| Introduction | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|--------------|----------------|----------------|-----------------------|------------|------------|
| 000          | 00000000000    | 00000          | 00000000              | 00         | 00         |
|              |                |                |                       |            |            |

# On the category of affine systems

# Sergejs Solovjovs

Institute of Mathematics, Faculty of Mechanical Engineering Brno University of Technology Technicka 2896/2, 616 69, Brno, Czech Republic e-mail: solovjovs@fme.vutbr.cz

## 90th Workshop on General Algebra

University of Novi Sad, Novi Sad, Serbia June 5 – 7, 2015

On the category of affine systems

| Introduction | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|--------------|----------------|----------------|-----------------------|------------|------------|
| 000          | 00000000000    |                | 00000000              | 00         | 00         |
| Acknowl      | edgements      |                |                       |            |            |

The author gratefully acknowledges the support of Czech Science Foundation (GAČR) and Austrian Science Fund (FWF) in bilateral project No. I 1923-N25 "New Perspectives on Residuated Posets".





Der Wissenschaftsfonds.

| Introduction<br>000 | Spatialization | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|----------------|-----------------------------------|------------------|------------------|
| Outline             |                |                |                                   |                  |                  |

- 1 Introduction: topological systems and affine sets
- 2 Spatialization procedure for affine systems
- 3 Localification procedure for affine systems
- 4 Affine sobriety-spatiality equivalence

# 5 Conclusion

| Introduction<br>●○○ | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| Affine systems      |                               |                |                                   |                  |                  |
| Topolog             | ical system                   | S              |                                   |                  |                  |

- In 1989, S. Vickers introduced the notion of *topological system* as a common framework for both topological spaces and the underlying algebraic structures of their topologies locales.
- The category of locales (resp. topological spaces) appeared to be isomorphic to a full (resp. co)reflective subcategory of the category of topological systems, which gave rise to the so-called system *localification* (resp. *spatialization*) procedure.

| Introduction<br>●00 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine systems      |                               |                         |                                   |                  |                  |
| Topolog             | cical system                  | s                       |                                   |                  |                  |

- In 1989, S. Vickers introduced the notion of *topological system* as a common framework for both topological spaces and the underlying algebraic structures of their topologies locales.
- The category of locales (resp. topological spaces) appeared to be isomorphic to a full (resp. co)reflective subcategory of the category of topological systems, which gave rise to the so-called system *localification* (resp. *spatialization*) procedure.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| Affine systems      |                               |                |                                   |                  |                  |
| Affine s            | ystems                        |                |                                   |                  |                  |

- In 1996, Y. Diers has come out with the concept of *affine set*, which included topological spaces as a particular example.
- The respective notion of *affine system* extends topological systems of S. Vickers, and also state property systems of D. Aerts.
- The category of affine sets is isomorphic to a full coreflective subcategory of the category of affine systems, giving an affine analogue of the spatialization procedure for topological systems.

| Introduction<br>○●○ | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| Affine systems      |                               |                |                                   |                  |                  |
| Affine s            | ystems                        |                |                                   |                  |                  |

- In 1996, Y. Diers has come out with the concept of *affine set*, which included topological spaces as a particular example.
- The respective notion of *affine system* extends topological systems of S. Vickers, and also state property systems of D. Aerts.
- The category of affine sets is isomorphic to a full coreflective subcategory of the category of affine systems, giving an affine analogue of the spatialization procedure for topological systems.

| Introduction<br>○●○ | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| Affine systems      |                               |                |                                   |                  |                  |
| Affine s            | ystems                        |                |                                   |                  |                  |

- In 1996, Y. Diers has come out with the concept of *affine set*, which included topological spaces as a particular example.
- The respective notion of *affine system* extends topological systems of S. Vickers, and also state property systems of D. Aerts.
- The category of affine sets is isomorphic to a full coreflective subcategory of the category of affine systems, giving an affine analogue of the spatialization procedure for topological systems.



# Localification procedure for affine systems

- This talk shows the necessary and sufficient condition for the dual category of the variety of algebras, whose objects underly the structure of affine sets, to be isomorphic to a full reflective subcategory of the category of affine systems, giving an affine analogue of the localification procedure for topological systems.
- One obtains a restatement of the *sobriety-spatiality equivalence* for affine sets, which is patterned after the equivalence between the categories of sober topological spaces and spatial locales.
- The existence of the localification procedure for affine systems induces, moreover, their category to be essentially algebraic.



# Localification procedure for affine systems

- This talk shows the necessary and sufficient condition for the dual category of the variety of algebras, whose objects underly the structure of affine sets, to be isomorphic to a full reflective subcategory of the category of affine systems, giving an affine analogue of the localification procedure for topological systems.
- One obtains a restatement of the *sobriety-spatiality equivalence* for affine sets, which is patterned after the equivalence between the categories of sober topological spaces and spatial locales.
- The existence of the localification procedure for affine systems induces, moreover, their category to be essentially algebraic.

On the category of affine systems



# Localification procedure for affine systems

- This talk shows the necessary and sufficient condition for the dual category of the variety of algebras, whose objects underly the structure of affine sets, to be isomorphic to a full reflective subcategory of the category of affine systems, giving an affine analogue of the localification procedure for topological systems.
- One obtains a restatement of the *sobriety-spatiality equivalence* for affine sets, which is patterned after the equivalence between the categories of sober topological spaces and spatial locales.
- The existence of the localification procedure for affine systems induces, moreover, their category to be essentially algebraic.

| Introduction       | Spatialization       | Localification | Sobriety & spatiality | Conclusion | References |
|--------------------|----------------------|----------------|-----------------------|------------|------------|
|                    | • <b>00</b> 00000000 |                |                       |            |            |
| Algebraic prelimit | naries               |                |                       |            |            |
|                    |                      |                |                       |            |            |

# $\Omega$ -algebras and $\Omega$ -homomorphisms

## Definition 1

Let  $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$  be a family of cardinal numbers, which is indexed by a (possibly, proper or empty) class  $\Lambda$ .

