Deciding subpower membership for semigroups

Markus Steindl
ma.steindl@gmx.at

JKU Linz, Austria

Novi Sad, June 5, 2015

Supported by the Austrian Science Fund (FWF): P24285

Deciding subpower membership for semigroups

Joint work with

- Andrei Bulatov (Vancouver)
- Peter Mayr (Linz)

Deciding subpower membership for semigroups

Fix a finite semigroup S.
Define the subpower membership problem for S (Willard, 2007 [5])
SMP(S)
Input:
Tuples $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Problem: Is b in the subsemigroup of S^{n} generated by a_{1}, \ldots, a_{k} ?

Deciding subpower membership for semigroups

Fix a finite semigroup S.
Define the subpower membership problem for S (Willard, 2007 [5])
SMP(S)
Input:
Tuples $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Problem: Is b in the subsemigroup of S^{n} generated by a_{1}, \ldots, a_{k} ?

Convention
All semigroups in this talk are finite.

Deciding subpower membership for semigroups

Fix a finite semigroup S.
Define the subpower membership problem for S (Willard, 2007 [5])
SMP(S)
Input: \quad Tuples $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Problem: Is b in the subsemigroup of S^{n} generated by a_{1}, \ldots, a_{k} ?

Convention
All semigroups in this talk are finite.

What is the complexity with respect to n, k ?
Theorem (Bulatov, Mayr, S., manuscript 2015)
$\operatorname{SMP}(S)$ for a semigroup S is in PSPACE.

Theorem (S., manuscript 2014)
Let S be a semigroup. If there are a, e,f f s.t.

$$
\begin{equation*}
a \notin\left\{a^{2}, a^{3}, \ldots\right\} \quad \text { and } \quad e a=a=a f, \tag{1}
\end{equation*}
$$

then $\operatorname{SMP}(S)$ is NP-hard.
Proof.
By reducing SAT to $\operatorname{SMP}(S)$.

Theorem (S., manuscript 2014)
Let S be a semigroup. If there are $a, e, f \in S$ s.t.

$$
\begin{equation*}
a \notin\left\{a^{2}, a^{3}, \ldots\right\} \quad \text { and } \quad e a=a=a f, \tag{1}
\end{equation*}
$$

then $\operatorname{SMP}(S)$ is NP-hard.
Proof.
By reducing SAT to $\operatorname{SMP}(S)$.
Lemma (Bulatov, Mayr, S., manuscript 2015)
In a commutative semigroup S, TFAE:

1. S violates (1)
2. S has an ideal C which is a union of groups, and S / C is nilpotent, i.e.

$$
\exists d \in \mathbb{N} \forall s_{1}, \ldots, s_{d} \in S: s_{1} \cdots s_{d} \in C
$$

In this case we say S is a nilpotent ideal extension of C.

Lemma (Bulatov, Mayr, S., manuscript 2015)
SMP (C) for a commutative union of groups C is in P .

Lemma (Bulatov, Mayr, S., manuscript 2015)
SMP (C) for a commutative union of groups C is in P .

Theorem (Bulatov, Mayr, S., manuscript 2015) If S is a nilpotent ideal extension of a semigroup C, then $\operatorname{SMP}(S) \leq \operatorname{SMP}(C)$.

Lemma (Bulatov, Mayr, S., manuscript 2015)
SMP (C) for a commutative union of groups C is in P .

Theorem (Bulatov, Mayr, S., manuscript 2015) If S is a nilpotent ideal extension of a semigroup C, then $\operatorname{SMP}(S) \leq \operatorname{SMP}(C)$.

Lemma (Bulatov, Mayr, S., manuscript 2015)
$\operatorname{SMP}(S)$ for a commutative semigroup S is in NP.

Lemma (Bulatov, Mayr, S., manuscript 2015)

SMP (C) for a commutative union of groups C is in P .

Theorem (Bulatov, Mayr, S., manuscript 2015) If S is a nilpotent ideal extension of a semigroup C, then $\operatorname{SMP}(S) \leq \operatorname{SMP}(C)$.

