$. But there exists $n_0\in U$, so $\{n_0\}$ is a clopen singleton, such that $\mathrm{Cl}(\{n_0\})\setminus A=\{n_0\}\in\mathit{Fin}$.

$$\{\omega\} \not\in \sigma$$
.

$$\psi_{\Gamma}(\{\omega\}) = \omega$$

The point ω is the only point with infinite closure of each its neighborhood. Therefore, it is not difficult to see that $\Gamma(\omega)=\{\omega\}$.

Local closure function

A. Pavlovio

ldealism

ldealized topologies

 $\Gamma(A) = A^{\dagger}$

 $\Gamma(A) \neq A^{\dagger}$

Fin

Bibliography

Example

$X = \omega \cup \{\omega\}; \ \tau = P(\omega) \cup \{\{\omega\} \cup \omega \setminus K : K \in [\omega]^{<\aleph_0}\}; \ \mathcal{I} = Fin.$

Condition from Lemma fulfilled

Each open neighborhood of the point ω has the form $U = \{\omega\} \cup (\omega \setminus K)$, and $\mathrm{Cl}(U) \setminus \{\omega\} = \omega \setminus K \not\in \mathit{Fin}$. But there exists $n_0 \in U$, so $\{n_0\}$ is a clopen singleton, such that $\mathrm{Cl}(\{n_0\}) \setminus A = \{n_0\} \in \mathit{Fin}$.

$$\{\omega\} \not\in \sigma$$
.

$$\psi_{\Gamma}(\{\omega\}) = \omega.$$

The point ω is the only point with infinite closure of each its neighborhood. Therefore, it is not difficult to see that $\Gamma(\omega)=\{\omega\}$.

$$\{\omega\}\subseteq \operatorname{Int}(\operatorname{Cl}(\psi_{\Gamma}(\{\omega\}))),$$

i.e.,
$$\{\omega\} \in \sigma_0$$
.

Local closure function

A. Pavlovi

ldealisn

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^{\dagger}$

Ein

. ...

Bibliography

Example

$X = \omega \cup \{\omega\}; \ \tau = P(\omega) \cup \{\{\omega\} \cup \omega \setminus K : K \in [\omega]^{<\aleph_0}\}; \ \mathcal{I} = Fin.$

Condition from Lemma fulfilled

Each open neighborhood of the point ω has the form $U=\{\omega\}\cup(\omega\setminus K)$, and $\mathrm{Cl}(U)\setminus\{\omega\}=\omega\setminus K\not\in \mathit{Fin}$. But there exists $n_0\in U$, so $\{n_0\}$ is a clopen singleton, such that $\mathrm{Cl}(\{n_0\})\setminus A=\{n_0\}\in \mathit{Fin}$.

$$\{\omega\} \not\in \sigma$$
.

$$\psi_{\Gamma}(\{\omega\}) = \omega.$$

The point ω is the only point with infinite closure of each its neighborhood. Therefore, it is not difficult to see that $\Gamma(\omega)=\{\omega\}$.

$$\{\omega\}\subseteq \operatorname{Int}(\operatorname{Cl}(\psi_{\Gamma}(\{\omega\}))),$$

i.e.,
$$\{\omega\} \in \sigma_0$$
.

$$\sigma \subsetneq \sigma_0$$

\mathcal{I}_{cd} , \mathcal{I}_{K} , \mathcal{I}_{nwd} , \mathcal{I}_{mg}

Local closure function

A. Pavlovi

ldealism

ldealized topologies

I(A) = A

 $\Gamma(A) \neq A^{\dagger}$

Fin

Bibliography

[Al-Omari, Noiri 2014] $\Gamma(A) \neq A^*$, but

\mathcal{I}_{cd} , \mathcal{I}_{K} , \mathcal{I}_{nwd} , \mathcal{I}_{mg}

Local closure function

A. Pavlović

Idealism

ldealized topologie

 $\Gamma(A) = A$

 $\Gamma(A) \neq A^{\dagger}$

Fin

Bibliography

[Al-Omari, Noiri 2014] $\Gamma(A) \neq A^*$, but

Theorem

Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. Then each of the following conditions implies that $\Gamma(A) = A^*$, for each set A.