- An  $\Omega$ -algebra is a pair  $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$ , comprising a set A and a family of maps  $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$   $(n_{\lambda}$ -ary primitive operations on A).
- An  $\Omega$ -homomorphism  $(A_1, (\omega_{\lambda}^{A_1})_{\lambda \in \Lambda}) \xrightarrow{\varphi} (A_2, (\omega_{\lambda}^{A_2})_{\lambda \in \Lambda})$  is a map  $A_1 \xrightarrow{\varphi} A_2$  such that  $\varphi \circ \omega_{\lambda}^{A_1} = \omega_{\lambda}^{A_2} \circ \varphi^{n_{\lambda}}$  for every  $\lambda \in \Lambda$ .
- $Alg(\Omega)$  is the construct of  $\Omega$ -algebras and  $\Omega$ -homomorphisms.

| Introduction<br>000 | Spatialization<br>0000000000 | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Algebraic prelimi   | naries                       |                         |                                   |                  |                  |
| Varietie            | s and algebi                 | ras                     |                                   |                  |                  |

## Definition 2

Let  $\mathcal{M}$  (resp.  $\mathcal{E}$ ) be the class of  $\Omega$ -homomorphisms with injective (resp. surjective) underlying maps. A variety of  $\Omega$ -algebras is a full subcategory of **Alg**( $\Omega$ ), which is closed under the formation of products,  $\mathcal{M}$ -subobjects and  $\mathcal{E}$ -quotients, and whose objects (resp. morphisms) are called algebras (resp. homomorphisms).

On the category of affine systems

| Introduction<br>000 | Spatialization<br>0000000000 | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Algebraic prelimi   | naries                       |                         |                                  |                  |                  |
| Example             | es of varieti                | es                      |                                  |                  |                  |

- CSLat(∨) is the variety of ∨-semilattices, and CSLat(∧) is the variety of ∧-semilattices.
- **2** Frm is the variety of *frames*.
- **© CBAIg** is the variety of *complete Boolean algebras*.
- Solution CSL is the variety of *closure semilattices*, i.e., ∧-semilattices, with the singled out bottom element.

| Introduction<br>000 | Spatialization | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine spaces       |                |                         |                                   |                  |                  |
| Affine s            | naces          |                         |                                   |                  |                  |

### Definition 4

Given a functor  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ , where  $\mathbf{B}$  is a variety of algebras, **AfSpc**(T) is the concrete category over  $\mathbf{X}$ , whose objects (T-affine spaces or T-spaces) are pairs ( $X, \tau$ ), where X is an  $\mathbf{X}$ -object and  $\tau$  is a subalgebra of TX; morphisms (T-affine morphisms or T-morphisms) ( $X_1, \tau_1$ )  $\xrightarrow{f}$ ( $X_2, \tau_2$ ) are  $\mathbf{X}$ -morphisms  $X_1 \xrightarrow{f} X_2$  with the property that (Tf)<sup>op</sup>( $\alpha$ )  $\in \tau_1$  for every  $\alpha \in \tau_2$ .

On the category of affine systems

| Introduction<br>000 | Spatialization | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine spaces       |                |                         |                                   |                  |                  |
| Example             | S              |                         |                                   |                  |                  |

Given a variety **B**, every subcategory **S** of **B**<sup>op</sup> induces a functor **Set** × **S**  $\xrightarrow{\mathcal{P}_{S}}$  **B**<sup>op</sup>,  $\mathcal{P}_{S}((X_{1}, B_{1}) \xrightarrow{(f, \varphi)} (X_{2}, B_{2})) = B_{1}^{X_{1}} \xrightarrow{\mathcal{P}_{S}(f, \varphi)} B_{2}^{X_{2}}$ , where  $(\mathcal{P}_{S}(f, \varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f$ .

#### Example 6

• If  $\mathbf{B} = \mathbf{Frm}$ , then  $\mathbf{AfSpc}(\mathcal{P}_2) = \mathbf{Top}$  (topological spaces).

• If B = CSL, then  $AfSpc(\mathcal{P}_2) = Cls$  (closure spaces).

• AfSpc( $\mathcal{P}_B$ ) is the category AfSet(B) of affine sets of Y. Diers.

If B = Frm, then AfSpc(P<sub>S</sub>) = S-Top (variable-basis lattice-valued topological spaces of S. E. Rodabaugh).

On the category of affine systems

| Introduction<br>000 | Spatialization | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine spaces       |                |                         |                                   |                  |                  |
| Example             | S              |                         |                                   |                  |                  |

Given a variety **B**, every subcategory **S** of **B**<sup>op</sup> induces a functor **Set** × **S**  $\xrightarrow{\mathcal{P}_{S}}$  **B**<sup>op</sup>,  $\mathcal{P}_{S}((X_{1}, B_{1}) \xrightarrow{(f, \varphi)} (X_{2}, B_{2})) = B_{1}^{X_{1}} \xrightarrow{\mathcal{P}_{S}(f, \varphi)} B_{2}^{X_{2}}$ , where  $(\mathcal{P}_{S}(f, \varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f$ .

### Example 6

- If B = Frm, then  $AfSpc(\mathcal{P}_2) = Top$  (topological spaces).
- **2** If  $\mathbf{B} = \mathbf{CSL}$ , then  $\mathbf{AfSpc}(\mathcal{P}_2) = \mathbf{Cls}$  (closure spaces).
- AfSpc( $\mathcal{P}_B$ ) is the category AfSet(B) of affine sets of Y. Diers.
- If B = Frm, then  $AfSpc(\mathcal{P}_S) = S$ -Top (variable-basis lattice-valued topological spaces of S. E. Rodabaugh).

| Introduction<br>000 | Spatialization | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|-------------------------|----------------------------------|------------------|------------------|
| Affine systems      |                |                         |                                  |                  |                  |
| Affine s            | ystems         |                         |                                  |                  |                  |

## Definition 7

Given a functor  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ ,  $\mathbf{AfSys}(T)$  is the comma category  $(T \downarrow 1_{\mathbf{B}^{op}})$ , concrete over the product category  $\mathbf{X} \times \mathbf{B}^{op}$ , whose objects (*T*-affine systems or *T*-systems) are triples  $(X, \kappa, B)$ , made by **B**<sup>op</sup>-morphisms  $TX \xrightarrow{\kappa} B$ ; morphisms (*T*-affine morphisms or *T*-morphisms)  $(X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)$  are  $\mathbf{X} \times \mathbf{B}^{op}$ -morphisms  $(X_1, B_1) \xrightarrow{(f, \varphi)} (X_2, B_2)$ , making the next diagram commute  $TX_1 \xrightarrow{Tf} TX_2$  $\begin{array}{c} \kappa_1 \\ \\ B_1 \\ \hline \\ \varphi \end{array} \rightarrow \begin{array}{c} \\ B_2. \end{array}$ 

On the category of affine systems

| Introduction<br>000 | Spatialization | Localification | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|----------------|-----------------------|------------------|------------------|
| Affine systems      |                |                |                       |                  |                  |
| Example             | es             |                |                       |                  |                  |

- If B = Frm, then AfSys(P<sub>2</sub>) = TopSys (topological systems of S. Vickers).
- If B = Set, then AfSys( $P_B$ ) = Chu<sub>B</sub> (Chu spaces over a set B of P.-H. Chu).

