The geometry of positive commutative totally ordered monoids

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University (Linz)

June 2015

æ

・ロト ・四ト ・ヨト ・ヨト

Our topic

Definition

 $(L;\leqslant,+,0)$ is a totally ordered monoid (tomonoid) if:

(T1) (L; +, 0) is monoid,

(T2) \leq is a compatible total order: $a \leq b$ and $c \leq d$ imply $a + c \leq b + d$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Our topic

Definition

 $(L; \leq, +, 0)$ is a totally ordered monoid (tomonoid) if:

(T1) (L; +, 0) is monoid,

(T2) \leq is a compatible total order: $a \leq b$ and $c \leq d$ imply $a + c \leq b + d$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A tomonoid is called commutative if so is +, positive if 0 is the bottom element, finitely generated if so is the monoid (L; +, 0).

We identify the free commutative monoid over n elements with $(\mathbb{N}^n; +, \bar{0})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We identify the free commutative monoid over n elements with $(\mathbb{N}^n; +, \bar{0})$.

Any commutative monoid generated by at most n elements is isomorphic to a quotient of \mathbb{N}^n .

(=) (

Theorem (EILENBERG, SCHÜTZENBERGER, J. Alg. 1969)

Every congruence on a finitely generated commutative monoid is finitely defined.

Theorem (EILENBERG, SCHÜTZENBERGER, J. Alg. 1969)

Every congruence on a finitely generated commutative monoid is finitely defined.

Theorem (Hirshfeld, Techn. Rep. 1993)

Every congruence on a finitely generated commutative monoid is semilinear, that is, the union of finitely many sets of the form

$$(v, w) + \text{span}\{(s_1, t_1), \dots, (s_l, t_l)\}.$$

< □ > < @ > < 注 > < 注 > ... 注

Let $(L; \leq, +, 0)$ be a finite, positive, commutative (f.p.c.) tomonoid. Let ~ be a congruence on \mathbb{N}^n such that the quotient $\langle \mathbb{N}^n \rangle_{\sim}$ is isomorphic to (L; +, 0).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $(L; \leq, +, 0)$ be a finite, positive, commutative (f.p.c.) tomonoid. Let ~ be a congruence on \mathbb{N}^n such that the quotient $\langle \mathbb{N}^n \rangle_{\sim}$ is isomorphic to (L; +, 0).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

Can we be more specific about \sim in this case?

Example

Monoid reduct of a 10-element f.p.c. tomonoid

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $(L; \leq, +, 0)$ be a f.p.c. tomonoid. Let $\varphi \colon \mathbb{N}^n \to L$ be a surjective monoid homomorphism.

Let $(L; \leq, +, 0)$ be a f.p.c. tomonoid. Let $\varphi \colon \mathbb{N}^n \to L$ be a surjective monoid homomorphism. Define $a \preccurlyeq b$ if $\varphi(a) \leqslant \varphi(b)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $(L; \leq, +, 0)$ be a f.p.c. tomonoid. Let $\varphi \colon \mathbb{N}^n \to L$ be a surjective monoid homomorphism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Define $a \preccurlyeq b$ if $\varphi(a) \leqslant \varphi(b)$.

Observation

 \preccurlyeq is a preorder on $\mathbb{N}^n,$ which is ...

- compatible: $a \preccurlyeq b$ implies $a + c \preccurlyeq b + c$;
- positive: $0 \prec a$ for all a;
- total: $a \preccurlyeq b$ or $b \preccurlyeq a$ for each a, b.

We call such preorders monomial.

Let $(L; \leq, +, 0)$ be a f.p.c. tomonoid. Let $\varphi \colon \mathbb{N}^n \to L$ be a surjective monoid homomorphism.

Define $a \preccurlyeq b$ if $\varphi(a) \leqslant \varphi(b)$.

Observation

 \preccurlyeq is a preorder on $\mathbb{N}^n,$ which is ...