\mathcal{I}_{cd} , \mathcal{I}_{K} , \mathcal{I}_{nwd} , \mathcal{I}_{mg}

Local closure function

A. Pavlovi

ldealism

ldealized topologie

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A$

. (. .) / .

Bibliography

[Al-Omari, Noiri 2014] $\Gamma(A) \neq A^*$, but

Theorem

Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. Then each of the following conditions implies that $\Gamma(A) = A^*$, for each set A.

- a) The topology au has a clopen base.
- b) au is a T_3 -topology.
- c) $\mathcal{I} = \mathcal{I}_{cd}$.
- d) $\mathcal{I} = \mathcal{I}_{\mathcal{K}}$.
- e) $\mathcal{I}_{nwd} \subseteq \mathcal{I}$.
- f) $\mathcal{I} = \mathcal{I}_{mg}$.

Local closure function

A. Pavlović

ldealism

ldealized topologies

 $\Gamma(A) = A$

 $\Gamma(A) \neq A$

Ein

Bibliography

Local closure function

A. Pavlovi

ldealisn

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(\Lambda) \rightarrow \Lambda^*$

F:-

-in

Bibliography

Example

$$X = \mathbb{R}$$
; $K = \{\frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\}$; $\mathcal{I} = Fin$

$$\mathcal{B}(x) = \begin{cases} \{(x-a, x+a) : a > 0\}, & x \neq 0; \\ \{(-a, a) \setminus K : a > 0\}, & x = 0 \end{cases}$$

This neighbourhood system generates a T_2 -topology which is not T_3 [Engelking, Example 1.5.6].

Local closure function

A. Pavlovio

ldealism

ldealized topologie

 $\Gamma(A) = A^*$

 $\Gamma(\Delta) \neq \Delta^*$

Fin

Bibliography

Example

 $K^* = \emptyset$.

For $x \neq 0$, there exists $U \in \mathcal{B}(x)$ such that $|U \cap K| \leq 1$, so $U \cap K \in \mathit{Fin}$, implying $x \notin K^*$. If x = 0, since $U = (-a, a) \setminus K$ for some $a \in \mathbb{R}$, we have $U \cap K = \emptyset$ for each $U \in \mathcal{B}(0)$, implying $0 \notin K^*$.

Local closure function

A. Pavlovi

ldealism

ldealized topologie

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^{\dagger}$

Fin

Bibliography

Example

 $K^* = \emptyset$.

For $x \neq 0$, there exists $U \in \mathcal{B}(x)$ such that $|U \cap K| \leq 1$, so $U \cap K \in \mathit{Fin}$, implying $x \not\in K^*$. If x = 0, since $U = (-a, a) \setminus K$ for some $a \in \mathbb{R}$, we have $U \cap K = \emptyset$ for each $U \in \mathcal{B}(0)$, implying $0 \notin K^*$.

$$\Gamma(K) = \{0\}$$

If $x \neq 0$, then there also exists $U \in \mathcal{B}(x)$ such that $|\operatorname{Cl}(U) \cap K| \leq 1$, so $\operatorname{Cl}(U) \cap K \in \mathit{Fin}$, implying $x \notin \Gamma(K)$. For x = 0 and $U \in \mathcal{B}(x)$ we have $U = (-a, a) \setminus K$ for some $a \in \mathbb{R}$. But $\operatorname{Cl}(U) = [-a, a]$, implying $|\operatorname{Cl}(U) \cap K| = \aleph_0$, so $\operatorname{Cl}(U) \cap K \notin \mathit{Fin}$.