#### Definition 9

A *T*-system  $(X, \kappa, B)$  is called *separated* provided that  $TX \xrightarrow{\kappa} B$  is an epimorphism in  $\mathbf{B}^{op}$ . **AfSys**<sub>s</sub>(T) is the full subcategory of **AfSys**(T) of separated *T*-systems.

#### Example 10

For  $\mathbf{B} = \mathbf{CSL}$ ,  $\mathbf{AfSys}_s(\mathcal{P}_2) = \mathbf{SP}$  (state property systems of D. Aerts).

On the category of affine systems

Sergejs Solovjovs

Brno University of Technology

| Introduction<br>000 | Spatialization | Localification | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|----------------|-----------------------|------------------|------------------|
| Affine systems      |                |                |                       |                  |                  |
| Example             | es             |                |                       |                  |                  |

- If B = Frm, then AfSys(P<sub>2</sub>) = TopSys (topological systems of S. Vickers).
- If B = Set, then AfSys( $P_B$ ) = Chu<sub>B</sub> (Chu spaces over a set B of P.-H. Chu).

## Definition 9

A *T*-system  $(X, \kappa, B)$  is called *separated* provided that  $TX \xrightarrow{\kappa} B$  is an epimorphism in  $\mathbf{B}^{op}$ . AfSys<sub>s</sub>(T) is the full subcategory of AfSys(T) of separated *T*-systems.

#### Example 10

For  $\mathbf{B} = \mathbf{CSL}$ ,  $\mathbf{AfSys}_s(\mathcal{P}_2) = \mathbf{SP}$  (state property systems of D. Aerts).

On the category of affine systems

| Introduction<br>000 | Spatialization | Localification | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|----------------|----------------|-----------------------|------------------|------------------|
| Affine systems      |                |                |                       |                  |                  |
| Example             | es             |                |                       |                  |                  |

- If B = Frm, then AfSys(P<sub>2</sub>) = TopSys (topological systems of S. Vickers).
- If B = Set, then AfSys( $P_B$ ) = Chu<sub>B</sub> (Chu spaces over a set B of P.-H. Chu).

## Definition 9

A *T*-system  $(X, \kappa, B)$  is called *separated* provided that  $TX \xrightarrow{\kappa} B$  is an epimorphism in  $\mathbf{B}^{op}$ . AfSys<sub>s</sub>(T) is the full subcategory of AfSys(T) of separated *T*-systems.

### Example 10

For  $\mathbf{B} = \mathbf{CSL}$ ,  $\mathbf{AfSys}_s(\mathcal{P}_2) = \mathbf{SP}$  (state property systems of D. Aerts).

On the category of affine systems

| Introduction                    | Spatialization                          | Localification | Sobriety & spatiality | Conclusion | References |  |  |  |
|---------------------------------|-----------------------------------------|----------------|-----------------------|------------|------------|--|--|--|
|                                 | 000000000000000000000000000000000000000 | 00000          | 0000000               |            |            |  |  |  |
| Affine spatialization procedure |                                         |                |                       |            |            |  |  |  |
|                                 |                                         |                |                       |            |            |  |  |  |

# Affine spatialization procedure

## Theorem 11

• AfSpc(T)  $\xrightarrow{E}$  AfSys(T),  $E((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) =$  $(X_1, e_{\tau_1}^{op}, \tau_1) \xrightarrow{(f, \varphi)} (X_2, e_{\tau_2}^{op}, \tau_2)$  is a full embedding, with  $e_{\tau_i}$ the inclusion  $\tau_i \hookrightarrow TX_i$ , and  $\varphi^{op}$  the restriction  $\tau_2 \xrightarrow{(Tf)^{op}|_{\tau_2}^{\tau_1}} \tau_1$ . **2** E has a right-adjoint-left-inverse  $AfSys(T) \xrightarrow{Spat} AfSpc(T)$ .  $Spat((X_1, \kappa_1, B_1) \xrightarrow{(f,\varphi)} (X_2, \kappa_2, B_2)) = (X_1, \kappa_1^{op}(B_1)) \xrightarrow{f}$  $(X_2, \kappa_2^{op}(B_2)).$ **3** AfSpc(T) is isomorphic to a full (regular mono)-coreflective subcategory of AfSys(T).

| Introduction<br>000 | Spatialization<br>○○○○○○○●○○ | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Affine spatializati | ion procedure                |                         |                                  |                  |                  |
| ~                   |                              |                         |                                  |                  |                  |

# Consequences

## Theorem 12

*E* and *Spat* restrict to  $AfSpc(T) \xrightarrow{\overline{E}} AfSys_s(T)$  and  $AfSys_s(T) \xrightarrow{\overline{Spat}} AfSpc(T)$ , providing an equivalence between the categories AfSpc(T) and  $AfSys_s(T)$  such that  $\overline{Spat} \overline{E} = 1_{AfSpc(T)}$ .

#### Corollary 13

AfSpc(T) is the amnestic modification of  $AfSys_s(T)$ .

#### Example 14

 Top is isomorphic to a full (regular mono)-coreflective subcategory of TopSys (system spatialization procedure of S. Vickers).
 The categories Cls and SP are equivalent.

On the category of affine systems

Sergejs Solovjovs

Brno University of Technology

| Introduction<br>000 | Spatialization<br>○○○○○○○●○○ | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Affine spatializati | ion procedure                |                         |                                  |                  |                  |
| ~                   |                              |                         |                                  |                  |                  |

# Consequences

## Theorem 12

*E* and Spat restrict to  $AfSpc(T) \xrightarrow{\overline{E}} AfSys_s(T)$  and  $AfSys_s(T) \xrightarrow{\overline{Spat}} AfSpc(T)$ , providing an equivalence between the categories AfSpc(T) and  $AfSys_s(T)$  such that  $\overline{Spat} \overline{E} = 1_{AfSpc(T)}$ .

## Corollary 13

AfSpc(T) is the amnestic modification of  $AfSys_s(T)$ .

#### Example 14

 Top is isomorphic to a full (regular mono)-coreflective subcategory of TopSys (system spatialization procedure of S. Vickers).
 The categories Cls and SP are equivalent.

On the category of affine systems

Sergejs Solovjovs

Brno University of Technology

| Introduction<br>000 | Spatialization<br>○○○○○○○●○○ | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine spatializat  | ion procedure                |                         |                                   |                  |                  |
| Consequ             | Jences                       |                         |                                   |                  |                  |

# Theorem 12

*E* and Spat restrict to 
$$AfSpc(T) \xrightarrow{\overline{E}} AfSys_s(T)$$
 and  
 $AfSys_s(T) \xrightarrow{\overline{Spat}} AfSpc(T)$ , providing an equivalence between the  
categories  $AfSpc(T)$  and  $AfSys_s(T)$  such that  $\overline{Spat} \overline{E} = 1_{AfSpc(T)}$ .

