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Our topic

Definition

(L;6,+, 0) is a totally ordered monoid (tomonoid) if:

(T1) (L; +, 0) is monoid,

(T2) 6 is a compatible total order:
a 6 b and c 6 d imply a+ c 6 b+ d.

A tomonoid is called
commutative if so is +,
positive if 0 is the bottom element,
finitely generated if so is the monoid (L; +, 0).
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Nn

We identify the free commutative monoid over n elements
with (Nn; +, 0̄).

Any commutative monoid generated by at most n elements
is isomorphic to a quotient of Nn.
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Congruences on Nn

Theorem (Eilenberg, Schützenberger, J. Alg. 1969)

Every congruence on a finitely generated commutative monoid
is finitely defined.

Theorem (Hirshfeld, Techn. Rep. 1993)

Every congruence on a finitely generated commutative monoid
is semilinear, that is, the union of finitely many sets of the form

(v, w) + span{(s1, t1), . . . , (sl, tl)}.
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Congruences on Nn: the case of tomonoids

Let (L;6,+, 0) be a
finite, positive, commutative (f.p.c.) tomonoid.

Let ∼ be a congruence on Nn

such that the quotient 〈Nn〉∼ is isomorphic to (L; +, 0).

Question

Can we be more specific about ∼ in this case?
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Example

Monoid reduct
of a 10-element
f.p.c. tomonoid



Monomial preorders and f.p.c. tomonoids

Let (L;6,+, 0) be a f.p.c. tomonoid.
Let ϕ : Nn → L be a surjective monoid homomorphism.

Define a4 b if ϕ(a) 6 ϕ(b).

Observation

4 is a preorder on Nn, which is ...

compatible: a4 b implies a+ c4 b+ c;

positive: 0 ≺ a for all a;

total: a4 b or b4 a for each a, b.

We call such preorders monomial.

Observation

There is a mutual correspondence between monomial preorders
and finitely generated, positive, commutative tomonoids.



Monomial preorders and f.p.c. tomonoids

Let (L;6,+, 0) be a f.p.c. tomonoid.
Let ϕ : Nn → L be a surjective monoid homomorphism.

Define a4 b if ϕ(a) 6 ϕ(b).

Observation

4 is a preorder on Nn, which is ...

compatible: a4 b implies a+ c4 b+ c;

positive: 0 ≺ a for all a;

total: a4 b or b4 a for each a, b.

We call such preorders monomial.

Observation

There is a mutual correspondence between monomial preorders
and finitely generated, positive, commutative tomonoids.



Monomial preorders and f.p.c. tomonoids

Let (L;6,+, 0) be a f.p.c. tomonoid.
Let ϕ : Nn → L be a surjective monoid homomorphism.

Define a4 b if ϕ(a) 6 ϕ(b).

Observation

4 is a preorder on Nn, which is ...

compatible: a4 b implies a+ c4 b+ c;

positive: 0 ≺ a for all a;

total: a4 b or b4 a for each a, b.

We call such preorders monomial.

Observation

There is a mutual correspondence between monomial preorders
and finitely generated, positive, commutative tomonoids.



Monomial preorders and f.p.c. tomonoids

Let (L;6,+, 0) be a f.p.c. tomonoid.
Let ϕ : Nn → L be a surjective monoid homomorphism.

Define a4 b if ϕ(a) 6 ϕ(b).

Observation

4 is a preorder on Nn, which is ...

compatible: a4 b implies a+ c4 b+ c;

positive: 0 ≺ a for all a;

total: a4 b or b4 a for each a, b.

We call such preorders monomial.

Observation

There is a mutual correspondence between monomial preorders
and finitely generated, positive, commutative tomonoids.



Monomial preorders

Let 4 be a monomial preorder associated with a f.p.c. tomonoid.

Then 4 represents both the congruence:

Lemma

Let ≈ be the symmetrisation of 4:

a≈ b if a4 b and b4 a.

Then ≈ is the congruence on Nn leading to (L; +, 0).

... and the total order:

Lemma

〈a〉4 6 〈b〉4 in L if and only if a4 b.
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Congruences on Nn associated with tomonoids

Endow Nn with the natural (componentwise) order P.
Call a downward closed subset of Nn a P-ideal.

Proposition

Let ∼ be a finite congruence on Nn such that
the quotient 〈Nn〉∼ is the monoidal reduct of an f.p.c. tomonoid.

Each finite ∼-class consists of pairwise incomparable
elements.
The union of all finite ∼-classes is a finite P-ideal.