Local closure function

A. Pavlovi

ldealism

ldealized topologie

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A$

Fin

Bibliography

Example

 $K^* = \emptyset$

For $x \neq 0$, there exists $U \in \mathcal{B}(x)$ such that $|U \cap K| \leq 1$, so $U \cap K \in \mathit{Fin}$, implying $x \not\in K^*$. If x = 0, since $U = (-a, a) \setminus K$ for some $a \in \mathbb{R}$, we have $U \cap K = \emptyset$ for each $U \in \mathcal{B}(0)$, implying $0 \notin K^*$.

$$\Gamma(K) = \{0\}$$

If $x \neq 0$, then there also exists $U \in \mathcal{B}(x)$ such that $|\operatorname{Cl}(U) \cap K| \leq 1$, so $\operatorname{Cl}(U) \cap K \in \mathit{Fin}$, implying $x \notin \Gamma(K)$. For x = 0 and $U \in \mathcal{B}(x)$ we have $U = (-a, a) \setminus K$ for some $a \in \mathbb{R}$. But $\operatorname{Cl}(U) = [-a, a]$, implying $|\operatorname{Cl}(U) \cap K| = \aleph_0$, so $\operatorname{Cl}(U) \cap K \notin \mathit{Fin}$.

$$K^* \subsetneq \Gamma(K)$$

ldealisn

ldealized topologie

I(A) = A

 $\Gamma(A) \neq A^*$

Fin

Bibliography

Example

$$X=\mathbb{R}$$
, $\mathcal{I}=\mathcal{I}_{ctble}$

$$\mathcal{B}(x) = \left\{ \begin{array}{ll} \{(x-a,x+a) \cap \mathbb{Q} : a \in \mathbb{R}^+\}, & x \in \mathbb{Q}; \\ \{(x-a,x+a) : a \in \mathbb{R}^+\}, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{array} \right.$$

is a neighbourhood system for T_2 topology which is not a T_3 trational numbers can not be separated from any rational point by two disjoint open sets

Local closure function

A. Pavlovi

ldealisn

ldealized topologie

$$\Gamma(A) = A$$

$$\Gamma(A) \neq A^*$$

Fin

Bibliography

Example

$$X = \mathbb{R}$$
, $\mathcal{I} = \mathcal{I}_{ctble}$

$$\mathcal{B}(x) = \left\{ \begin{array}{ll} \{(x-a,x+a) \cap \mathbb{Q} : a \in \mathbb{R}^+\}, & x \in \mathbb{Q}; \\ \{(x-a,x+a) : a \in \mathbb{R}^+\}, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{array} \right.$$

is a neighbourhood system for T_2 topology which is not a T_3 trational numbers can not be separated from any rational point by two disjoint open sets

$$(-1,1)^* = [-1,1] \setminus \mathbb{Q}$$

Each $q\in\mathbb{Q}$ has a countable neighbourhood, which intersected with (-1,1) is countable

ldealisn

ldealized topologie

I(A) = A

 $\Gamma(A) \neq A^*$

Fin

Bibliography

Example

 $X = \mathbb{R}$, $\mathcal{I} = \mathcal{I}_{ctble}$

$$\mathcal{B}(x) = \left\{ \begin{array}{ll} \{(x-a,x+a) \cap \mathbb{Q} : a \in \mathbb{R}^+\}, & x \in \mathbb{Q}; \\ \{(x-a,x+a) : a \in \mathbb{R}^+\}, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{array} \right.$$

is a neighbourhood system for T_2 topology which is not a T_3 irrational numbers can not be separated from any rational point by two disjoint open sets

$$(-1,1)^* = [-1,1] \setminus \mathbb{Q}$$

Each $q\in\mathbb{Q}$ has a countable neighbourhood, which intersected with (-1,1) is countable

$$\Gamma((-1,1)) = [-1,1]$$

 $\mathrm{Cl}((q-a,q+a)\cap\mathbb{Q})=[q-a,q+a]$ for each $q\in\mathbb{Q}$, and its intersection with [-1,1] is either empty, or a singleton, or a closed (uncountable) interval