## Corollary 13

AfSpc(T) is the amnestic modification of  $AfSys_s(T)$ .

### Example 14

 Top is isomorphic to a full (regular mono)-coreflective subcategory of TopSys (system spatialization procedure of S. Vickers).

The categories Cls and SP are equivalent.

On the category of affine systems

| Introduction<br>000 | Spatialization<br>○○○○○○○○●○ | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|----------------|-----------------------------------|------------------|------------------|
| Nature of the cat   | egories of affine spaces a   | nd systems     |                                   |                  |                  |
| Categor             | ies of affine                | spaces an      | d svstems                         |                  |                  |

### Theorem 15

Given a functor  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ , the concrete category (AfSpc(T), |-|) is topological over the ground category  $\mathbf{X}$ .

#### Theorem 16

Suppose **X** is (Epi, Mono-Source)-factorizable, and  $\mathbf{X} \xrightarrow{l} \mathbf{B}^{op}$  preserves epimorphisms. Then the concrete category (**AfSys**(T), |-|) is essentially algebraic over the ground category  $\mathbf{X} \times \mathbf{B}^{op}$ .

On the category of affine systems

Sergejs Solovjovs

Brno University of Technology

| Introduction<br>000 | Spatialization               | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|------------------------------|----------------|-----------------------------------|------------------|------------------|
| Nature of the cat   | tegories of affine spaces ar | nd systems     |                                   |                  |                  |
| Categor             | ies of affine                | spaces an      | d systems                         |                  |                  |

### Theorem 15

Given a functor  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ , the concrete category (AfSpc(T), |-|) is topological over the ground category  $\mathbf{X}$ .

### Theorem 16

Suppose **X** is (Epi, Mono-Source)-factorizable, and  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  preserves epimorphisms. Then the concrete category (AfSys(T), |-|) is essentially algebraic over the ground category  $\mathbf{X} \times \mathbf{B}^{op}$ .

On the category of affine systems

Sergejs Solovjovs

Brno University of Technology

| Introduction      | Spatialization             | Localification | Sobriety & spatiality | Conclusion | References |
|-------------------|----------------------------|----------------|-----------------------|------------|------------|
|                   | 0000000000                 |                |                       |            |            |
| Nature of the cat | egories of affine spaces a | nd systems     |                       |            |            |
|                   |                            |                |                       |            |            |

# Category of affine systems

## Theorem 17

Suppose that **X** is (Epi, Mono-Source)-factorizable,  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  preserves epimorphisms, and, moreover, the following three equivalent conditions hold:

**B** has the (Epi, Mono)-diagonalization property;

epimorphisms in B are surjective.

Then the concrete category (AfSys(T), |-|) is algebraic over the ground category  $X \times B^{op}$ .

| Introduction<br>000   | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|-----------------------|----------------|----------------|-----------------------|------------|------------|
| Affine localification | procedure      |                |                       |            |            |

# Affine localification procedure

## Proposition 18

**AfSys**(*T*) 
$$\xrightarrow{Loc}$$
 **B**<sup>op</sup>,  $Loc((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = B_1 \xrightarrow{\varphi} B_2$  is a functor.

#### Theorem 19

Given a functor  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ , the following are equivalent.

) There exists an adjoint situation  $(\eta, arepsilon)$  :  $T \dashv Pt$  :  $\mathbf{B}^{op} 
ightarrow \mathbf{X}$ .

There exists a full embedding B<sup>op</sup> ← AfSys(T) such that Loc is a left-adjoint-left-inverse to E. B<sup>op</sup> is then isomorphic to a full reflective subcategory of AfSys(T).

On the category of affine systems

| Introduction<br>000   | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|-----------------------|----------------|----------------|-----------------------|------------|------------|
| Affine localification | procedure      |                |                       |            |            |

# Affine localification procedure

# Proposition 18

**AfSys**(*T*) 
$$\xrightarrow{Loc}$$
 **B**<sup>op</sup>,  $Loc((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = B_1 \xrightarrow{\varphi} B_2$  is a functor.

### Theorem 19

Given a functor  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ , the following are equivalent.

- **1** There exists an adjoint situation  $(\eta, \varepsilon)$  :  $T \dashv Pt : \mathbf{B}^{op} \to \mathbf{X}$ .
- ② There exists a full embedding B<sup>op</sup> ← E → AfSys(T) such that Loc is a left-adjoint-left-inverse to E. B<sup>op</sup> is then isomorphic to a full reflective subcategory of AfSys(T).

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>0●000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Affine localificati | on procedure                  |                         |                                  |                  |                  |
| Proof               | f Theorem 1                   | 0                       |                                  |                  |                  |

# $(1) \Rightarrow (2)$

- The required embedding functor  $\mathbf{B}^{op} \xrightarrow{E} T$  can be defined by  $E(B_1 \xrightarrow{\varphi} B_2) = (PtB_1, \varepsilon_{B_1}, B_1) \xrightarrow{(Pt\varphi, \varphi)} (PtB_2, \varepsilon_{B_2}, B_2).$
- Given a *T*-system  $(X, \kappa, B)$ , straightforward calculations show that  $(X, \kappa, B) \xrightarrow{(f:=Pt\kappa\circ\eta_X, 1_B)} ((PtB, \varepsilon_B, B) = ELoc(X, \kappa, B))$ provides an *E*-universal arrow for  $(X, \kappa, B)$ .

# $(2) \Rightarrow (1)$

Given an adjunction  $Loc \dashv E : \mathbf{B}^{op} \to \mathbf{AfSys}(T), \mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  is the composition of the left adjoint functors  $\mathbf{X} \to \mathbf{AfSpc}(T)$  (*indiscrete functor*),  $\mathbf{AfSpc}(T) \xrightarrow{E} \mathbf{AfSys}(T)$ , and  $\mathbf{AfSys}(T) \xrightarrow{Loc} \mathbf{B}^{op}$ .

On the category of affine systems

| Introduction<br>000   | Spatialization<br>00000000000 | Localification<br>○●○○○ | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|-----------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine localification | on procedure                  |                         |                                   |                  |                  |
| Proof                 | f Theorem 1                   | 0                       |                                   |                  |                  |

# $(1) \Rightarrow (2)$

- The required embedding functor  $\mathbf{B}^{op} \xrightarrow{E} T$  can be defined by  $E(B_1 \xrightarrow{\varphi} B_2) = (PtB_1, \varepsilon_{B_1}, B_1) \xrightarrow{(Pt\varphi, \varphi)} (PtB_2, \varepsilon_{B_2}, B_2).$
- Given a *T*-system  $(X, \kappa, B)$ , straightforward calculations show that  $(X, \kappa, B) \xrightarrow{(f:=Pt\kappa\circ\eta_X, 1_B)} ((PtB, \varepsilon_B, B) = ELoc(X, \kappa, B))$ provides an *E*-universal arrow for  $(X, \kappa, B)$ .

