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Affine systems

Topological systems

In 1989, S. Vickers introduced the notion of topological system
as a common framework for both topological spaces and the
underlying algebraic structures of their topologies – locales.

The category of locales (resp. topological spaces) appeared to
be isomorphic to a full (resp. co)reflective subcategory of the
category of topological systems, which gave rise to the so-called
system localification (resp. spatialization) procedure.
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Affine systems

Affine systems

In 1996, Y. Diers has come out with the concept of affine set,
which included topological spaces as a particular example.

The respective notion of affine system extends topological sys-
tems of S. Vickers, and also state property systems of D. Aerts.

The category of affine sets is isomorphic to a full coreflective
subcategory of the category of affine systems, giving an affine
analogue of the spatialization procedure for topological systems.
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Affine systems

Localification procedure for affine systems

This talk shows the necessary and sufficient condition for the
dual category of the variety of algebras, whose objects underly
the structure of affine sets, to be isomorphic to a full reflective
subcategory of the category of affine systems, giving an affine
analogue of the localification procedure for topological systems.

One obtains a restatement of the sobriety-spatiality equivalence
for affine sets, which is patterned after the equivalence between
the categories of sober topological spaces and spatial locales.

The existence of the localification procedure for affine systems
induces, moreover, their category to be essentially algebraic.
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Algebraic preliminaries

Ω-algebras and Ω-homomorphisms

Definition 1

Let Ω = (nλ)λ∈Λ be a family of cardinal numbers, which is indexed
by a (possibly, proper or empty) class Λ.

An Ω-algebra is a pair (A, (ωA
λ )λ∈Λ), comprising a set A and a

family of maps Anλ
ωA
λ−→ A (nλ-ary primitive operations on A).

An Ω-homomorphism (A1, (ω
A1
λ )λ∈Λ)

ϕ−→ (A2, (ω
A2
λ )λ∈Λ) is a

map A1
ϕ−→ A2 such that ϕ ◦ ωA1

λ = ωA2
λ ◦ ϕ

nλ for every λ ∈ Λ.

Alg(Ω) is the construct of Ω-algebras and Ω-homomorphisms.
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Algebraic preliminaries

Varieties and algebras

Definition 2

Let M (resp. E) be the class of Ω-homomorphisms with injective
(resp. surjective) underlying maps. A variety of Ω-algebras is a
full subcategory of Alg(Ω), which is closed under the formation of
products, M-subobjects and E-quotients, and whose objects (resp.
morphisms) are called algebras (resp. homomorphisms).
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Algebraic preliminaries

Examples of varieties

Example 3
1 CSLat(

∨
) is the variety of

∨
-semilattices, and CSLat(

∧
) is

the variety of
∧

-semilattices.
2 Frm is the variety of frames.
3 CBAlg is the variety of complete Boolean algebras.
4 CSL is the variety of closure semilattices, i.e.,

∧
-semilattices,

with the singled out bottom element.
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Affine spaces

Affine spaces

Definition 4

Given a functor X T−→ Bop, where B is a variety of algebras,
AfSpc(T ) is the concrete category over X, whose

objects (T -affine spaces or T -spaces) are pairs (X , τ), where X is
an X-object and τ is a subalgebra of TX ;

morphisms (T -affine morphisms or T -morphisms) (X1, τ1)
f−→

(X2, τ2) are X-morphisms X1
f−→ X2 with the property that

(Tf )op(α) ∈ τ1 for every α ∈ τ2.
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Affine spaces

Examples

Example 5

Given a variety B, every subcategory S of Bop induces a functor

Set× S PS−→ Bop, PS((X1,B1)
(f ,ϕ)−−−→ (X2,B2)) = BX1

1
PS(f ,ϕ)−−−−−→ BX2

2 ,
where (PS(f , ϕ))op(α) = ϕop ◦ α ◦ f .

Example 6
1 If B = Frm, then AfSpc(P2) = Top (topological spaces).
2 If B = CSL, then AfSpc(P2) = Cls (closure spaces).
3 AfSpc(PB) is the category Af Set(B) of affine sets of Y. Diers.
4 If B = Frm, then AfSpc(PS) = S-Top (variable-basis lattice-

valued topological spaces of S. E. Rodabaugh).
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Affine systems

Affine systems

Definition 7

Given a functor X T−→ Bop, AfSys(T ) is the comma category
(T ↓ 1Bop), concrete over the product category X× Bop, whose

objects (T -affine systems or T -systems) are triples (X , κ,B), made
by Bop-morphisms TX

κ−→ B;

morphisms (T -affine morphisms or T -morphisms)

(X1, κ1,B1)
(f ,ϕ)−−−→ (X2, κ2,B2) are X × Bop-morphisms

(X1,B1)
(f ,ϕ)−−−→ (X2,B2), making the next diagram commute

TX1

κ1

��

Tf // TX2

κ2

��
B1 ϕ

// B2.
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Affine systems

Examples

Example 8
1 If B = Frm, then AfSys(P2) = TopSys (topological systems

of S. Vickers).
2 If B = Set, then AfSys(PB) = ChuB (Chu spaces over a set

B of P.-H. Chu).