Local closure function

A. Pavlović

ldealisr

ldealized topologie:

 $\Gamma(A) = A^{2}$

 $\Gamma(A) \neq A^*$

Fin

Fin

Bibliography

Example

Let $S = \{\langle \frac{1}{n}, \sin n \rangle : n \in \mathbb{N}\} \subset \mathbb{R}^2$ and $L = \{0\} \times [-1, 1]$. Let $X = S \cup L \cup \{p\}$, where p is a special point outside of \mathbb{R}^2 .

For $x \in S \cup L$ let $\mathcal{B}(x)$ be the neighbourhood system as in the induced topology on $S \cup L$ from \mathbb{R}^2

For the point p let $\mathcal{B}(p) = \{ \{p\} \cup S \setminus K : K \in [S]^{<\aleph_0} \}$.

S is a scattered set.

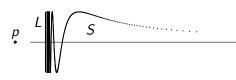
$$\mathcal{I} = \mathcal{I}_{sc}$$
 and $A = S \cup L$.

1 (A) — A

 $\Gamma(A) \neq A^*$

1 11.

Bibliography



Example

$$A^* = L$$
.

For $x \in S$, $\{x\} \cap A$ is a singleton, and therefore a scattered set.

For $x \in L$, each its neighbourhood contains an interval on the line L, so not scattered. Each neighbourhood of p meets only S, so its intersection with A is scattered.

$$\Gamma(A) = L \cup \{p\}.$$

 $L \subseteq CI(S)$.

 $L \subseteq \operatorname{Cl}(S \setminus K)$, where K is finite.

For an open set $U = \{p\} \cup S \setminus K$, as a neighbourhood of p, we have $\operatorname{Cl}(U) = U \cup L$. So, $\operatorname{Cl}(U) \cap A$ contains L, which is dense in itself, and therefore $\operatorname{Cl}(U) \cap A$ is not scattered, implying $p \in \Gamma(A)$. By the same reason as in the local function case, there is no point of S in $\Gamma(A)$.

So,
$$(S \cup L)^* \subsetneq \Gamma(S \cup L)$$
.

Local closure function

A. Pavlovi

ldealisn

ldealized topologie

 $\Gamma(A) = A$

 $\Gamma(A) \neq A$

Fin

Bibliograph

We have seen for $\mathcal{I} = Fin$ that there exists an example such that $A^* \neq \Gamma(A)$.

the first example of T_2 -space

A topological space $\langle X, \tau \rangle$ is nearly discrete if each $x \in X$ has a finite neighbourhood.

Every nearly discrete space is an Alexandroff space (arbitrary intersection of open sets is open).

It is known that $X_{Fin}^* = \emptyset$ if and only if $\langle X, \tau \rangle$ is nearly discrete (see [Janković Hamlett 1990])

Theorem

For an ideal topological space $\langle X, \tau, Fin \rangle$, if $\Gamma(X) = \emptyset$, then $\langle X, \tau \rangle$ is nearly discrete.

Local closure function

A. Pavlović

ldealism

ldealized topologies

 $\Gamma(A) = A$

 $\Gamma(A) \neq A^*$

. (,,) 7 ,

Fin

Bibliography

The converse is not true.

Example

Let
$$X = \omega$$
, $\mathcal{B} = \{\{0, i\} : i \in \omega\}$.

Local closure function

A. Pavlovio

ldealism

ldealized topologie

 $\Gamma(A) = A$

 $\Gamma(\Lambda) \neq \Lambda^*$

Fin

rın

3ibliography

The converse is not true.

Example

Let
$$X = \omega$$
, $\mathcal{B} = \{\{0, i\} : i \in \omega\}$.

 $\{0\}$ is an open set and $\mathrm{Cl}(\{0\}) = \omega$.