# $(2) \Rightarrow (1)$

Given an adjunction  $Loc \dashv E : \mathbf{B}^{op} \to \mathbf{AfSys}(T), \mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  is the composition of the left adjoint functors  $\mathbf{X} \to \mathbf{AfSpc}(T)$  (*indiscrete functor*),  $\mathbf{AfSpc}(T) \xrightarrow{E} \mathbf{AfSys}(T)$ , and  $\mathbf{AfSys}(T) \xrightarrow{Loc} \mathbf{B}^{op}$ .

On the category of affine systems

| Introduction<br>000   | Spatialization<br>00000000000 | Localification<br>○●○○○ | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|-----------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine localification | on procedure                  |                         |                                   |                  |                  |
| Proof                 | f Theorem 1                   | 0                       |                                   |                  |                  |

# $(1) \Rightarrow (2)$

- The required embedding functor  $\mathbf{B}^{op} \xrightarrow{E} T$  can be defined by  $E(B_1 \xrightarrow{\varphi} B_2) = (PtB_1, \varepsilon_{B_1}, B_1) \xrightarrow{(Pt\varphi, \varphi)} (PtB_2, \varepsilon_{B_2}, B_2).$
- Given a *T*-system  $(X, \kappa, B)$ , straightforward calculations show that  $(X, \kappa, B) \xrightarrow{(f:=Pt\kappa\circ\eta_X, 1_B)} ((PtB, \varepsilon_B, B) = ELoc(X, \kappa, B))$ provides an *E*-universal arrow for  $(X, \kappa, B)$ .

# $(2) \Rightarrow (1)$

Given an adjunction  $Loc \dashv E : \mathbf{B}^{op} \to \mathbf{AfSys}(T), \mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  is the composition of the left adjoint functors  $\mathbf{X} \to \mathbf{AfSpc}(T)$  (*indiscrete functor*),  $\mathbf{AfSpc}(T) \xrightarrow{E} \mathbf{AfSys}(T)$ , and  $\mathbf{AfSys}(T) \xrightarrow{Loc} \mathbf{B}^{op}$ .

On the category of affine systems

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine localificati | on procedure                  |                         |                                   |                  |                  |
| Example             | es                            |                         |                                   |                  |                  |

### Remark 20

Every functor Set  $\xrightarrow{\mathcal{P}_B} \mathbf{B}^{op}$  has a right adjoint  $\mathbf{B}^{op} \xrightarrow{Pt_B}$  Set,  $Pt_B(B_1 \xrightarrow{\varphi} B_2) = \mathbf{B}(B_1, B) \xrightarrow{Pt_B \varphi} \mathbf{B}(B_2, B), (Pt_B \varphi)(p) = p \circ \varphi^{op}.$ 

#### Example 21

Loc is isomorphic to a full reflective subcategory of TopSys, which gives the system localification procedure of S. Vickers.
 B<sup>op</sup> is isomorphic to a full reflective subcategory of AfSys(P<sub>B</sub>).

On the category of affine systems

Sergejs Solovjovs

Brno University of Technology

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00●00 | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine localificati | on procedure                  |                         |                                   |                  |                  |
| Example             | es                            |                         |                                   |                  |                  |

### Remark 20

Every functor **Set**  $\xrightarrow{\mathcal{P}_B}$  **B**<sup>op</sup> has a right adjoint **B**<sup>op</sup>  $\xrightarrow{Pt_B}$  **Set**,  $Pt_B(B_1 \xrightarrow{\varphi} B_2) = \mathbf{B}(B_1, B) \xrightarrow{Pt_B \varphi} \mathbf{B}(B_2, B), (Pt_B \varphi)(p) = p \circ \varphi^{op}.$ 

### Example 21

- Loc is isomorphic to a full reflective subcategory of TopSys, which gives the system localification procedure of S. Vickers.
- $\mathbf{B}^{op}$  is isomorphic to a full reflective subcategory of  $\mathbf{AfSys}(\mathcal{P}_B)$ .

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Affine localificati | on procedure                  |                         |                                  |                  |                  |
| Counter             | rexample                      |                         |                                  |                  |                  |

#### Proposition 22

Take a functor  $\mathbf{Set} \times \mathbf{B}^{op} \xrightarrow{T := \mathcal{P}_{\mathbf{B}^{op}}} \mathbf{B}^{op}$ . Suppose that there is a **B**-algebra *B*, whose underlying set is finite with at least two elements, e.g., has the cardinality n,  $n \ge 2$ . Then *T* has no right adjoint.

#### Proof.

- If T has a right adjoint, then T preserves coproducts.
- For a singleton set 1,  $T((1, A) \coprod (1, A)) = T((1 \biguplus 1, A \times A)) = (A \times A)^{(1 \oiint 1)}$  and  $T(1, A) \times T(1, A) = A^1 \times A^1$ .
- Since  $T((1, A) \coprod (1, A)) \cong T(1, A) \times T(1, A)$ , one gets  $n^4 = Card((A \times A)^{(1 \uplus 1)}) = Card(A^1 \times A^1) = n^2$ , i.e., contradiction.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Affine localificati | on procedure                  |                         |                                  |                  |                  |
| Counter             | rexample                      |                         |                                  |                  |                  |

#### Proposition 22

Take a functor  $\mathbf{Set} \times \mathbf{B}^{op} \xrightarrow{T := \mathcal{P}_{\mathbf{B}^{op}}} \mathbf{B}^{op}$ . Suppose that there is a **B**-algebra *B*, whose underlying set is finite with at least two elements, e.g., has the cardinality n,  $n \ge 2$ . Then *T* has no right adjoint.