Definition 9

A T -system (X , κ,B) is called separated provided that TX
κ−→ B

is an epimorphism in Bop. AfSyss(T ) is the full subcategory of
AfSys(T ) of separated T -systems.

Example 10

For B=CSL, AfSyss(P2)=SP (state property systems of D. Aerts).
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Affine spatialization procedure

Affine spatialization procedure

Theorem 11

1 AfSpc(T ) �
� E // AfSys(T ), E ((X1, τ1)

f−→ (X2, τ2)) =

(X1, e
op
τ1 , τ1)

(f ,ϕ)−−−→ (X2, e
op
τ2 , τ2) is a full embedding, with eτi

the inclusion τi ↪→ TXi , and ϕop the restriction τ2
(Tf )op |τ1

τ2−−−−−→ τ1.

2 E has a right-adjoint-left-inverse AfSys(T )
Spat−−−→ AfSpc(T ),

Spat((X1, κ1,B1)
(f ,ϕ)−−−→ (X2, κ2,B2)) = (X1, κ

op
1 (B1))

f−→
(X2, κ

op
2 (B2)).

3 AfSpc(T ) is isomorphic to a full (regular mono)-coreflective
subcategory of AfSys(T ).
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Affine spatialization procedure

Consequences

Theorem 12

E and Spat restrict to AfSpc(T ) �
� E // AfSyss(T ) and

AfSyss(T )
Spat−−−→ AfSpc(T ), providing an equivalence between the

categories AfSpc(T ) and AfSyss(T ) such that Spat E = 1AfSpc(T ).

Corollary 13

AfSpc(T ) is the amnestic modification of AfSyss(T ).

Example 14
1 Top is isomorphic to a full (regular mono)-coreflective subcate-

gory of TopSys (system spatialization procedure of S. Vickers).
2 The categories Cls and SP are equivalent.
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Nature of the categories of affine spaces and systems

Categories of affine spaces and systems

Theorem 15

Given a functor X T−→ Bop, the concrete category (AfSpc(T ), | − |)
is topological over the ground category X.

Theorem 16

Suppose X is (Epi, Mono-Source)-factorizable, and X T−→ Bop pre-
serves epimorphisms. Then the concrete category (AfSys(T ), | − |)
is essentially algebraic over the ground category X× Bop.
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Nature of the categories of affine spaces and systems

Category of affine systems

Theorem 17

Suppose that X is (Epi, Mono-Source)-factorizable, X T−→ Bop pre-
serves epimorphisms, and, moreover, the following three equivalent
conditions hold:

1 B has the (Epi, Mono)-diagonalization property;
2 ExtrEpi(B) = Epi(B);
3 epimorphisms in B are surjective.

Then the concrete category (AfSys(T ), | − |) is algebraic over the
ground category X× Bop.
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Affine localification procedure

Affine localification procedure

Proposition 18

AfSys(T )
Loc−−→ Bop, Loc((X1, κ1,B1)

(f ,ϕ)−−−→ (X2, κ2,B2)) = B1
ϕ−→

B2 is a functor.

Theorem 19

Given a functor X T−→ Bop, the following are equivalent.
1 There exists an adjoint situation (η, ε) : T a Pt : Bop −→ X.

2 There exists a full embedding Bop �
� E // AfSys(T ) such that

Loc is a left-adjoint-left-inverse to E . Bop is then isomorphic
to a full reflective subcategory of AfSys(T ).
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Affine localification procedure

Proof of Theorem 19

(1)⇒ (2)

The required embedding functor Bop �
� E // T can be defined

by E (B1
ϕ−→ B2) = (PtB1, εB1 ,B1)

(Ptϕ,ϕ)−−−−−→ (PtB2, εB2 ,B2).

Given a T -system (X , κ,B), straightforward calculations show

that (X , κ,B)
(f :=Ptκ◦ηX ,1B)−−−−−−−−−−→ ((PtB, εB ,B) = ELoc(X , κ,B))

provides an E -universal arrow for (X , κ,B).

