Optimal strong Mal'cev conditions for congruence meet-semidistributivity in locally finite varieties

J. Jovanović, P. Marković,
R. McKenzie and M. Moore
University of Novi Sad, Serbia and Vanderbilt University, USA

Novi Sad, June 2015

Strong Mal'cev conditions

Definition

A strong Mal'cev condition is a finite set of identities in some language. It is linear if there is no composition and idempotent if all operations satisfy $f(x, x, \ldots, x) \approx x$.

Strong Mal'cev conditions

Definition

A strong Mal'cev condition is a finite set of identities in some language. It is linear if there is no composition and idempotent if all operations satisfy $f(x, x, \ldots, x) \approx x$.

A strong Mal'cev condition Σ is realized in a variety \mathcal{V} if there is an assignment of \mathcal{V}-terms to operation symbols of Σ such that the resulting identities become true in \mathcal{V} (realization: weaker than interpretation, stronger than semantic embedding).

Strong Mal'cev conditions

Definition

A strong Mal'cev condition is a finite set of identities in some language. It is linear if there is no composition and idempotent if all operations satisfy $f(x, x, \ldots, x) \approx x$.

A strong Mal'cev condition Σ is realized in a variety \mathcal{V} if there is an assignment of \mathcal{V}-terms to operation symbols of Σ such that the resulting identities become true in \mathcal{V} (realization: weaker than interpretation, stronger than semantic embedding).

Trivial observation: Σ_{1} is realized in $\operatorname{Mod}\left(\Sigma_{2}\right)$ iff every variety which realizes Σ_{2} realizes Σ_{1}. We denote this by $\Sigma_{1} \preceq \Sigma_{2}$ and say Σ_{1} is weaker than Σ_{2}.

Congruence meet-semidistributivity and why it matters I

Theorem
 The following are equivalent for a variety \mathcal{V}

Congruence meet-semidistributivity and why it matters I

Theorem

The following are equivalent for a variety \mathcal{V}

- Congruence lattices of all algebras in \mathcal{V} satisfy the meet-semidistributive law: $x \wedge y=x \wedge z \Rightarrow x \wedge y=x \wedge(y \vee z)$.

Congruence meet-semidistributivity and why it matters I

Theorem

The following are equivalent for a variety \mathcal{V}

- Congruence lattices of all algebras in \mathcal{V} satisfy the meet-semidistributive law: $x \wedge y=x \wedge z \Rightarrow x \wedge y=x \wedge(y \vee z)$.
- For all algebras $\mathbf{A} \in \mathcal{V}$ and congruences $\alpha, \beta \in \operatorname{Con} \mathbf{A},[\alpha, \beta]=\alpha \cap \beta$.

Congruence meet-semidistributivity and why it matters I

Theorem

The following are equivalent for a variety \mathcal{V}

- Congruence lattices of all algebras in \mathcal{V} satisfy the meet-semidistributive law: $x \wedge y=x \wedge z \Rightarrow x \wedge y=x \wedge(y \vee z)$.
- For all algebras $\mathbf{A} \in \mathcal{V}$ and congruences $\alpha, \beta \in \operatorname{Con} \mathbf{A},[\alpha, \beta]=\alpha \cap \beta$.
- Assuming the language is finite, Baker's Single Sequence Lemma works (sort of...), so Park's conjecture can be proved in Baker's way.

Congruence meet-semidistributivity and why it matters I

Theorem

The following are equivalent for a variety \mathcal{V}

- Congruence lattices of all algebras in \mathcal{V} satisfy the meet-semidistributive law: $x \wedge y=x \wedge z \Rightarrow x \wedge y=x \wedge(y \vee z)$.
- For all algebras $\mathbf{A} \in \mathcal{V}$ and congruences $\alpha, \beta \in \operatorname{Con} \mathbf{A},[\alpha, \beta]=\alpha \cap \beta$.
- Assuming the language is finite, Baker's Single Sequence Lemma works (sort of...), so Park's conjecture can be proved in Baker's way.
- There exists some strong Mal'cev condition W_{n} among the family of Willard's conditions such that \mathcal{V} realizes W_{n}.

