The geometry of positive commutative totally ordered monoids

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University (Linz)

June 2015
$\left.\int m\right|_{1}$
$4 \square>4$ 占 $\quad 4 \equiv 1$ 三

Our topic

Definition

$(L ; \leqslant,+, 0)$ is a totally ordered monoid (tomonoid) if:
(T1) $(L ;+, 0)$ is monoid,
$(\mathrm{T} 2) \leqslant$ is a compatible total order: $a \leqslant b$ and $c \leqslant d$ imply $a+c \leqslant b+d$.

Our topic

Definition

($L ; \leqslant,+, 0$) is a totally ordered monoid (tomonoid) if:
(T1) $(L ;+, 0)$ is monoid,
$(\mathrm{T} 2) \leqslant$ is a compatible total order:

$$
a \leqslant b \text { and } c \leqslant d \text { imply } a+c \leqslant b+d .
$$

A tomonoid is called
commutative if so is + , positive if 0 is the bottom element, finitely generated if so is the monoid $(L ;+, 0)$.

We identify the free commutative monoid over n elements with $\left(\mathbb{N}^{n} ;+, \overline{0}\right)$.

We identify the free commutative monoid over n elements with $\left(\mathbb{N}^{n} ;+, \overline{0}\right)$.

Any commutative monoid generated by at most n elements is isomorphic to a quotient of \mathbb{N}^{n}.

Congruences on \mathbb{N}^{n}

Theorem (Eilenberg, Schützenberger, J. Alg. 1969)
Every congruence on a finitely generated commutative monoid is finitely defined.

Congruences on \mathbb{N}^{n}

Theorem (Eilenberg, Schützenberger, J. Alg. 1969)
Every congruence on a finitely generated commutative monoid is finitely defined.

Theorem (Hirshfeld, Techn. Rep. 1993)
Every congruence on a finitely generated commutative monoid is semilinear, that is, the union of finitely many sets of the form

$$
(v, w)+\operatorname{span}\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{l}, t_{l}\right)\right\}
$$

Congruences on \mathbb{N}^{n} : the case of tomonoids

Let $(L ; \leqslant,+, 0)$ be a
finite, positive, commutative (f.p.c.) tomonoid.
Let \sim be a congruence on \mathbb{N}^{n}
such that the quotient $\left\langle\mathbb{N}^{n}\right\rangle_{\sim}$ is isomorphic to $(L ;+, 0)$.

Congruences on \mathbb{N}^{n} ：the case of tomonoids

Let $(L ; \leqslant,+, 0)$ be a
finite，positive，commutative（f．p．c．）tomonoid．
Let \sim be a congruence on \mathbb{N}^{n} such that the quotient $\left\langle\mathbb{N}^{n}\right\rangle_{\sim}$ is isomorphic to $(L ;+, 0)$ ．

Question
Can we be more specific about \sim in this case？

Example

Monoid reduct of a 10-element f.p.c. tomonoid

Monomial preorders and f.p.c. tomonoids

Let $(L ; \leqslant,+, 0)$ be a f.p.c. tomonoid.
Let $\varphi: \mathbb{N}^{n} \rightarrow L$ be a surjective monoid homomorphism.

Monomial preorders and f.p.c. tomonoids

Let $(L ; \leqslant,+, 0)$ be a f.p.c. tomonoid.
Let $\varphi: \mathbb{N}^{n} \rightarrow L$ be a surjective monoid homomorphism.
Define $a \preccurlyeq b$ if $\varphi(a) \leqslant \varphi(b)$.

Monomial preorders and f.p.c. tomonoids

Let $(L ; \leqslant,+, 0)$ be a f.p.c. tomonoid.
Let $\varphi: \mathbb{N}^{n} \rightarrow L$ be a surjective monoid homomorphism.
Define $a \preccurlyeq b$ if $\varphi(a) \leqslant \varphi(b)$.

Observation

\preccurlyeq is a preorder on \mathbb{N}^{n}, which is ...

- compatible: $a \preccurlyeq b$ implies $a+c \preccurlyeq b+c$;
- positive: $0 \prec a$ for all a;
- total: $a \preccurlyeq b$ or $b \preccurlyeq a$ for each a, b.

We call such preorders monomial.

Monomial preorders and f.p.c. tomonoids

Let $(L ; \leqslant,+, 0)$ be a f.p.c. tomonoid.
Let $\varphi: \mathbb{N}^{n} \rightarrow L$ be a surjective monoid homomorphism.
Define $a \preccurlyeq b$ if $\varphi(a) \leqslant \varphi(b)$.