(2)⇒ (1)

Given an adjunction Loc a E : Bop −→ AfSys(T ), X T−→ Bop is the
composition of the left adjoint functors X −→ AfSpc(T ) (indiscrete

functor), AfSpc(T ) �
� E // AfSys(T ) , and AfSys(T )

Loc−−→ Bop.
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Affine localification procedure

Examples

Remark 20

Every functor Set
PB−−→ Bop has a right adjoint Bop

PtB−−→ Set,
PtB(B1

ϕ−→ B2) = B(B1,B)
PtBϕ−−−→ B(B2,B), (PtBϕ)(p) = p ◦ ϕop.

Example 21

Loc is isomorphic to a full reflective subcategory of TopSys,
which gives the system localification procedure of S. Vickers.

Bop is isomorphic to a full reflective subcategory of AfSys(PB).
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Affine localification procedure

Counterexample

Proposition 22

Take a functor Set×Bop T :=PBop−−−−−→ Bop. Suppose that there is a B-
algebra B, whose underlying set is finite with at least two elements,
e.g., has the cardinality n, n > 2. Then T has no right adjoint.

Proof.

If T has a right adjoint, then T preserves coproducts.

For a singleton set 1, T ((1,A)
∐

(1,A)) = T ((1
⊎

1,A×A)) =
(A× A)(1

⊎
1) and T (1,A)× T (1,A) = A1 × A1.

Since T ((1,A)
∐

(1,A)) ∼= T (1,A) × T (1,A), one gets n4 =
Card((A×A)(1

⊎
1)) = Card(A1×A1) = n2, i.e., contradiction.
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Affine localification procedure

Consequence

Proposition 23

Suppose that the category X is (Epi, Mono-Source)-factorizable.

If there exists a full embedding Bop �
� E // AfSys(T ) such that

Loc is a left-adjoint-left-inverse to E , then the concrete category
(AfSys(T ), | − |) is essentially algebraic over X× Bop.
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Affine sobriety and spatiality

Algebras versus affine spaces

Let X T−→ Bop be a functor, which has a right adjoint.

The adjoint situations AfSpc(T )
ES //
AfSys(T )

Spat

⊥oo

Loc //
Bop

EL

⊥oo

give rise to the adjoint situation AfSpc(T )
O:=LocES //

Bop,
PT :=SpatEL

⊥oo

or, more precisely, (η̂, ε̂) : O a PT : Bop −→ AfSpc(T ).
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Bop

EL

⊥oo

give rise to the adjoint situation AfSpc(T )
O:=LocES //

Bop,
PT :=SpatEL

⊥oo

or, more precisely, (η̂, ε̂) : O a PT : Bop −→ AfSpc(T ).
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Affine sobriety and spatiality

Affine sobriety and spatiality

Definition 24

Sob is the full subcategory of AfSpc(T ), which contains T -spaces

(X , τ) such that (X , τ)
η̂(X ,τ)−−−→ PTO(X , τ) is an isomorphism.

Definition 25

Spat is the full subcategory of Bop, which contains B-algebras B

such that OPTB
ε̂B−→ B is an isomorphism.

Proposition 26

AfSpc(T )
O //
Bop

PT

⊥oo restricts to an equivalence Sob
O //
Spat.

PT

⊥oo
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Affine sobriety and spatiality

Affine sobriety and spatiality

Example 27

There exists the adjoint situation O a PT : Loc −→ Top and
its respective equivalence between the categories Spat (spatial
locales) and Sob (sober topological spaces).

There exists the adjoint situation O a PT : Bop −→ AfSet(A)
and its respective equivalence Spat ∼ Sob (Y. Diers).
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Separated affine spaces

Separated affine spaces

Definition 28

A T -space (X , τ) is said to be separated provided that (X , τ)
η̂(X ,τ)−−−→

PTO(X , τ) is a monomorphism. AfSpss(T ) is the full subcategory
of AfSpc(T ) of separated T -spaces.

Theorem 29

Let X T−→ Bop be a functor. If X has a proper (E , Mono)-
factorization system, where Mono is the class of X-monomorphisms,
then AfSpss(T ) is an epireflective subcategory of AfSpc(T ).