Congruence meet-semidistributivity and why it matters I

Theorem

The following are equivalent for a variety \mathcal{V}

- Congruence lattices of all algebras in \mathcal{V} satisfy the meet-semidistributive law: $x \wedge y=x \wedge z \Rightarrow x \wedge y=x \wedge(y \vee z)$.
- For all algebras $\mathbf{A} \in \mathcal{V}$ and congruences $\alpha, \beta \in \operatorname{Con} \mathbf{A},[\alpha, \beta]=\alpha \cap \beta$.
- Assuming the language is finite, Baker's Single Sequence Lemma works (sort of...), so Park's conjecture can be proved in Baker's way.
- There exists some strong Mal'cev condition W_{n} among the family of Willard's conditions such that \mathcal{V} realizes W_{n}.
- \mathcal{V} realizes some idempotent linear Mal'cev condition which is not realized in any nontrivial variety of modules.

Congruence meet-semidistributivity and why it matters II

Theorem
 The following are equivalent for a locally finite variety \mathcal{V}

Congruence meet-semidistributivity and why it matters II

Theorem

The following are equivalent for a locally finite variety \mathcal{V}

- \mathcal{V} is congruence meet-semidistributive.

Congruence meet-semidistributivity and why it matters II

Theorem

The following are equivalent for a locally finite variety \mathcal{V}

- \mathcal{V} is congruence meet-semidistributive.
- Tame congruence theory types $\mathbf{1}$ and $\mathbf{2}$ never appear in \mathcal{V}.

Congruence meet-semidistributivity and why it matters II

Theorem

The following are equivalent for a locally finite variety \mathcal{V}

- \mathcal{V} is congruence meet-semidistributive.
- Tame congruence theory types $\mathbf{1}$ and $\mathbf{2}$ never appear in \mathcal{V}.
- For any finite algebra $\mathbf{A} \in \mathcal{V}$ and any finite set \mathcal{R} of subpowers of \mathbf{A}, the constraint satisfaction problem with the template $\langle A ; \mathcal{R}\rangle$ can be solved correctly using local consistency-checking (Barto's version: (2, 3)-consistency!)

Congruence meet-semidistributivity and why it matters II

Theorem

The following are equivalent for a locally finite variety \mathcal{V}

- \mathcal{V} is congruence meet-semidistributive.
- Tame congruence theory types $\mathbf{1}$ and $\mathbf{2}$ never appear in \mathcal{V}.
- For any finite algebra $\mathbf{A} \in \mathcal{V}$ and any finite set \mathcal{R} of subpowers of \mathbf{A}, the constraint satisfaction problem with the template $\langle A ; \mathcal{R}\rangle$ can be solved correctly using local consistency-checking (Barto's version: (2, 3)-consistency!)
- $(K K V W) \mathcal{V}$ realizes the strong Mal'cev condition $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx g(x, x, x, y) \approx g(x, x, y, x) \approx$ $g(x, y, x, x) \approx g(y, x, x, x)$ and $f(x, x, x) \approx x \approx g(x, x, x, x)$.

Congruence meet-semidistributivity and why it matters II

Theorem

The following are equivalent for a locally finite variety \mathcal{V}

- \mathcal{V} is congruence meet-semidistributive.
- Tame congruence theory types $\mathbf{1}$ and $\mathbf{2}$ never appear in \mathcal{V}.
- For any finite algebra $\mathbf{A} \in \mathcal{V}$ and any finite set \mathcal{R} of subpowers of \mathbf{A}, the constraint satisfaction problem with the template $\langle A ; \mathcal{R}\rangle$ can be solved correctly using local consistency-checking (Barto's version: (2, 3)-consistency!)
- $(K K V W) \mathcal{V}$ realizes the strong Mal'cev condition $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx g(x, x, x, y) \approx g(x, x, y, x) \approx$ $g(x, y, x, x) \approx g(y, x, x, x)$ and $f(x, x, x) \approx x \approx g(x, x, x, x)$.
- (JMMM) \mathcal{V} realizes the strong Mal'cev condition $t(x, x, x, y) \approx t(x, x, y, x) \approx t(x, y, x, x) \approx t(y, x, x, x) \approx$ $t(x, x, y, y) \approx t(x, y, x, y) \approx t(x, y, y, x)$ and $t(x, x, x, x) \approx x$.