Observation

\preccurlyeq is a preorder on \mathbb{N}^{n}, which is ...

- compatible: $a \preccurlyeq b$ implies $a+c \preccurlyeq b+c$;
- positive: $0 \prec a$ for all a;
- total: $a \preccurlyeq b$ or $b \preccurlyeq a$ for each a, b.

We call such preorders monomial.

Observation

There is a mutual correspondence between monomial preorders and finitely generated, positive, commutative tomonoids.

Monomial preorders

Let \preccurlyeq be a monomial preorder associated with a f.p.c. tomonoid.

Monomial preorders

Let \preccurlyeq be a monomial preorder associated with a f．p．c．tomonoid．
Then \preccurlyeq represents both the congruence：
Lemma
Let \approx be the symmetrisation of \preccurlyeq ：

$$
a \approx b \quad \text { if } a \preccurlyeq b \text { and } b \preccurlyeq a \text {. }
$$

Then \approx is the congruence on \mathbb{N}^{n} leading to $(L ;+, 0)$.

Monomial preorders

Let \preccurlyeq be a monomial preorder associated with a f.p.c. tomonoid.
Then \preccurlyeq represents both the congruence:
Lemma
Let \approx be the symmetrisation of \preccurlyeq :

$$
a \approx b \quad \text { if } a \preccurlyeq b \text { and } b \preccurlyeq a \text {. }
$$

Then \approx is the congruence on \mathbb{N}^{n} leading to $(L ;+, 0)$.
... and the total order:
Lemma
$\langle a\rangle_{\preccurlyeq} \leqslant\langle b\rangle_{\preccurlyeq}$ in L if and only if $a \preccurlyeq b$.

Example

10-element
f.p.c. tomonoid

Congruences on \mathbb{N}^{n} associated with tomonoids

Endow \mathbb{N}^{n} with the natural (componentwise) order \geqq. Call a downward closed subset of \mathbb{N}^{n} a \S-ideal.

Congruences on \mathbb{N}^{n} associated with tomonoids

Endow \mathbb{N}^{n} with the natural (componentwise) order \geqq.
Call a downward closed subset of \mathbb{N}^{n} a \S-ideal.

Proposition

Let \sim be a finite congruence on \mathbb{N}^{n} such that the quotient $\left\langle\mathbb{N}^{n}\right\rangle_{\sim}$ is the monoidal reduct of an f.p.c. tomonoid.

- Each finite ~-class consists of pairwise incomparable elements.

Congruences on \mathbb{N}^{n} associated with tomonoids

Endow \mathbb{N}^{n} with the natural (componentwise) order \geqq.
Call a downward closed subset of \mathbb{N}^{n} a \S-ideal.

Proposition

Let \sim be a finite congruence on \mathbb{N}^{n} such that the quotient $\left\langle\mathbb{N}^{n}\right\rangle_{\sim}$ is the monoidal reduct of an f.p.c. tomonoid.

- Each finite \sim-class consists of pairwise incomparable elements. The union of all finite \sim-classes is a finite \vDash-ideal.

Congruences on \mathbb{N}^{n} associated with tomonoids

Endow \mathbb{N}^{n} with the natural (componentwise) order \geqq.
Call a downward closed subset of \mathbb{N}^{n} a \S-ideal.

Proposition

Let \sim be a finite congruence on \mathbb{N}^{n} such that the quotient $\left\langle\mathbb{N}^{n}\right\rangle_{\sim}$ is the monoidal reduct of an f.p.c. tomonoid.

- Each finite \sim-class consists of pairwise incomparable elements. The union of all finite \sim-classes is a finite \vDash-ideal.
- Each infinite \sim-class is the union of finitely many sets of the form

$$
a+\left\{u_{1}, \ldots, u_{k}\right\}^{\star}
$$

where u_{1}, \ldots, u_{k} are unit vectors of \mathbb{N}^{n}.