#### Proof.

- If T has a right adjoint, then T preserves coproducts.
- For a singleton set 1,  $T((1, A) \coprod (1, A)) = T((1 \biguplus 1, A \times A)) = (A \times A)^{(1 \oiint 1)}$  and  $T(1, A) \times T(1, A) = A^1 \times A^1$ .
- Since  $T((1, A) \coprod (1, A)) \cong T(1, A) \times T(1, A)$ , one gets  $n^4 = Card((A \times A)^{(1 + 1)}) = Card(A^1 \times A^1) = n^2$ , i.e., contradiction.

| Introduction<br>000   | Spatialization<br>00000000000 | Localification<br>0000● | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>00 |
|-----------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Affine localification | on procedure                  |                         |                                   |                  |                  |
| Consequ               | uence                         |                         |                                   |                  |                  |

#### Proposition 23

Suppose that the category **X** is (Epi, Mono-Source)-factorizable. If there exists a full embedding  $\mathbf{B}^{op} \xrightarrow{E} \mathbf{AfSys}(T)$  such that Loc is a left-adjoint-left-inverse to E, then the concrete category ( $\mathbf{AfSys}(T)$ , |-|) is essentially algebraic over  $\mathbf{X} \times \mathbf{B}^{op}$ .

On the category of affine systems

Sergejs Solovjovs

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>•000000 | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|----------------------------------|------------------|------------------|
| Affine sobriety ar  | nd spatiality                 |                |                                  |                  |                  |
|                     | cc;                           |                |                                  |                  |                  |

# Algebras versus affine spaces

• Let  $\mathbf{X} \xrightarrow{\mathcal{T}} \mathbf{B}^{op}$  be a functor, which has a right adjoint.

• The adjoint situations  $\mathbf{AfSpc}(T) \xrightarrow[\leq S_{pat}]{Loc} \mathbb{AfSys}(T) \xrightarrow[\leq L_{Loc}]{\perp} \mathbb{B}^{op}$ give rise to the adjoint situation  $\mathbf{AfSpc}(T) \xrightarrow[= T_{r=SpatE_{L}}]{O:=LocE_{S}} \mathbb{B}^{op}$ , or, more precisely,  $(\hat{\eta}, \hat{\varepsilon}) : O \dashv PT : \mathbb{B}^{op} \to \mathbf{AfSpc}(T)$ .

On the category of affine systems

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------|------------------|------------------|
| Affine sobriety ar  | nd spatiality                 |                |                       |                  |                  |
| Algebra             | s versus affi                 | ne spaces      |                       |                  |                  |

- Let  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  be a functor, which has a right adjoint.
- The adjoint situations  $\mathbf{AfSpc}(T) \xrightarrow[Spat]{Loc}{Loc}{\underline{\bot}} \mathbf{AfSys}(T) \xrightarrow[K]{Loc}{\underline{\bot}} \mathbf{B}^{op}$ give rise to the adjoint situation  $\mathbf{AfSpc}(T) \xrightarrow[PT:=SpatE_L]{Dot} \mathbf{B}^{op}$ ,

or, more precisely,  $(\hat{\eta}, \hat{\varepsilon}) : O \dashv PT : \mathbf{B}^{op} \to \mathbf{AfSpc}(T).$ 

On the category of affine systems

| Introduction               | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|----------------------------|----------------|----------------|-----------------------|------------|------------|
| 000<br>Affine sobriety and |                | 00000          | 0000000               | 00         | 00         |
|                            |                |                |                       |            |            |

# Definition 24

**Sob** is the full subcategory of AfSpc(T), which contains *T*-spaces  $(X, \tau)$  such that  $(X, \tau) \xrightarrow{\hat{\eta}_{(X,\tau)}} PTO(X, \tau)$  is an isomorphism.

## Definition 25

**Spat** is the full subcategory of  $\mathbf{B}^{op}$ , which contains **B**-algebras *B* such that  $OPTB \xrightarrow{\hat{\varepsilon}_B} B$  is an isomorphism.



On the category of affine systems

Sergejs Solovjovs

| Introduction        | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|---------------------|----------------|----------------|-----------------------|------------|------------|
|                     |                |                | 000000                |            |            |
| Affine sobriety and | spatiality     |                |                       |            |            |

# Definition 24

**Sob** is the full subcategory of AfSpc(T), which contains *T*-spaces  $(X, \tau)$  such that  $(X, \tau) \xrightarrow{\hat{\eta}_{(X,\tau)}} PTO(X, \tau)$  is an isomorphism.

# Definition 25

**Spat** is the full subcategory of  $\mathbf{B}^{op}$ , which contains **B**-algebras *B* such that  $OPTB \xrightarrow{\hat{\varepsilon}_B} B$  is an isomorphism.



On the category of affine systems

Sergejs Solovjovs

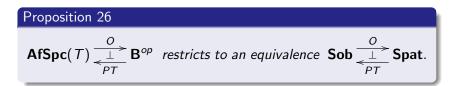
| Introduction        | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|---------------------|----------------|----------------|-----------------------|------------|------------|
|                     |                |                | 000000                |            |            |
| Affine sobriety and | spatiality     |                |                       |            |            |

# Definition 24

**Sob** is the full subcategory of AfSpc(T), which contains *T*-spaces  $(X, \tau)$  such that  $(X, \tau) \xrightarrow{\hat{\eta}_{(X,\tau)}} PTO(X, \tau)$  is an isomorphism.

# Definition 25

**Spat** is the full subcategory of  $\mathbf{B}^{op}$ , which contains **B**-algebras *B* such that  $OPTB \xrightarrow{\hat{\varepsilon}_B} B$  is an isomorphism.



| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------|------------------|------------------|
| Affine sobriety an  | id spatiality                 |                         |                       |                  |                  |
|                     |                               |                         |                       |                  |                  |

# Example 27

- There exists the adjoint situation O ⊢ PT : Loc → Top and its respective equivalence between the categories Spat (*spatial locales*) and Sob (*sober topological spaces*).
- There exists the adjoint situation O ⊢ PT : B<sup>op</sup> → AfSet(A) and its respective equivalence Spat ~ Sob (Y. Diers).

On the category of affine systems

Sergejs Solovjovs

| Introduction     | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|------------------|----------------|----------------|-----------------------|------------|------------|
| 000              | 00000000000    | 00000          | 00000000              | 00         | 00         |
| Separated affine | spaces         |                |                       |            |            |
|                  |                |                |                       |            |            |

# Separated affine spaces

# Definition 28

A *T*-space  $(X, \tau)$  is said to be *separated* provided that  $(X, \tau) \xrightarrow{\eta_{(X,\tau)}} PTO(X, \tau)$  is a monomorphism. **AfSps**<sub>s</sub>(*T*) is the full subcategory of **AfSpc**(*T*) of separated *T*-spaces.

#### Theorem 29

Let  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  be a functor. If  $\mathbf{X}$  has a proper ( $\mathcal{E}$ , Mono)factorization system, where Mono is the class of  $\mathbf{X}$ -monomorphisms, then  $\mathbf{AfSps}_{s}(T)$  is an epireflective subcategory of  $\mathbf{AfSpc}(T)$ .