On the bounded width CSP

(V, A, \mathcal{C}) is an instance of the CSP where $\mathcal{C}=\left\{\left\langle C_{1}, W_{1}\right\rangle, \ldots,\left\langle C_{m}, W_{m}\right\rangle\right\}$, and $W_{i} \subseteq V$, while $C_{i} \subseteq A^{W_{i}} . f: V \rightarrow A$ is a solution of that instance if for all $i,\left.f\right|_{W_{i}} \in C_{i}$.

On the bounded width CSP

(V, A, \mathcal{C}) is an instance of the CSP where $\mathcal{C}=\left\{\left\langle C_{1}, W_{1}\right\rangle, \ldots,\left\langle C_{m}, W_{m}\right\rangle\right\}$, and $W_{i} \subseteq V$, while $C_{i} \subseteq A^{W_{i}} . f: V \rightarrow A$ is a solution of that instance if for all $i,\left.f\right|_{W_{i}} \in C_{i}$.

If \mathbf{A} is a finite algebra, then (V, A, \mathcal{C}) is an instance of $\operatorname{CSP}(\mathbf{A})$ iff each C_{i} is a subpower of \mathbf{A}.

On the bounded width CSP

(V, A, \mathcal{C}) is an instance of the CSP where $\mathcal{C}=\left\{\left\langle C_{1}, W_{1}\right\rangle, \ldots,\left\langle C_{m}, W_{m}\right\rangle\right\}$, and $W_{i} \subseteq V$, while $C_{i} \subseteq A^{W_{i}} . f: V \rightarrow A$ is a solution of that instance if for all $i,\left.f\right|_{W_{i}} \in C_{i}$.

If \mathbf{A} is a finite algebra, then (V, A, \mathcal{C}) is an instance of $\operatorname{CSP}(\mathbf{A})$ iff each C_{i} is a subpower of \mathbf{A}.
(V, A, C) is $(2,3)$-minimal if

On the bounded width CSP

(V, A, \mathcal{C}) is an instance of the CSP where $\mathcal{C}=\left\{\left\langle C_{1}, W_{1}\right\rangle, \ldots,\left\langle C_{m}, W_{m}\right\rangle\right\}$, and $W_{i} \subseteq V$, while $C_{i} \subseteq A^{W_{i}} . f: V \rightarrow A$ is a solution of that instance if for all $i,\left.f\right|_{W_{i}} \in C_{i}$.

If \mathbf{A} is a finite algebra, then (V, A, \mathcal{C}) is an instance of $\operatorname{CSP}(\mathbf{A})$ iff each C_{i} is a subpower of \mathbf{A}.
(V, A, \mathcal{C}) is $(2,3)$-minimal if

- (2-consistency) for all $u, v \in V$ and W_{i}, W_{j} such that $\{u, v\} \subseteq W_{i} \cap W_{j},\left.C_{i}\right|_{\{u, v\}}=\left.C_{j}\right|_{\{u, v\}}$ and

On the bounded width CSP

(V, A, \mathcal{C}) is an instance of the CSP where $\mathcal{C}=\left\{\left\langle C_{1}, W_{1}\right\rangle, \ldots,\left\langle C_{m}, W_{m}\right\rangle\right\}$, and $W_{i} \subseteq V$, while $C_{i} \subseteq A^{W_{i}} . f: V \rightarrow A$ is a solution of that instance if for all $i,\left.f\right|_{W_{i}} \in C_{i}$.

If \mathbf{A} is a finite algebra, then (V, A, \mathcal{C}) is an instance of $\operatorname{CSP}(\mathbf{A})$ iff each C_{i} is a subpower of \mathbf{A}.
(V, A, \mathcal{C}) is $(2,3)$-minimal if

- (2-consistency) for all $u, v \in V$ and W_{i}, W_{j} such that $\{u, v\} \subseteq W_{i} \cap W_{j},\left.C_{i}\right|_{\{u, v\}}=\left.C_{j}\right|_{\{u, v\}}$ and
- (3-density) for all $u, v, w \in V$ there exists W_{i} such that $\{u, v, w\} \subseteq W_{i}$.