The Archimedean generator classes

Let \preccurlyeq be a monomial preorder.
For $a, b \in \mathbb{N}^{n}$, we define

$$
a \prec b \quad \text { if } k a \prec b \text { for all } k \geqslant 1 \text {. }
$$

The Archimedean generator classes

Let \preccurlyeq be a monomial preorder.
For $a, b \in \mathbb{N}^{n}$, we define

$$
a \prec b \quad \text { if } k a \prec b \text { for all } k \geqslant 1 \text {. }
$$

Let $\mathcal{U}\left(\mathbb{N}^{n}\right)=\left\{u_{1}, \ldots, u_{n}\right\}$ be the unit vectors.
Let $A_{\preccurlyeq}=\left(U_{1}, \ldots, U_{m}\right)$ be the ordered partition of $\mathcal{U}\left(\mathbb{N}^{n}\right)$ into Archimedean classes. This means

$$
u \prec \prec v \quad \text { iff } u \in U_{i} \text { and } v \in U_{j} \text { such that } i<j \text {. }
$$

The support

For $a \in \mathbb{N}^{n} \backslash\{\overline{0}\}$, we let $s(a)$ be the smallest i such that $u \preccurlyeq a$ for some $u \in U_{i}$.

The support

For $a \in \mathbb{N}^{n} \backslash\{\overline{0}\}$ ，we let $s(a)$ be the smallest i such that $u \Downarrow a$ for some $u \in U_{i}$ ．

Definition

The support of \preccurlyeq is

$$
\begin{aligned}
S_{\preccurlyeq}= & \left\{a \in \mathbb{N}^{n}: a=\overline{0},\right. \\
& \text { or } \left.a-u \prec a \text { for some } u \preccurlyeq a \text { such that } u \in U_{s(a)}\right\}
\end{aligned}
$$

The support

For $a \in \mathbb{N}^{n} \backslash\{\overline{0}\}$ ，we let $s(a)$ be the smallest i such that $u \Downarrow a$ for some $u \in U_{i}$ ．

Definition

The support of \preccurlyeq is

$$
\begin{aligned}
S_{\preccurlyeq}= & \left\{a \in \mathbb{N}^{n}: a=\overline{0},\right. \\
& \text { or } \left.a-u \prec a \text { for some } u \preccurlyeq a \text { such that } u \in U_{s(a)}\right\}
\end{aligned}
$$

Proposition
 S_{\preccurlyeq} is a finite \leqslant－ideal of \mathbb{N}^{n} ．

Example

Support
in green;
Archimedean
generator
classes:
(\{b\}, $\{a\})$

The support and the finite classes

We define

$$
\begin{aligned}
\stackrel{\circ}{S}_{\preccurlyeq}= & \left\{a \in S_{\preccurlyeq}: a=\overline{0},\right. \\
& \text { or } \left.a+u \in S_{\preccurlyeq} \text { for all } u \in U_{j} \text { such that } j \leqslant s(a)\right\} .
\end{aligned}
$$

The support and the finite classes

We define

$$
\begin{aligned}
\stackrel{\circ}{S}_{\preccurlyeq}= & \left\{a \in S_{\preccurlyeq}: a=\overline{0},\right. \\
& \text { or } \left.a+u \in S_{\preccurlyeq} \text { for all } u \in U_{j} \text { such that } j \leqslant s(a)\right\} .
\end{aligned}
$$

Theorem
S_{\preccurlyeq} includes all finite classes.

The support and the finite classes

We define

$$
\begin{aligned}
\stackrel{\circ}{S}_{\preccurlyeq}= & \left\{a \in S_{\preccurlyeq}: a=\overline{0},\right. \\
& \text { or } \left.a+u \in S_{\preccurlyeq} \text { for all } u \in U_{j} \text { such that } j \leqslant s(a)\right\} .
\end{aligned}
$$

Theorem

S_{\preccurlyeq} includes all finite classes.
In fact, \dot{S}_{\preccurlyeq} is the union of the finite classes.

The support and the infinite classes

Let $a \in S_{\preccurlyeq} \backslash \stackrel{\circ}{S}_{\preccurlyeq}$. We call

$$
\sigma_{S_{\preccurlyeq}}(a)=a+\left(U_{1} \cup \ldots \cup U_{j}\right)^{\star}
$$

the segment of a, where $j \in\{1, \ldots, s(a)\}$ is largest such that $a+u \notin S_{\preccurlyeq}$ for some $u \in U_{j}$.

The support and the infinite classes

Let $a \in S_{\preccurlyeq} \backslash \stackrel{\circ}{S}_{\preccurlyeq}$. We call

$$
\sigma_{S_{\preccurlyeq}}(a)=a+\left(U_{1} \cup \ldots \cup U_{j}\right)^{\star}
$$

the segment of a, where $j \in\{1, \ldots, s(a)\}$ is largest such that $a+u \notin S_{\preccurlyeq}$ for some $u \in U_{j}$.