On the category of affine systems

| Introduction     | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|------------------|----------------|----------------|-----------------------|------------|------------|
| 000              | 00000000000    | 00000          | 00000000              | 00         | 00         |
| Separated affine | spaces         |                |                       |            |            |
|                  |                |                |                       |            |            |

# Separated affine spaces

# Definition 28

A *T*-space  $(X, \tau)$  is said to be *separated* provided that  $(X, \tau) \xrightarrow{\hat{\eta}_{(X,\tau)}} PTO(X, \tau)$  is a monomorphism. **AfSps**<sub>s</sub>(*T*) is the full subcategory of **AfSpc**(*T*) of separated *T*-spaces.

#### Theorem 29

Let  $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$  be a functor. If  $\mathbf{X}$  has a proper ( $\mathcal{E}$ , Mono)factorization system, where Mono is the class of  $\mathbf{X}$ -monomorphisms, then  $\mathbf{AfSps}_{s}(T)$  is an epireflective subcategory of  $\mathbf{AfSpc}(T)$ .

On the category of affine systems

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>○○○○●○○○ | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Separated affine s  | spaces                        |                         |                                   |                  |                  |
| Example             | es                            |                         |                                   |                  |                  |

# Example 30

If  $\mathbf{B} = \mathbf{Frm}$ , then  $\mathbf{AfSps}_s(\mathcal{P}_2) = \mathbf{Top}_0$  ( $\mathcal{T}_0$  topological spaces).

#### Example 31

Since the category **Set** has a proper (Epi, Mono)-factorization system, the above theorem is applicable to every functor **Set**  $\xrightarrow{\mathcal{P}_B} \mathbf{B}^{op}$ .

- **Top**<sub>0</sub> is a reflective subcategory of **Top**.
- Cls<sub>0</sub> is a reflective subcategory of Cls.

• AfSet<sub>s</sub>(A) is a reflective subcategory of AfSet(A) (Y. Diers).

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>○○○○●○○○ | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Separated affine s  | paces                         |                         |                                   |                  |                  |
| Example             | es                            |                         |                                   |                  |                  |

# Example 30

If  $\mathbf{B} = \mathbf{Frm}$ , then  $\mathbf{AfSps}_{s}(\mathcal{P}_{2}) = \mathbf{Top}_{0}$  ( $\mathcal{T}_{0}$  topological spaces).

# Example 31

Since the category **Set** has a proper (Epi, Mono)-factorization system, the above theorem is applicable to every functor **Set**  $\xrightarrow{\mathcal{P}_B} \mathbf{B}^{op}$ .

- **Top**<sub>0</sub> is a reflective subcategory of **Top**.
- Cls<sub>0</sub> is a reflective subcategory of Cls.
- AfSet<sub>s</sub>(A) is a reflective subcategory of AfSet(A) (Y. Diers).

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------|------------------|------------------|
| Spatial and local   | ic affine systems             |                |                       |                  |                  |
| Spatial             | affine syste                  | ms             |                       |                  |                  |

A *T*-system  $(X, \kappa, B)$  is called *spatial* provided that there exists a *T*-space  $(X, \tau)$  such that  $(X, \kappa, B)$  is isomorphic to  $E_S(X, \tau)$ .

#### Proposition 33

Given a T-system (X, κ, B), the following are equivalent:
 (X, κ, B) is spatial;

• the T-morphism  $(E_S Spat(X, \kappa, B) = (X, e_{\kappa^{op}(B)}^{op}, B)) \xrightarrow{(1X, \kappa)} (X, \kappa, B)$  is an isomorphism;

• the **B**-homomorphism  $B \xrightarrow{\kappa^{op}} \kappa^{op}(B)$  is an isomorphism;

On the category of affine systems

Sergejs Solovjovs

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------|------------------|------------------|
| Spatial and local   | ic affine systems             |                |                       |                  |                  |
| Spatial             | affine system                 | nc             |                       |                  |                  |

A *T*-system  $(X, \kappa, B)$  is called *spatial* provided that there exists a *T*-space  $(X, \tau)$  such that  $(X, \kappa, B)$  is isomorphic to  $E_S(X, \tau)$ .

#### Proposition 33

Given a T-system  $(X, \kappa, B)$ , the following are equivalent:

- $(X, \kappa, B)$  is spatial;
- 2 the T-morphism  $(E_S Spat(X, \kappa, B) = (X, e_{\kappa^{op}(B)}^{op}, B)) \xrightarrow{(1_X, \kappa)} (X, \kappa, B)$  is an isomorphism;
- **3** the **B**-homomorphism  $B \xrightarrow{\kappa^{op}} \kappa^{op}(B)$  is an isomorphism;
- the **B**-homomorphism  $B \xrightarrow{\kappa^{op}} TX$  is injective.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>○○○○○●○ | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|----------------|----------------------------------|------------------|------------------|
| Spatial and local   | ic affine systems             |                |                                  |                  |                  |
| Localic             | affine system                 | ms             |                                  |                  |                  |

A *T*-system  $(X, \kappa, B)$  is called *localic* provided that there exists a **B**-algebra *B* such that  $(X, \kappa, B)$  is isomorphic to  $E_L B$ .

#### Proposition 35

Given a T-system (X, κ, B), the following are equivalent:
 (X, κ, B) is localic;

• the T-morphism  $(X, \kappa, B) \xrightarrow{(Pt\kappa \circ \eta_X, 1_B)} (E_L Loc(X, \kappa, B) = (PtB, \varepsilon_B, B))$  is an isomorphism;

• the **X**-morphism  $X \xrightarrow{\eta_X} PtTX \xrightarrow{Pt\kappa} PtB$  is an isomorphism.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>○○○○○●○ | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Spatial and local   | ic affine systems             |                         |                                  |                  |                  |
| Localic             | affine system                 | mc                      |                                  |                  |                  |

A *T*-system  $(X, \kappa, B)$  is called *localic* provided that there exists a **B**-algebra *B* such that  $(X, \kappa, B)$  is isomorphic to  $E_L B$ .