On the bounded width CSP

(V, A, \mathcal{C}) is an instance of the CSP where $\mathcal{C}=\left\{\left\langle C_{1}, W_{1}\right\rangle, \ldots,\left\langle C_{m}, W_{m}\right\rangle\right\}$, and $W_{i} \subseteq V$, while $C_{i} \subseteq A^{W_{i}} . f: V \rightarrow A$ is a solution of that instance if for all $i,\left.f\right|_{W_{i}} \in C_{i}$.

If \mathbf{A} is a finite algebra, then (V, A, \mathcal{C}) is an instance of $\operatorname{CSP}(\mathbf{A})$ iff each C_{i} is a subpower of \mathbf{A}.
(V, A, \mathcal{C}) is $(2,3)$-minimal if

- (2-consistency) for all $u, v \in V$ and W_{i}, W_{j} such that $\{u, v\} \subseteq W_{i} \cap W_{j},\left.C_{i}\right|_{\{u, v\}}=\left.C_{j}\right|_{\{u, v\}}$ and
- (3-density) for all $u, v, w \in V$ there exists W_{i} such that $\{u, v, w\} \subseteq W_{i}$.

Theorem (Barto)

If \mathbf{A} generates a congruence meet-semidistributive variety and (V, A, \mathcal{C}) is a $(2,3)$-minimal instance of $\operatorname{CSP}(\mathbf{A})$ such that all C_{i} are nonempty, then it has a solution.

On the proof of KKVW condition I

Reduce to idempotent case using standard tricks.

On the proof of KKVW condition I

Reduce to idempotent case using standard tricks.
Then take $\mathbf{F}=\mathbf{F}_{\mathcal{V}}(x, y)$. Let (V, F, \mathcal{C}) be the instance of $\operatorname{CSP}(\mathbf{A})$ which imposes on each triple $\{u, v, w\} \subseteq V$ the constraint

$$
R_{3}=\operatorname{Sg}^{\mathrm{F}^{3}}\left(\left[\begin{array}{l}
x \\
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
x
\end{array}\right],\left[\begin{array}{l}
y \\
x \\
x
\end{array}\right]\right)
$$

On the proof of KKVW condition I

Reduce to idempotent case using standard tricks.
Then take $\mathbf{F}=\mathbf{F}_{\mathcal{V}}(x, y)$. Let (V, F, \mathcal{C}) be the instance of $\operatorname{CSP}(\mathbf{A})$ which imposes on each triple $\{u, v, w\} \subseteq V$ the constraint

$$
R_{3}=\mathrm{Sg}^{\mathbf{F}^{3}}\left(\left[\begin{array}{l}
x \\
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
x
\end{array}\right],\left[\begin{array}{l}
y \\
x \\
x
\end{array}\right]\right)
$$

and on each 4-element subset of V the constraint

$$
R_{4}=\operatorname{Sg}^{\mathbf{F}^{4}}\left(\left[\begin{array}{l}
x \\
x \\
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
x \\
y \\
x
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
x \\
x
\end{array}\right],\left[\begin{array}{l}
y \\
x \\
x \\
x
\end{array}\right]\right)
$$

On the proof of KKVW condition II

(V, F, \mathcal{C}) is trivially 3-dense. It is 2-consistent because both R_{3} and R_{4} project to any pair of variables as

$$
\mathrm{Sg}^{\mathbf{F}^{2}}\left(\left[\begin{array}{l}
x \\
x
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
y \\
x
\end{array}\right]\right)
$$

On the proof of KKVW condition II

(V, F, \mathcal{C}) is trivially 3-dense. It is 2-consistent because both R_{3} and R_{4} project to any pair of variables as

$$
\mathrm{Sg}^{\mathbf{F}^{2}}\left(\left[\begin{array}{l}
x \\
x
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
y \\
x
\end{array}\right]\right)
$$

So (V, F, \mathcal{C}) is $(2,3)$-minimal. It has a solution by Barto's theorem.