- compatible: $a \preccurlyeq b$ implies $a + c \preccurlyeq b + c$;
- positive: $0 \prec a$ for all a;
- total: $a \preccurlyeq b$ or $b \preccurlyeq a$ for each a, b.

We call such preorders monomial.

Observation

There is a mutual correspondence between monomial preorders and finitely generated, positive, commutative tomonoids.

Monomial preorders

Let \preccurlyeq be a monomial preorder associated with a f.p.c. to monoid. Let \preccurlyeq be a monomial preorder associated with a f.p.c. tomonoid. Then \preccurlyeq represents both the congruence:

Lemma

```
Let \approx be the symmetrisation of \preccurlyeq:
```

```
a \approx b if a \preccurlyeq b and b \preccurlyeq a.
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then \approx is the congruence on \mathbb{N}^n leading to (L; +, 0).

Let \preccurlyeq be a monomial preorder associated with a f.p.c. tomonoid. Then \preccurlyeq represents both the congruence:

Lemma

Let \approx be the symmetrisation of \preccurlyeq :

 $a \approx b$ if $a \preccurlyeq b$ and $b \preccurlyeq a$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Then \approx is the congruence on \mathbb{N}^n leading to (L; +, 0).

... and the total order:

Lemma

$$\langle a \rangle_{\preccurlyeq} \leqslant \langle b \rangle_{\preccurlyeq}$$
 in L if and only if $a \preccurlyeq b$.

Example

10-element f.p.c. tomonoid

Endow \mathbb{N}^n with the natural (componentwise) order \leq . Call a downward closed subset of \mathbb{N}^n a \leq -ideal.

Endow \mathbb{N}^n with the natural (componentwise) order \leq . Call a downward closed subset of \mathbb{N}^n a \leq -ideal.

Proposition

Let \sim be a finite congruence on \mathbb{N}^n such that the quotient $\langle \mathbb{N}^n \rangle_{\sim}$ is the monoidal reduct of an f.p.c. tomonoid.

• Each finite \sim -class consists of pairwise incomparable elements.

Endow \mathbb{N}^n with the natural (componentwise) order \triangleleft . Call a downward closed subset of \mathbb{N}^n a \triangleleft -ideal.

Proposition

Let \sim be a finite congruence on \mathbb{N}^n such that the quotient $\langle \mathbb{N}^n \rangle_{\sim}$ is the monoidal reduct of an f.p.c. tomonoid.

• Each finite ~-class consists of pairwise incomparable elements.

The union of all finite \sim -classes is a finite \leq -ideal.

Endow \mathbb{N}^n with the natural (componentwise) order \triangleleft . Call a downward closed subset of \mathbb{N}^n a \triangleleft -ideal.

Proposition

Let \sim be a finite congruence on \mathbb{N}^n such that the quotient $\langle \mathbb{N}^n \rangle_{\sim}$ is the monoidal reduct of an f.p.c. tomonoid.

• Each finite \sim -class consists of pairwise incomparable elements.

The union of all finite \sim -classes is a finite \triangleleft -ideal.

• Each infinite \sim -class is the union of finitely many sets of the form

$$a + \{u_1, \ldots, u_k\}^\star,$$

where u_1, \ldots, u_k are unit vectors of \mathbb{N}^n .

The Archimedean generator classes

Let \preccurlyeq be a monomial preorder. For $a,b\in\mathbb{N}^n,$ we define

 $a \prec\!\!\prec b$ if $k a \prec b$ for all $k \ge 1$.

Let \preccurlyeq be a monomial preorder. For $a, b \in \mathbb{N}^n$, we define