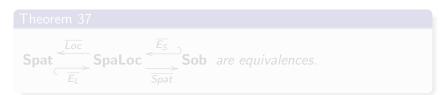
#### Proposition 35

Given a T-system  $(X, \kappa, B)$ , the following are equivalent:

- $(X, \kappa, B)$  is localic;
- **2** the T-morphism  $(X, \kappa, B) \xrightarrow{(Pt\kappa\circ\eta_X, 1_B)} (E_L Loc(X, \kappa, B) = (PtB, \varepsilon_B, B))$  is an isomorphism;
- **3** the **X**-morphism  $X \xrightarrow{\eta_X} PtTX \xrightarrow{Pt\kappa} PtB$  is an isomorphism.

| Introduction<br>000 | Spatialization    | Localification | Sobriety & spatiality<br>○○○○○○● | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------|----------------|----------------------------------|------------------|------------------|
| Spatial and local   | ic affine systems |                |                                  |                  |                  |
| Spatial             | and localic       | affine svst    | ems                              |                  |                  |

**SpaLoc** is the full subcategory of AfSys(T) of T-systems, which are spatial and localic.

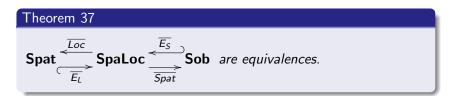


The above theorem provides an internalization of the sobrietyspatiality equivalence into the category of affine systems.

On the category of affine systems

| Introduction<br>000 | Spatialization    | Localification | Sobriety & spatiality<br>○○○○○○● | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------|----------------|----------------------------------|------------------|------------------|
| Spatial and local   | ic affine systems |                |                                  |                  |                  |
| Spatial             | and localic       | affine svst    | ems                              |                  |                  |

**SpaLoc** is the full subcategory of AfSys(T) of T-systems, which are spatial and localic.

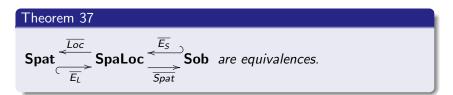


The above theorem provides an internalization of the sobrietyspatiality equivalence into the category of affine systems.

On the category of affine systems

| Introduction<br>000 | Spatialization    | Localification | Sobriety & spatiality<br>○○○○○○● | Conclusion<br>00 | References<br>00 |
|---------------------|-------------------|----------------|----------------------------------|------------------|------------------|
| Spatial and local   | ic affine systems |                |                                  |                  |                  |
| Spatial             | and localic       | affine svst    | ems                              |                  |                  |

**SpaLoc** is the full subcategory of AfSys(T) of T-systems, which are spatial and localic.



The above theorem provides an internalization of the sobrietyspatiality equivalence into the category of affine systems.

On the category of affine systems

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>0000000 | Conclusion<br>●0 | References<br>00 |
|---------------------|-------------------------------|-------------------------|----------------------------------|------------------|------------------|
| Conclusion          |                               |                         |                                  |                  |                  |
| Spaces              | versus syste                  | ms                      |                                  |                  |                  |

- The category **TopSys** of topological systems of S. Vickers embeds the category **Loc** of locales (resp. **Top** of topological spaces) as a full (resp. co)reflective subcategory.
- The category AfSys(T) of affine systems (motivated by affine sets of Y. Diers) embeds the category B<sup>op</sup> of the underlying algebras of affine structures (resp. AfSpc(T) of affine spaces) as a full (resp. co)reflective subcategory.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification<br>00000 | Sobriety & spatiality<br>00000000 | Conclusion<br>●0 | References<br>00 |
|---------------------|-------------------------------|-------------------------|-----------------------------------|------------------|------------------|
| Conclusion          |                               |                         |                                   |                  |                  |
| Spaces              | versus syste                  | ms                      |                                   |                  |                  |

- The category **TopSys** of topological systems of S. Vickers embeds the category **Loc** of locales (resp. **Top** of topological spaces) as a full (resp. co)reflective subcategory.
- The category AfSys(T) of affine systems (motivated by affine sets of Y. Diers) embeds the category B<sup>op</sup> of the underlying algebras of affine structures (resp. AfSpc(T) of affine spaces) as a full (resp. co)reflective subcategory.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>○● | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| Conclusion          |                               |                |                                   |                  |                  |
| Sobriet             | / and spatia                  | lity           |                                   |                  |                  |

- While the embedding of AfSpc(T) into AfSys(T) is always possible, the embedding of B<sup>op</sup> requires the existence of a right adjoint for the respective functor T.
- The obtained embeddings allowed us to restate the equivalence between the categories of sober topological spaces and spatial locales in the language of algebras and affine spaces, and to internalize this equivalence into the category of affine systems.

On the category of affine systems

Sergejs Solovjovs

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>○● | References<br>00 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| Conclusion          |                               |                |                                   |                  |                  |
| Sobriet             | / and spatia                  | litv           |                                   |                  |                  |

- While the embedding of AfSpc(T) into AfSys(T) is always possible, the embedding of B<sup>op</sup> requires the existence of a right adjoint for the respective functor T.
- The obtained embeddings allowed us to restate the equivalence between the categories of sober topological spaces and spatial locales in the language of algebras and affine spaces, and to internalize this equivalence into the category of affine systems.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>●0 |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|
| References          |                               |                |                                   |                  |                  |
| Referen             | ces I                         |                |                                   |                  |                  |

- J. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories: The Joy of Cats*, Dover Publications, 2009.
- D. Aerts, E. Colebunders, A. van der Voorde, and B. van Steirteghem, State property systems and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys. **38** (1999), no. 1, 359–385.
- D. Aerts, E. Colebunders, A. van der Voorde, and B. van Steirteghem, On the amnestic modification of the category of state property systems, Appl. Categ. Struct. **10** (2002), no. 5, 469–480.
- M. M. Clementino, E. Giuli, and W. Tholen, *A Functional Approach to General Topology*, Categorical Foundations, Cambridge Univ. Press, Cambridge, 2004, pp. 103–163.

| Introduction<br>000 | Spatialization<br>00000000000 | Localification | Sobriety & spatiality<br>00000000 | Conclusion<br>00 | References<br>0● |  |  |  |
|---------------------|-------------------------------|----------------|-----------------------------------|------------------|------------------|--|--|--|
| References          |                               |                |                                   |                  |                  |  |  |  |
| References II       |                               |                |                                   |                  |                  |  |  |  |

- Y. Diers, *Categories of algebraic sets*, Appl. Categ. Struct. **4** (1996), no. 2-3, 329–341.
- Y. Diers, Affine algebraic sets relative to an algebraic theory, J. Geom. **65** (1999), no. 1-2, 54–76.
- P. T. Johnstone, *Stone Spaces*, Cambridge University Press, 1982.
- S. Solovyov, *Localification procedure for affine systems*, to appear in Cah. Topologie Géom. Différ. Catégoriques.
- S. Vickers, *Topology via Logic*, Cambridge University Press, 1989.

| Introduction | Spatialization | Localification | Sobriety & spatiality | Conclusion | References |
|--------------|----------------|----------------|-----------------------|------------|------------|
| 000          | 00000000000    | 00000          | 0000000               | 00         | 00         |
|              |                |                |                       |            |            |

# Thank you for your attention!

On the category of affine systems

Sergejs Solovjovs