On the proof of KKVW condition II

(V, F, \mathcal{C}) is trivially 3-dense. It is 2-consistent because both R_{3} and R_{4} project to any pair of variables as

$$
\mathrm{Sg}^{\mathbf{F}^{2}}\left(\left[\begin{array}{l}
x \\
x
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
y \\
x
\end{array}\right]\right)
$$

So (V, F, \mathcal{C}) is $(2,3)$-minimal. It has a solution by Barto's theorem. We haven't specified V yet. It is big enough (more than $3|F|$) to guarantee that the solution has four variables which get assigned the same binary term $c(x, y)$. This means that

On the proof of KKVW condition II

(V, F, \mathcal{C}) is trivially 3-dense. It is 2-consistent because both R_{3} and R_{4} project to any pair of variables as

$$
\operatorname{Sg}^{\mathbf{F}^{2}}\left(\left[\begin{array}{l}
x \\
x
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
y \\
x
\end{array}\right]\right)
$$

So (V, F, \mathcal{C}) is $(2,3)$-minimal. It has a solution by Barto's theorem. We haven't specified V yet. It is big enough (more than $3|F|$) to guarantee that the solution has four variables which get assigned the same binary term $c(x, y)$. This means that

$$
\left[\begin{array}{l}
c \\
c \\
c
\end{array}\right] \in R_{3} \text { and }\left[\begin{array}{l}
c \\
c \\
c \\
c
\end{array}\right] \in R_{4}
$$

On the proof of KKVW condition II

(V, F, \mathcal{C}) is trivially 3-dense. It is 2-consistent because both R_{3} and R_{4} project to any pair of variables as

$$
\operatorname{Sg}^{\mathbf{F}^{2}}\left(\left[\begin{array}{l}
x \\
x
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
y \\
x
\end{array}\right]\right)
$$

So (V, F, \mathcal{C}) is $(2,3)$-minimal. It has a solution by Barto's theorem. We haven't specified V yet. It is big enough (more than $3|F|$) to guarantee that the solution has four variables which get assigned the same binary term $c(x, y)$. This means that

$$
\left[\begin{array}{l}
c \\
c \\
c
\end{array}\right] \in R_{3} \text { and }\left[\begin{array}{l}
c \\
c \\
c \\
c
\end{array}\right] \in R_{4}
$$

which implies that there exist a ternary and a quarternary weak nu terms with derived binary operation $c(x, y)$. (QED)

On the proof of JMMM condition I: setup

We need to prove seven substitution instances of t are equal, so we are trying to prove that a subalgebra of \mathbf{F}^{7} contains a constant tuple.

On the proof of JMMM condition I: setup

We need to prove seven substitution instances of t are equal, so we are trying to prove that a subalgebra of \mathbf{F}^{7} contains a constant tuple. Its restrictions to pairs of coordinates come in three flavors. Hence we impose a structure on V, and view variables as nonempty subsets of a nice set.

On the proof of JMMM condition I: setup

We need to prove seven substitution instances of t are equal, so we are trying to prove that a subalgebra of \mathbf{F}^{7} contains a constant tuple. Its restrictions to pairs of coordinates come in three flavors. Hence we impose a structure on V, and view variables as nonempty subsets of a nice set.

One flavor $=$ containment, second flavor $=$ disjointness, third flavor $=$ neither of the above.

On the proof of JMMM condition I: setup

We need to prove seven substitution instances of t are equal, so we are trying to prove that a subalgebra of \mathbf{F}^{7} contains a constant tuple.

Its restrictions to pairs of coordinates come in three flavors. Hence we impose a structure on V, and view variables as nonempty subsets of a nice set.

One flavor $=$ containment, second flavor $=$ disjointness, third flavor $=$ neither of the above.

So we impose a ternary constraint forced by flavors on every triple of variables (there are 8 possibilities which arise), and also a 7 -ary constraint on those septuples of variables which have the precise containment/disjointness/other relation to each other demanded by the desired equations.