Lemma (Bulatov, Mayr, S., manuscript 2015)
$\operatorname{SMP}(S)$ for a commutative semigroup S is in NP.
Proof.
Fix an instance $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Assume $b \in\left\langle a_{1}, \ldots, a_{k}\right\rangle$.
Then $b=a_{1}{ }^{e_{1}} \cdots a_{k}{ }^{e_{k}}$

Lemma (Bulatov, Mayr, S., manuscript 2015)

SMP (C) for a commutative union of groups C is in P .

Theorem (Bulatov, Mayr, S., manuscript 2015) If S is a nilpotent ideal extension of a semigroup C, then $\operatorname{SMP}(S) \leq \operatorname{SMP}(C)$.

Lemma (Bulatov, Mayr, S., manuscript 2015)
$\operatorname{SMP}(S)$ for a commutative semigroup S is in NP.

Proof.

Fix an instance $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Assume $b \in\left\langle a_{1}, \ldots, a_{k}\right\rangle$.
Then $b=a_{1}{ }^{e_{1}} \cdots a_{k}{ }^{e_{k}}$ for some $e_{1}, \ldots, e_{k} \leq|S|$!.
Now $\left(e_{1}, \ldots, e_{k}\right)$ is a witness whose size is linear in k.

Dichotomy for commutative semigroups

We have established:

Theorem (Bulatov, Mayr, S., manuscript 2015)
Let S be a commutative semigroup.

1. $\operatorname{SMP}(S)$ is in P if S is a nilpotent ideal extension of a union of groups.
2. It is NP-complete otherwise.

SMP for semigroups

Reminder:
Theorem (S., manuscript 2014)
Let S be a semigroup. If there are $a, e, f \in S$ s.t.

$$
\begin{equation*}
a \notin\left\{a^{2}, a^{3}, \ldots\right\} \quad \text { and } \quad e a=a=a f, \tag{1}
\end{equation*}
$$

then $\operatorname{SMP}(S)$ is NP-hard.

SMP for semigroups

Reminder:
Theorem (S., manuscript 2014)
Let S be a semigroup. If there are $a, e, f \in S$ s.t.

$$
\begin{equation*}
a \notin\left\{a^{2}, a^{3}, \ldots\right\} \quad \text { and } \quad e a=a=a f, \tag{1}
\end{equation*}
$$

then $\operatorname{SMP}(S)$ is NP-hard.
Let $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}, \mathcal{D}$ denote Green's equivalences.

Corollary
If a semigroup S has a \mathcal{D}-class with group and non-group \mathcal{H}-classes, then $\operatorname{SMP}(S)$ is NP-hard.

SMP for the Brandt semigroup

Corollary
The SMP for the Brandt Semigroup

$$
B_{2}:=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is NP-hard.

SMP for the Brandt semigroup

Corollary
The SMP for the Brandt Semigroup

$$
B_{2}:=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is NP-hard.
Theorem (S., manuscript 2014)
$\operatorname{SMP}\left(B_{2}\right)$ is NP-complete.
Proof.
Fix an instance $a_{1}, \ldots, a_{k}, b \in B_{2}{ }^{n}$.
Assume $b=f\left(a_{1}, \ldots, a_{k}\right)$ for some k-ary term f.

SMP for the Brandt semigroup

Corollary
The SMP for the Brandt Semigroup

$$
B_{2}:=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is NP-hard.
Theorem (S., manuscript 2014)
$\operatorname{SMP}\left(B_{2}\right)$ is NP-complete.
Proof.
Fix an instance $a_{1}, \ldots, a_{k}, b \in B_{2}{ }^{n}$.
Assume $b=f\left(a_{1}, \ldots, a_{k}\right)$ for some k-ary term f.
Now there is a k-ary term g s.t.

1. $g\left(a_{1}, \ldots, a_{k}\right)=f\left(a_{1}, \ldots, a_{k}\right)$, and
2. $\ell(g) \leq(n+1) k$.