$$a \prec\!\!\!\prec b$$
 if $k a \prec b$ for all $k \ge 1$.

Let $\mathcal{U}(\mathbb{N}^n) = \{u_1, \ldots, u_n\}$ be the unit vectors. Let $A_{\preccurlyeq} = (U_1, \ldots, U_m)$ be the ordered partition of $\mathcal{U}(\mathbb{N}^n)$ into Archimedean classes. This means

$$u \prec v$$
 iff $u \in U_i$ and $v \in U_j$ such that $i < j$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

For $a \in \mathbb{N}^n \setminus \{\overline{0}\}$, we let s(a) be the smallest i such that $u \leq a$ for some $u \in U_i$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For $a \in \mathbb{N}^n \setminus \{\overline{0}\}$, we let s(a) be the smallest i such that $u \leq a$ for some $u \in U_i$.

Definition The support of \preccurlyeq is $S_{\preccurlyeq} = \{a \in \mathbb{N}^n : a = \overline{0},$ or $a - u \prec a$ for some $u \preccurlyeq a$ such that $u \in U_{s(a)}\}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

For $a \in \mathbb{N}^n \setminus \{\overline{0}\}$, we let s(a) be the smallest i such that $u \leq a$ for some $u \in U_i$.

Definition The support of \preccurlyeq is $S_{\preccurlyeq} = \{a \in \mathbb{N}^n : a = \overline{0},$ or $a - u \prec a$ for some $u \leqslant a$ such that $u \in U_{s(a)}\}$

Proposition

 S_{\preccurlyeq} is a finite \preccurlyeq -ideal of \mathbb{N}^n .

Example

Support in green;

$$\label{eq:archimedean} \begin{split} & \text{Archimedean} \\ & \text{generator} \\ & \text{classes:} \\ & (\{b\}, \{a\}) \end{split}$$

The support and the finite classes

We define

$$\overset{\circ}{S_{\preccurlyeq}} = \{ a \in S_{\preccurlyeq} \colon a = \overline{0}, \\ \text{or } a + u \in S_{\preccurlyeq} \text{ for all } u \in U_j \text{ such that } j \leqslant s(a) \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The support and the finite classes

We define

$$\mathring{S}_{\preccurlyeq} = \{ a \in S_{\preccurlyeq} \colon a = \overline{0}, \\ \text{or } a + u \in S_{\preccurlyeq} \text{ for all } u \in U_j \text{ such that } j \leqslant s(a) \}.$$

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Theorem

 S_{\preccurlyeq} includes all finite classes.

The support and the finite classes

We define

$$\mathring{S}_{\preccurlyeq} = \{ a \in S_{\preccurlyeq} \colon a = \overline{0}, \\ \text{or } a + u \in S_{\preccurlyeq} \text{ for all } u \in U_j \text{ such that } j \leqslant s(a) \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

 S_{\preccurlyeq} includes all finite classes. In fact, $\mathring{S}_{\preccurlyeq}$ is the union of the finite classes.

The support and the infinite classes

Let $a \in S_{\preccurlyeq} \setminus \mathring{S}_{\preccurlyeq}$. We call

$$\sigma_{S_{\preccurlyeq}}(a) = a + (U_1 \cup \ldots \cup U_j)^*$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

the segment of a, where $j \in \{1, \ldots, s(a)\}$ is largest such that $a + u \notin S_{\preccurlyeq}$ for some $u \in U_j$.

The support and the infinite classes

Let $a \in S_{\preccurlyeq} \setminus \mathring{S}_{\preccurlyeq}$. We call

$$\sigma_{S_{\preccurlyeq}}(a) = a + (U_1 \cup \ldots \cup U_j)^*$$

the segment of a, where $j \in \{1, \ldots, s(a)\}$ is largest such that $a + u \notin S_{\preccurlyeq}$ for some $u \in U_j$.