On the proof of JMMM condition II: Ramsey argument

Instead of pigeonhole, we must resort to a Ramsey argument. Our proof boils down to

On the proof of JMMM condition II: Ramsey argument

Instead of pigeonhole, we must resort to a Ramsey argument. Our proof boils down to

Lemma

If $P\left(w_{n}\right) \backslash\{\emptyset\}$ is colored in n colors, then there exist distinct nonempty subsets $A_{1}, \ldots, A_{7} \subseteq W_{n}$ such that

- A_{1} is disjoint from all others;
- A_{2}, \ldots, A_{7} form a 3-crown poset under inclusion;
- Any incomparability that we see in that seven-element poset which can be disjointness, is disjointness;
- All seven sets A_{1}, \ldots, A_{7} have the same color.

On the proof of JMMM condition II: Ramsey argument

Instead of pigeonhole, we must resort to a Ramsey argument. Our proof boils down to

Lemma

If $P\left(w_{n}\right) \backslash\{\emptyset\}$ is colored in n colors, then there exist distinct nonempty subsets $A_{1}, \ldots, A_{7} \subseteq W_{n}$ such that

- A_{1} is disjoint from all others;
- A_{2}, \ldots, A_{7} form a 3-crown poset under inclusion;
- Any incomparability that we see in that seven-element poset which can be disjointness, is disjointness;
- All seven sets A_{1}, \ldots, A_{7} have the same color.

Proof.

$$
\left|W_{1}\right|=4 \text { and }\left|W_{n+1}\right|=3(n+1)\left(2^{\left|W_{n}\right|}-1\right)+1
$$

Another improvement of (KKVW)

Theorem

Let \mathcal{V} be a locally finite variety. \mathcal{V} is congruence meet-semidistributive iff there exists a binary term $t(x, y)$ and for all arities $n \geq 3$ terms $w_{n}\left(x_{1}, \ldots, x_{n}\right)$ such that

- All w_{n} are weak near-unanimity terms in \mathcal{V} and
- For all $n, \mathcal{V} \models w_{n}(x, x, \ldots, x, y) \approx t(x, y)$.

Another improvement of (KKVW)

Theorem

Let \mathcal{V} be a locally finite variety. \mathcal{V} is congruence meet-semidistributive iff there exists a binary term $t(x, y)$ and for all arities $n \geq 3$ terms $w_{n}\left(x_{1}, \ldots, x_{n}\right)$ such that

- All w_{n} are weak near-unanimity terms in \mathcal{V} and
- For all $n, \mathcal{V} \models w_{n}(x, x, \ldots, x, y) \approx t(x, y)$.

Proof.

Instead of proving above for all $n \geq 3$, we are proving that for every n_{0} there exists $t(x, y)$ such that for all $n \in\left[3, n_{0}\right] \ldots$

Another improvement of (KKVW)

Theorem

Let \mathcal{V} be a locally finite variety. \mathcal{V} is congruence meet-semidistributive iff there exists a binary term $t(x, y)$ and for all arities $n \geq 3$ terms $w_{n}\left(x_{1}, \ldots, x_{n}\right)$ such that

- All w_{n} are weak near-unanimity terms in \mathcal{V} and
- For all $n, \mathcal{V} \models w_{n}(x, x, \ldots, x, y) \approx t(x, y)$.

Proof.

Instead of proving above for all $n \geq 3$, we are proving that for every n_{0} there exists $t(x, y)$ such that for all $n \in\left[3, n_{0}\right] \ldots$ The rest goes just like in the proof of (KKVW) we provided.

Open problems I

We may ask several open problems, but these three seem most interesting:

Open problems I

We may ask several open problems, but these three seem most interesting:

Problem 1

Does either this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \tag{1}\\
t(x, x, y, z) \approx & t(y, z, y, x) \approx t(x, z, z, y)
\end{array}
$$

Open problems I

We may ask several open problems, but these three seem most interesting:

Problem 1

Does either this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \tag{1}\\
t(x, x, y, z) \approx & t(y, z, y, x) \approx t(x, z, z, y)
\end{array}
$$

or this

Open problems I

We may ask several open problems, but these three seem most interesting:

Problem 1

Does either this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \tag{1}\\
t(x, x, y, z) \approx & t(y, z, y, x) \approx t(x, z, z, y)
\end{array}
$$

or this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \tag{2}\\
t(x, x, y, z) \approx & t(y, x, z, x) \approx t(y, z, x, y)
\end{array}
$$

strong Mal'cev condition characterize congruence meet-semidistributivity in locally finite varieties?