Each infinite ∼-class is the union of finitely many sets of
the form

a+ {u1, . . . , uk}?,

where u1, . . . , uk are unit vectors of Nn.
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The Archimedean generator classes

Let 4 be a monomial preorder.

For a, b ∈ Nn, we define

a≺≺ b if k a ≺ b for all k > 1.

Let U(Nn) = {u1, . . . , un} be the unit vectors.

Let A4 = (U1, . . . , Um) be the ordered partition of U(Nn) into
Archimedean classes. This means

u≺≺ v iff u ∈ Ui and v ∈ Uj such that i < j.
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The support

For a ∈ Nn \ {0̄}, we let s(a) be the smallest i such that
uP a for some u ∈ Ui.

Definition

The support of 4 is

S4 = {a ∈ Nn : a = 0̄,

or a− u ≺ a for some uP a such that u ∈ Us(a)}

Proposition

S4 is a finite P-ideal of Nn.
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Archimedean
generator
classes:
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The support and the finite classes

We define

S̊4 = {a ∈ S4 : a = 0̄,

or a+ u ∈ S4 for all u ∈ Uj such that j 6 s(a)}.

Theorem

S4 includes all finite classes.

In fact, S̊4 is the union of the finite classes.
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The support and the infinite classes

Let a ∈ S4 \ S̊4. We call

σS4(a) = a+ (U1 ∪ . . . ∪ Uj)
?

the segment of a, where j ∈ {1, . . . , s(a)} is largest such that
a+ u /∈ S4 for some u ∈ Uj .

Theorem

S4 has a non-empty intersection with each infinite class.

In fact, for each infinite class B we have

B =
⋃

a∈B∩S4

σS4(a).
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The geometry of tomonoid-induced congruences on Nn

With a finite monomial preorder on Nn, we may associate

(1) its Archimedean generator classes A4 = (U1, . . . , Um);

(2) its support S4 ⊆ Nn.

Let ≈ be the associated monoid congruence on Nn. Then

each finite class is a subset of S̊4 consisting of pairwise
incomparable elements;

each infinite class is a finite union of sets of the form
σS4(a), a ∈ S4 \ S̊4.
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Specifying the total order

Corollary

Any finite monomial preorder 4 is uniquely determined by its
restriction to its support S4.

Question

How can we describe 4 on S4?

Let D(S) = {b− a ∈ Zn : a, b ∈ S}.

Definition

We define

F4 = {z ∈ D(S4) : a4 b whenever b− a = z}.

The triple (A4, S4, F4) is called the direction f-cone of 4.
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Properties of direction f-cones

Theorem

Let 4 be a finite monomial preorder. Then the direction f-cone
(A,S, F ) of 4 has the following properties:

(Cf1) For each z ∈ D(S), z Q 0 implies z ∈ F
and, if z 6= 0, −z /∈ F .

(Cf2) Let (x1, . . . , xk), k > 2, be an addable k-tuple
of elements of F whose sum is in D(S). Then
x1 + . . .+ xk ∈ F .

(Cf3) For each z ∈ D(S), either z ∈ F or −z ∈ F .

(Cf4) Let a, b ∈ S be such that a≺≺A b. Then a− b /∈ F .

Here, (x1, . . . , xk) to be addable means that

(x1 + . . .+ xk)− + x1 + . . .+ xi Q 0̄

for i = 0, . . . , k.
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The converse way

Theorem

Let C = (A,S, F ), where
A is an ordered partition of U(Nn),
S is a finite P-ideal of Nn including U(Nn),
F ⊆ D(S).

Assume that C fulfils properties (Cf1)–(Cf4).

Let 4C be the smallest preorder such that:

(O1) a4C b for any a, b ∈ Nn such that b− a ∈ F .

(O2) a4C b and b4C a for any a ∈ ∂S and b ∈ σS(a).

Then 4C is a finite monomial preorder.

Moreover, any finite monomial preorder is an extension of a
monomial preorder arising in this way.
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The construction of f.p.c. tomonoids

Starting from

a partion A of the unit vectors of Nn;

a finite P-ideal S including U(Nn);

a subset F ⊆ D(S) fulfilling
(Cf1)–(Cf4),

we get a finite, positive, commutative
totally ordered monoid.

Any finite, positive, commutative tomonoid
is a quotient of a tomonoid arising
in this way.



The construction of f.p.c. tomonoids

Starting from

a partion A of the unit vectors of Nn;

a finite P-ideal S including U(Nn);

a subset F ⊆ D(S) fulfilling
(Cf1)–(Cf4),

we get a finite, positive, commutative
totally ordered monoid.

Any finite, positive, commutative tomonoid
is a quotient of a tomonoid arising
in this way.