Theorem

 S_{\preccurlyeq} has a non-empty intersection with each infinite class.

The support and the infinite classes

Let $a \in S_{\preccurlyeq} \setminus \mathring{S}_{\preccurlyeq}$. We call

$$\sigma_{S_{\preccurlyeq}}(a) = a + (U_1 \cup \ldots \cup U_j)^*$$

the segment of a, where $j \in \{1, \ldots, s(a)\}$ is largest such that $a + u \notin S_{\preccurlyeq}$ for some $u \in U_j$.

Theorem

 S_{\preccurlyeq} has a non-empty intersection with each infinite class.

In fact, for each infinite class B we have

$$B = \bigcup_{a \in B \cap S_{\preccurlyeq}} \sigma_{S_{\preccurlyeq}}(a).$$

(日) (四) (문) (문) (문)

With a finite monomial preorder on \mathbb{N}^n , we may associate (1) its Archimedean generator classes $A_{\preccurlyeq} = (U_1, \ldots, U_m)$; (2) its support $S_{\preccurlyeq} \subseteq \mathbb{N}^n$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

With a finite monomial preorder on \mathbb{N}^n , we may associate (1) its Archimedean generator classes $A_{\preccurlyeq} = (U_1, \ldots, U_m)$; (2) its support $S_{\preccurlyeq} \subseteq \mathbb{N}^n$.

Let \approx be the associated monoid congruence on \mathbb{N}^n . Then

- each finite class is a subset of $\mathring{S}_{\preccurlyeq}$ consisting of pairwise incomparable elements;
- each infinite class is a finite union of sets of the form $\sigma_{S_{\preccurlyeq}}(a), \ a \in S_{\preccurlyeq} \setminus \mathring{S}_{\preccurlyeq}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣…

Example

 $\begin{array}{l} S_\preccurlyeq \\ \text{in green;} \end{array}$

 $\mathring{S}_{\preccurlyeq}$ in dark green;

each class framed

Specifying the total order

Corollary

Any finite monomial preorder \preccurlyeq is uniquely determined by its restriction to its support $S_{\preccurlyeq}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Specifying the total order

Corollary

Any finite monomial preorder \preccurlyeq is uniquely determined by its restriction to its support S_{\preccurlyeq} .

Question

How can we describe \preccurlyeq on S_{\preccurlyeq} ?

Specifying the total order

Corollary

Any finite monomial preorder \preccurlyeq is uniquely determined by its restriction to its support S_{\preccurlyeq} .

Question

How can we describe \preccurlyeq on S_{\preccurlyeq} ?

Let
$$\mathcal{D}(S) = \{b - a \in \mathbb{Z}^n \colon a, b \in S\}.$$

Definition

We define

$$F_{\preccurlyeq} = \{ z \in \mathcal{D}(S_{\preccurlyeq}) \colon a \preccurlyeq b \text{ whenever } b - a = z \}.$$

The triple $(A_{\preccurlyeq}, S_{\preccurlyeq}, F_{\preccurlyeq})$ is called the *direction f-cone* of \preccurlyeq .

Properties of direction f-cones

Theorem

Let \preccurlyeq be a finite monomial preorder. Then the direction f-cone (A, S, F) of \preccurlyeq has the following properties:

(Cf1) For each
$$z \in \mathcal{D}(S)$$
, $z \ge 0$ implies $z \in F$
and, if $z \ne 0, -z \notin F$.

(Cf2) Let
$$(x_1, \ldots, x_k)$$
, $k \ge 2$, be an addable k-tuple
of elements of F whose sum is in $\mathcal{D}(S)$. Then
 $x_1 + \ldots + x_k \in F$.

(Cf3) For each $z \in \mathcal{D}(S)$, either $z \in F$ or $-z \in F$.