Open problems I

We may ask several open problems, but these three seem most interesting:

Problem 1

Does either this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \tag{1}\\
t(x, x, y, z) \approx & t(y, z, y, x) \approx t(x, z, z, y)
\end{array}
$$

or this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \\
t(x, x, y, z) \approx & t(y, x, z, x) \approx t(y, z, x, y) \tag{2}
\end{array}
$$

strong Mal'cev condition characterize congruence meet-semidistributivity in locally finite varieties? Both are stronger than (JMMM), and we proved no condition with one operation, one equation and idempotence would work, so they are syntacticaly as simple as we can hope for.

Open problems I

We may ask several open problems, but these three seem most interesting:

Problem 1

Does either this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \tag{1}\\
t(x, x, y, z) \approx & t(y, z, y, x) \approx t(x, z, z, y)
\end{array}
$$

or this

$$
\begin{array}{lc}
t(x, x, x, x) \approx & x \\
t(x, x, y, z) \approx & t(y, x, z, x) \approx t(y, z, x, y) \tag{2}
\end{array}
$$

strong Mal'cev condition characterize congruence meet-semidistributivity in locally finite varieties? Both are stronger than (JMMM), and we proved no condition with one operation, one equation and idempotence would work, so they are syntacticaly as simple as we can hope for.

We pretty much convinced ourselves that any approach with CSP won't work.

Open problems II

We also proved several weaker characterizations in the paper which may be more suitable for a computer verification. It seems natural to ask

Open problems II

We also proved several weaker characterizations in the paper which may be more suitable for a computer verification. It seems natural to ask

Problem 2

Are any of the interpretability relations \preceq we showed strict? Or do any further \preceq relations hold globally?

Open problems II

We also proved several weaker characterizations in the paper which may be more suitable for a computer verification. It seems natural to ask

Problem 2

Are any of the interpretability relations \preceq we showed strict? Or do any further \preceq relations hold globally?

The best we could do was to prove that some of the weak versions are weaker than $C D(4)$. We could not even prove comparability with $C D$!

Open problems II

We also proved several weaker characterizations in the paper which may be more suitable for a computer verification. It seems natural to ask

Problem 2

Are any of the interpretability relations \preceq we showed strict? Or do any further \preceq relations hold globally?

The best we could do was to prove that some of the weak versions are weaker than $C D(4)$. We could not even prove comparability with $C D$!

Problem 3

Is it always true that if a strong Mal'cev condition implies $\operatorname{CSD}(\wedge)$ within locally finite varieties, then it implies $\operatorname{CSD}(\wedge)$ absolutely?

Open problems II

We also proved several weaker characterizations in the paper which may be more suitable for a computer verification. It seems natural to ask

Problem 2

Are any of the interpretability relations \preceq we showed strict? Or do any further \preceq relations hold globally?

The best we could do was to prove that some of the weak versions are weaker than $C D(4)$. We could not even prove comparability with $C D$!

Problem 3

Is it always true that if a strong Mal'cev condition implies $\operatorname{CSD}(\wedge)$ within locally finite varieties, then it implies $\operatorname{CSD}(\wedge)$ absolutely?

All our proofs are using the fact that a certain strong Mal'cev condition can be realized only in a trivial module variety (which is globally equivalent to $\operatorname{CSD}(\wedge)$). No idea if there are conditions which are weaker than $\operatorname{CSD}(\wedge)$ but collapse to it when restricted to locally finite varieties.

THANK YOU

THANK YOU FOR YOUR ATTENTION!

THANK YOU

THANK YOU FOR YOUR ATTENTION! AND THANK YOU TO NEBOJSA, MAJA AND
 THE ORGANIZING TEAM FOR EXCELLENT WORK!