Theorem

S_{\preccurlyeq} has a non-empty intersection with each infinite class.

The support and the infinite classes

Let $a \in S_{\preccurlyeq} \backslash \stackrel{\circ}{S}_{\preccurlyeq}$. We call

$$
\sigma_{S_{\preccurlyeq}}(a)=a+\left(U_{1} \cup \ldots \cup U_{j}\right)^{\star}
$$

the segment of a, where $j \in\{1, \ldots, s(a)\}$ is largest such that $a+u \notin S_{\preccurlyeq}$ for some $u \in U_{j}$.

Theorem

S_{\preccurlyeq} has a non-empty intersection with each infinite class.
In fact, for each infinite class B we have

$$
B=\bigcup_{a \in B \cap S_{\preccurlyeq}} \sigma_{S_{\preccurlyeq}}(a) .
$$

The geometry of tomonoid－induced congruences on \mathbb{N}^{n}

With a finite monomial preorder on \mathbb{N}^{n} ，we may associate
（1）its Archimedean generator classes $A_{\preccurlyeq}=\left(U_{1}, \ldots, U_{m}\right)$ ；
（2）its support $S_{\preccurlyeq} \subseteq \mathbb{N}^{n}$ ．

The geometry of tomonoid-induced congruences on \mathbb{N}^{n}

With a finite monomial preorder on \mathbb{N}^{n}, we may associate (1) its Archimedean generator classes $A_{\preccurlyeq}=\left(U_{1}, \ldots, U_{m}\right)$;
(2) its support $S_{\preccurlyeq} \subseteq \mathbb{N}^{n}$.

Let \approx be the associated monoid congruence on \mathbb{N}^{n}. Then

- each finite class is a subset of $\stackrel{\circ}{S}_{\preccurlyeq}$ consisting of pairwise incomparable elements;
- each infinite class is a finite union of sets of the form $\sigma_{S_{\preccurlyeq}}(a), a \in S_{\preccurlyeq} \backslash \stackrel{\circ}{S}_{\preccurlyeq}$.

Example

S_{\preccurlyeq}
in green;
$\stackrel{\circ}{S}_{\preccurlyeq}$
in dark green;
each class
framed

Specifying the total order

Corollary

Any finite monomial preorder \preccurlyeq is uniquely determined by its restriction to its support $S_{\preccurlyeq \text {. }}$

Specifying the total order

Corollary

Any finite monomial preorder \preccurlyeq is uniquely determined by its restriction to its support $S_{\preccurlyeq \text {. }}$

Question

How can we describe \preccurlyeq on S_{\preccurlyeq} ?

Specifying the total order

Corollary

Any finite monomial preorder \preccurlyeq is uniquely determined by its restriction to its support $S_{\preccurlyeq \text {. }}$

Question

How can we describe \preccurlyeq on S_{\preccurlyeq} ?

Let $\mathcal{D}(S)=\left\{b-a \in \mathbb{Z}^{n}: a, b \in S\right\}$.
Definition
We define

$$
F_{\preccurlyeq}=\left\{z \in \mathcal{D}\left(S_{\preccurlyeq}\right): a \preccurlyeq b \text { whenever } b-a=z\right\} .
$$

The triple $\left(A_{\preccurlyeq}, S_{\preccurlyeq}, F_{\preccurlyeq}\right)$ is called the direction f-cone of \preccurlyeq.

Properties of direction f-cones

Theorem

Let \preccurlyeq be a finite monomial preorder. Then the direction f-cone (A, S, F) of \preccurlyeq has the following properties:
(Cf1) For each $z \in \mathcal{D}(S), z \unrhd 0$ implies $z \in F$ and, if $z \neq 0,-z \notin F$.
(Cf2) Let $\left(x_{1}, \ldots, x_{k}\right), k \geqslant 2$, be an addable k-tuple of elements of F whose sum is in $\mathcal{D}(S)$. Then $x_{1}+\ldots+x_{k} \in F$.
(Cf3) For each $z \in \mathcal{D}(S)$, either $z \in F$ or $-z \in F$.
(Cf4) Let $a, b \in S$ be such that $a<_{A} b$. Then $a-b \notin F$.
Here, $\left(x_{1}, \ldots, x_{k}\right)$ to be addable means that

$$
\left(x_{1}+\ldots+x_{k}\right)^{-}+x_{1}+\ldots+x_{i} \triangleq \overline{0}
$$

for $i=0, \ldots, k$.