(Cf4) Let $a, b \in S$ be such that $a \prec A b$. Then $a - b \notin F$.

Here, (x_1, \ldots, x_k) to be addable means that

$$(x_1 + \ldots + x_k)^- + x_1 + \ldots + x_i \geqslant \bar{0}$$

for i = 0, ..., k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

Let $\mathcal{C} = (A, S, F)$, where A is an ordered partition of $\mathcal{U}(\mathbb{N}^n)$, S is a finite \triangleleft -ideal of \mathbb{N}^n including $\mathcal{U}(\mathbb{N}^n)$, $F \subseteq \mathcal{D}(S)$. Assume that \mathcal{C} fulfils properties (Cf1)–(Cf4).

Theorem

Let $\mathcal{C} = (A, S, F)$, where A is an ordered partition of $\mathcal{U}(\mathbb{N}^n)$, S is a finite \leq -ideal of \mathbb{N}^n including $\mathcal{U}(\mathbb{N}^n)$, $F \subseteq \mathcal{D}(S)$. Assume that \mathcal{C} fulfils properties (Cf1)–(Cf4).

Let $\preccurlyeq_{\mathcal{C}}$ be the smallest preorder such that: (O1) $a \preccurlyeq_{\mathcal{C}} b$ for any $a, b \in \mathbb{N}^n$ such that $b - a \in F$.

(O2) $a \preccurlyeq_{\mathcal{C}} b$ and $b \preccurlyeq_{\mathcal{C}} a$ for any $a \in \partial S$ and $b \in \sigma_S(a)$.

Theorem

Let $\mathcal{C} = (A, S, F)$, where A is an ordered partition of $\mathcal{U}(\mathbb{N}^n)$, S is a finite \leq -ideal of \mathbb{N}^n including $\mathcal{U}(\mathbb{N}^n)$, $F \subseteq \mathcal{D}(S)$. Assume that \mathcal{C} fulfils properties (Cf1)–(Cf4).

Let $\preccurlyeq_{\mathcal{C}}$ be the smallest preorder such that:

(O1) $a \preccurlyeq_{\mathcal{C}} b$ for any $a, b \in \mathbb{N}^n$ such that $b - a \in F$.

(O2) $a \preccurlyeq_{\mathcal{C}} b$ and $b \preccurlyeq_{\mathcal{C}} a$ for any $a \in \partial S$ and $b \in \sigma_S(a)$. Then $\preccurlyeq_{\mathcal{C}}$ is a finite monomial preorder.

Theorem

Let $\mathcal{C} = (A, S, F)$, where A is an ordered partition of $\mathcal{U}(\mathbb{N}^n)$, S is a finite \leq -ideal of \mathbb{N}^n including $\mathcal{U}(\mathbb{N}^n)$, $F \subseteq \mathcal{D}(S)$. Assume that \mathcal{C} fulfils properties (Cf1)–(Cf4).

Let $\preccurlyeq_{\mathcal{C}}$ be the smallest preorder such that:

(O1) $a \preccurlyeq_{\mathcal{C}} b$ for any $a, b \in \mathbb{N}^n$ such that $b - a \in F$.

(O2) $a \preccurlyeq_{\mathcal{C}} b$ and $b \preccurlyeq_{\mathcal{C}} a$ for any $a \in \partial S$ and $b \in \sigma_S(a)$. Then $\preccurlyeq_{\mathcal{C}}$ is a finite monomial preorder.

Moreover, any finite monomial preorder is an extension of a monomial preorder arising in this way.

The construction of f.p.c. tomonoids

Starting from

• a partion A of the unit vectors of \mathbb{N}^n ;

◆□→ ◆□→ ◆三→ ◆三→

- a finite \triangleleft -ideal S including $\mathcal{U}(\mathbb{N}^n)$;
- a subset $F \subseteq \mathcal{D}(S)$ fulfilling (Cf1)–(Cf4),

we get a finite, positive, commutative totally ordered monoid.

The construction of f.p.c. tomonoids

Starting from

- a partion A of the unit vectors of \mathbb{N}^n ;
- a finite \triangleleft -ideal S including $\mathcal{U}(\mathbb{N}^n)$;
- a subset $F \subseteq \mathcal{D}(S)$ fulfilling (Cf1)–(Cf4),

we get a finite, positive, commutative totally ordered monoid.

Any finite, positive, commutative tomonoid is a quotient of a tomonoid arising in this way.

◆□▶ ◆舂▶ ◆産▶ ◆産▶