Local closure function

A. Pavlović

ldealism

ldealized topologie

 $\Gamma(A) = A^{\dagger}$

 $\Gamma(A) \neq A^{\dagger}$

Fin

rın

Bibliography

The converse is not true.

Example

Let $X = \omega$, $\mathcal{B} = \{\{0, i\} : i \in \omega\}$.

 $\{0\}$ is an open set and $Cl(\{0\}) = \omega$.

$$\Gamma(\omega) = \omega \neq \emptyset$$
.

Since
$$\operatorname{Cl}(\{0,i\}) \cap \omega = \omega \cap \omega = \omega \not\in \operatorname{Fin}$$

Local closure function

A. Pavlović

Idealism

Idealized

 $\Gamma(A) \neq A$

Fin

Bibliography

 $A^{d_{\omega}} = \{x \in X : |A \cap U| \ge \aleph_0 \text{ for all } U \in \tau(x)\}$ is the set of all ω -accumulation points of the set A

Local closure function

A. Pavlovic

ldealism

ldealized topologie

. . .

 $\Gamma(\Lambda) \rightarrow \Lambda$

Fin

Bibliography

 $A^{d_{\omega}}=\{x\in X:|A\cap U|\geq \aleph_0 \text{ for all }U\in au(x)\}$ is the set of all ω -accumulation points of the set AFor the ideal Fin we have $A^*=A^{d_{\omega}}$.

Local closure function

A. Pavlovic

Idealism

ldealized topologies

 $\Gamma(A) = A^*$

 $\Gamma(A) \neq A^*$

Fin

Bibliography

 $A^{d_{\omega}}=\{x\in X:|A\cap U|\geq \aleph_0 \text{ for all }U\in au(x)\}$ is the set of all ω -accumulation points of the set A

For the ideal Fin we have $A^* = A^{d_\omega}$.

For T_1 spaces we have that the derived set (set of accumulation points)

$$A' = \{x \in X : A \cap U \setminus \{x\} \neq \emptyset \text{ for all } U \in \tau(x)\}$$

is equal to A^{d_ω} .

Local closure function

A. Pavlovic

Idealism

ldealized topologies

 $I(A) = A^{\circ}$

 $\Gamma(A) \neq A^*$

Fin

Bibliograph

 $A^{d_{\omega}}=\{x\in X:|A\cap U|\geq \aleph_0 \text{ for all }U\in au(x)\}$ is the set of all ω -accumulation points of the set A

For the ideal Fin we have $A^* = A^{d_{\omega}}$.

For T_1 spaces we have that the derived set (set of accumulation points)

$$A' = \{x \in X : A \cap U \setminus \{x\} \neq \emptyset \text{ for all } U \in \tau(x)\}$$

is equal to A^{d_ω} .

 θ -derived set [Caldas, Jafari, Kovár 2004] is defined by

$$D_{\theta}(A) = \{x \in X : A \cap U \setminus \{x\} \neq \emptyset \text{ for all } U \in \tau_{\theta}(x)\}$$

Local closure function

ldealism

ldealized topologies

 $\Gamma(A) = A^{\circ}$

 $\Gamma(A) \neq A$

Fin

ibliography

 $A^{d_{\omega}}=\{x\in X:|A\cap U|\geq \aleph_0 \text{ for all }U\in au(x)\}$ is the set of all ω -accumulation points of the set A

For the ideal Fin we have $A^*=A^{d_\omega}$.

For T_1 spaces we have that the derived set (set of accumulation points)

$$A' = \{x \in X : A \cap U \setminus \{x\} \neq \emptyset \text{ for all } U \in \tau(x)\}$$

is equal to A^{d_ω} .

heta-derived set [Caldas, Jafari, Kovár 2004] is defined by

$$D_{\theta}(A) = \{x \in X : A \cap U \setminus \{x\} \neq \emptyset \text{ for all } U \in \tau_{\theta}(x)\}$$

Theorem

For the ideal topological space of the form $\langle X, \tau, Fin \rangle$ and each subset A of X in it we have $\Gamma(A) \subseteq D_{\theta}(A)$.