Example

Direction cone $F_{\preccurlyeq ;} ;$
$\mathcal{D}\left(S_{\preccurlyeq)}\right)$
in light green

The converse way

Theorem

Let $\mathcal{C}=(A, S, F)$, where
A is an ordered partition of $\mathcal{U}\left(\mathbb{N}^{n}\right)$,
S is a finite \vDash-ideal of \mathbb{N}^{n} including $\mathcal{U}\left(\mathbb{N}^{n}\right)$,
$F \subseteq \mathcal{D}(S)$.
Assume that \mathcal{C} fulfils properties (Cf1)-(Cf4).

The converse way

Theorem

Let $\mathcal{C}=(A, S, F)$ ，where
A is an ordered partition of $\mathcal{U}\left(\mathbb{N}^{n}\right)$ ，
S is a finite \forall－ideal of \mathbb{N}^{n} including $\mathcal{U}\left(\mathbb{N}^{n}\right)$ ，
$F \subseteq \mathcal{D}(S)$.
Assume that \mathcal{C} fulfils properties（Cf1）－（Cf4）．
Let $\preccurlyeq_{\mathcal{C}}$ be the smallest preorder such that：
（O1）$a \preccurlyeq \mathcal{C} b$ for any $a, b \in \mathbb{N}^{n}$ such that $b-a \in F$ ．
（O2）$a \preccurlyeq \mathcal{C} c$ and $b \preccurlyeq \mathcal{C} a$ for any $a \in \partial S$ and $b \in \sigma_{S}(a)$ ．

The converse way

Theorem

Let $\mathcal{C}=(A, S, F)$ ，where
A is an ordered partition of $\mathcal{U}\left(\mathbb{N}^{n}\right)$ ，
S is a finite \S－ideal of \mathbb{N}^{n} including $\mathcal{U}\left(\mathbb{N}^{n}\right)$ ，
$F \subseteq \mathcal{D}(S)$ ．
Assume that \mathcal{C} fulfils properties（Cf1）－（Cf4）．
Let $\preccurlyeq_{\mathcal{C}}$ be the smallest preorder such that：
（O1）$a \preccurlyeq_{\mathcal{C}} b$ for any $a, b \in \mathbb{N}^{n}$ such that $b-a \in F$ ．
（O2）$a \preccurlyeq \mathcal{C} b$ and $b \preccurlyeq_{\mathcal{C}} a$ for any $a \in \partial S$ and $b \in \sigma_{S}(a)$ ．
Then $\preccurlyeq_{\mathcal{C}}$ is a finite monomial preorder．

The converse way

Theorem

Let $\mathcal{C}=(A, S, F)$, where
A is an ordered partition of $\mathcal{U}\left(\mathbb{N}^{n}\right)$,
S is a finite \S-ideal of \mathbb{N}^{n} including $\mathcal{U}\left(\mathbb{N}^{n}\right)$,
$F \subseteq \mathcal{D}(S)$.
Assume that \mathcal{C} fulfils properties (Cf1)-(Cf4).
Let $\preccurlyeq_{\mathcal{C}}$ be the smallest preorder such that:
(O1) $a \preccurlyeq_{\mathcal{C}} b$ for any $a, b \in \mathbb{N}^{n}$ such that $b-a \in F$.
(O2) $a \preccurlyeq \mathcal{c} b$ and $b \preccurlyeq c a$ for any $a \in \partial S$ and $b \in \sigma_{S}(a)$.
Then $\preccurlyeq_{\mathcal{C}}$ is a finite monomial preorder.
Moreover, any finite monomial preorder is an extension of a monomial preorder arising in this way.

The construction of f.p.c. tomonoids

Starting from

- a partion A of the unit vectors of \mathbb{N}^{n};
- a finite \leqslant-ideal S including $\mathcal{U}\left(\mathbb{N}^{n}\right)$;
- a subset $F \subseteq \mathcal{D}(S)$ fulfilling (Cf1)-(Cf4),
we get a finite, positive, commutative totally ordered monoid.

The construction of f.p.c. tomonoids

Starting from

- a partion A of the unit vectors of \mathbb{N}^{n};
- a finite \leqslant-ideal S including $\mathcal{U}\left(\mathbb{N}^{n}\right)$;
- a subset $F \subseteq \mathcal{D}(S)$ fulfilling (Cf1)-(Cf4),
we get a finite, positive, commutative totally ordered monoid.

Any finite, positive, commutative tomonoid is a quotient of a tomonoid arising in this way.