On the category of affine systems Sergejs Solovjovs Brno University of Technology 26/35



Introduction Spatialization Localification Sobriety & spatiality Conclusion References

Separated affine spaces

Separated affine spaces

Definition 28

A T -space (X , τ) is said to be separated provided that (X , τ)
η̂(X ,τ)−−−→

PTO(X , τ) is a monomorphism. AfSpss(T ) is the full subcategory
of AfSpc(T ) of separated T -spaces.

Theorem 29

Let X T−→ Bop be a functor. If X has a proper (E , Mono)-
factorization system, where Mono is the class of X-monomorphisms,
then AfSpss(T ) is an epireflective subcategory of AfSpc(T ).

On the category of affine systems Sergejs Solovjovs Brno University of Technology 26/35



Introduction Spatialization Localification Sobriety & spatiality Conclusion References

Separated affine spaces

Examples

Example 30

If B = Frm, then AfSpss(P2) = Top0 (T0 topological spaces).

Example 31

Since the category Set has a proper (Epi, Mono)-factorization sys-

tem, the above theorem is applicable to every functor Set
PB−−→ Bop.

Top0 is a reflective subcategory of Top.

Cls0 is a reflective subcategory of Cls.

AfSets(A) is a reflective subcategory of AfSet(A) (Y. Diers).
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Spatial and localic affine systems

Spatial affine systems

Definition 32

A T -system (X , κ,B) is called spatial provided that there exists a
T -space (X , τ) such that (X , κ,B) is isomorphic to ES(X , τ).

Proposition 33

Given a T -system (X , κ,B), the following are equivalent:
1 (X , κ,B) is spatial;

2 the T -morphism (ESSpat(X , κ,B) = (X , eopκop(B),B))
(1X ,κ)−−−−→

(X , κ, B) is an isomorphism;

3 the B-homomorphism B
κop−−→ κop(B) is an isomorphism;

4 the B-homomorphism B
κop−−→ TX is injective.
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Spatial and localic affine systems

Localic affine systems

Definition 34

A T -system (X , κ,B) is called localic provided that there exists a
B-algebra B such that (X , κ,B) is isomorphic to ELB.

Proposition 35

Given a T -system (X , κ,B), the following are equivalent:
1 (X , κ,B) is localic;

2 the T -morphism (X , κ,B)
(Ptκ◦ηX ,1B)−−−−−−−→ (ELLoc(X , κ,B) =

(PtB, εB ,B)) is an isomorphism;

3 the X-morphism X
ηX−→ PtTX

Ptκ−−→ PtB is an isomorphism.

On the category of affine systems Sergejs Solovjovs Brno University of Technology 29/35



Introduction Spatialization Localification Sobriety & spatiality Conclusion References

Spatial and localic affine systems

Localic affine systems

Definition 34

A T -system (X , κ,B) is called localic provided that there exists a
B-algebra B such that (X , κ,B) is isomorphic to ELB.

Proposition 35

Given a T -system (X , κ,B), the following are equivalent:
1 (X , κ,B) is localic;

2 the T -morphism (X , κ,B)
(Ptκ◦ηX ,1B)−−−−−−−→ (ELLoc(X , κ,B) =

(PtB, εB ,B)) is an isomorphism;

3 the X-morphism X
ηX−→ PtTX

Ptκ−−→ PtB is an isomorphism.

On the category of affine systems Sergejs Solovjovs Brno University of Technology 29/35



Introduction Spatialization Localification Sobriety & spatiality Conclusion References

Spatial and localic affine systems

Spatial and localic affine systems

Definition 36

SpaLoc is the full subcategory of AfSys(T ) of T -systems, which
are spatial and localic.

Theorem 37

Spat ��
EL

// SpaLoc
Locoo

Spat

// Sob
? _

ESoo
are equivalences.

The above theorem provides an internalization of the sobriety-
spatiality equivalence into the category of affine systems.
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Conclusion

Spaces versus systems

The category TopSys of topological systems of S. Vickers em-
beds the category Loc of locales (resp. Top of topological
spaces) as a full (resp. co)reflective subcategory.

The category AfSys(T ) of affine systems (motivated by affine
sets of Y. Diers) embeds the category Bop of the underlying
algebras of affine structures (resp. AfSpc(T ) of affine spaces)
as a full (resp. co)reflective subcategory.
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Conclusion

Sobriety and spatiality

While the embedding of AfSpc(T ) into AfSys(T ) is always
possible, the embedding of Bop requires the existence of a right
adjoint for the respective functor T .

The obtained embeddings allowed us to restate the equivalence
between the categories of sober topological spaces and spatial
locales in the language of algebras and affine spaces, and to
internalize this equivalence into the category of affine systems.
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Thank you for your attention!
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