Local closure function

A. Pavlovi

ldealisn

ldealized topologie

-(4)

 $\Gamma(A) \neq A^*$

Fin

Bibliograph

Inclusion can be strict.

Example

Let us consider the left-ray topology on the real line, i.e.,

$$\tau = \{(-\infty, a) : a \in \mathbb{R}\}.$$

Local closure function

A. Pavlovi

ldealisn

ldealized topologie

 $\Gamma(\Lambda) = \Lambda$

 $\Gamma(A) \neq A^{\dagger}$

· (A) + A

Fin

3ibliograph:

Inclusion can be strict.

Example

Let us consider the left-ray topology on the real line, i.e., $\tau = \{(-\infty, a) : a \in \mathbb{R}\}$

 $\tau = \{(-\infty, a) : a \in \mathbb{R}\}.$

The only θ -open sets are \emptyset and \mathbb{R} .

Local closure function

A. Pavlovi

ldealisn

ldealized topologie:

F(A) A

 $\Gamma(\Lambda) \neq \Lambda^*$

Fin

' '''

Bibliography

Inclusion can be strict.

Example

Let us consider the left-ray topology on the real line, i.e., $\mathbf{r} = \{(\mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}) : \mathbf{r} \in \mathbb{R}\}$

 $\tau = \{(-\infty, a) : a \in \mathbb{R}\}.$

The only heta-open sets are \emptyset and \mathbb{R} .

K: finite set with at least two elements

Local closure function

A. Pavlovi

ldealisn

ldealized topologie

 $\Gamma(\Delta) = \Delta$

 $\Gamma(A) \neq A^{\dagger}$

. (7.) 7-7.

Fin

Bibliography

Inclusion can be strict.

Example

Let us consider the left-ray topology on the real line, i.e.,

$$\tau = \{(-\infty, a) : a \in \mathbb{R}\}.$$

The only θ -open sets are \emptyset and \mathbb{R} .

K: finite set with at least two elements

$$D_{\theta}(K) = \mathbb{R}.$$

Local closure function

A. Pavlovi

Idealist

ldealized topologie

F(A) - A

 $\Gamma(\Lambda) \rightarrow \Lambda^{3}$

Fin

' '''

Bibliography

Inclusion can be strict.

Example

Let us consider the left-ray topology on the real line, i.e.,

$$\tau = \{(-\infty, a) : a \in \mathbb{R}\}.$$

The only θ -open sets are \emptyset and $\mathbb{R}.$

K: finite set with at least two elements

$$D_{\theta}(K) = \mathbb{R}.$$

$$\Gamma(K) = \emptyset$$
.

Local closure function

A. Pavlovi

ldealisn

ldealized topologies

 $(A) = A^*$

(4) 7 4

Bibliography

A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43(2) (2013), 139–149.

M. Caldas, S. Jafari, M.M. Kovár, Some properties of θ -open sets, Divulg. Mat. 12(2)

(2004), 161-169,

R. Engelking, General Topology, Heldermann, Berlin, 1989.

D.S. Janković, On some separation axioms and θ -closure, Mat. Vesnik 4(17)(32)(4) (1980), 439–449.

D. Janković, T.R. Hamlett, New topologies from old via ideals. Amer. Math. Monthly 97(4) (1990), 295–310.

K. Kuratowski, Topologie I, Warszawa, 1933.

 \sim , Local function versus local closure fiunction in ideal topological spaces. Filomat (accepted)

N.V. Veličko, H-closed topological spaces. Mat. Sb. (N.S.) 70 (112) (1966) 98-112 (in Russian); in: American Mathematical Society Translations, vol. 78, American Mathematical Society, Providence, RI, 1969, 103-118.