SMP for 0-simple semigroups

The Brandt semigroup is 0 -simple.

SMP for 0-simple semigroups

The Brandt semigroup is 0 -simple.
A nonempty subset $I \subseteq S$ of a semigroup S is an ideal if

$$
I \cdot S \subseteq I \quad \text { and } \quad S \cdot I \subseteq I
$$

SMP for 0-simple semigroups

The Brandt semigroup is 0 -simple.
A nonempty subset $I \subseteq S$ of a semigroup S is an ideal if

$$
I \cdot S \subseteq I \quad \text { and } \quad S \cdot I \subseteq I
$$

A semigroup with zero is 0 -simple if $\{0\}$ is the only proper ideal.

SMP for 0-simple semigroups

The Brandt semigroup is 0 -simple.
A nonempty subset $I \subseteq S$ of a semigroup S is an ideal if

$$
I \cdot S \subseteq I \quad \text { and } \quad S \cdot I \subseteq I
$$

A semigroup with zero is 0 -simple if $\{0\}$ is the only proper ideal.

Theorem (S., manuscript 2014)

1. If a 0 -simple semigroup S is a union of groups, then $\operatorname{SMP}(S)$ is in P.
2. Otherwise it is NP-hard.

SMP for bands

Commutative unions of groups and 0-simple unions of groups have SMP in P.

Questions

- Do unions of groups have SMP in P?

SMP for bands

Commutative unions of groups and 0-simple unions of groups have SMP in P.

Questions

- Do unions of groups have SMP in P?
- An idempotent semigroup (band) is a union of groups of order 1. Do bands have SMP in P?

SMP for bands

Commutative unions of groups and 0-simple unions of groups have SMP in P .

Questions

- Do unions of groups have SMP in P?
- An idempotent semigroup (band) is a union of groups of order 1. Do bands have SMP in P?

A band is called regular iff it satisfies $x y x z x \approx x y z x$.

SMP for bands

Commutative unions of groups and 0-simple unions of groups have SMP in P .

Questions

- Do unions of groups have SMP in P?
- An idempotent semigroup (band) is a union of groups of order 1. Do bands have SMP in P?

A band is called regular iff it satisfies $x y x z x \approx x y z x$.

Theorem (S., manuscript 2014)
$\operatorname{SMP}(S)$ for a regular band S is in P .
Proof.
Is based on $x y x z x \approx x y z x$.

Varieties of bands (idempotent semigroups)

The lattice of varieties of bands is well-known:
Theorem (Birjukov, Fennemore, Gerhard, 1970s [1, 2, 3])

1. There are countably many varieties of bands.

Varieties of bands (idempotent semigroups)

The lattice of varieties of bands is well-known:
Theorem (Birjukov, Fennemore, Gerhard, 1970s [1, 2, 3])

1. There are countably many varieties of bands.
2. Each variety is defined by

$$
\begin{aligned}
& (x y) z \approx x(y z), \\
& x^{2} \approx x, \\
& \text { one additional identity. }
\end{aligned}
$$

Varieties of bands (idempotent semigroups)

The lattice of varieties of bands is well-known:
Theorem (Birjukov, Fennemore, Gerhard, 1970s [1, 2, 3])

1. There are countably many varieties of bands.
2. Each variety is defined by

$$
\begin{aligned}
& (x y) z \approx x(y z), \\
& x^{2} \approx x, \\
& \text { one additional identity. }
\end{aligned}
$$

3. The proper subvarieties form the lattice on the next slide.

Varieties of bands (idempotent semigroups)

Lattice of varieties of bands, taken from "Varieties of bands revisited" by Gerhard and Petrich, 1989 [4].
G_{n}, H_{n}, I_{n} are systems of terms. $\bar{G}_{n}, \bar{H}_{n}, \bar{I}_{n}$ are the reversed counterparts.

Varieties of bands (idempotent semigroups)

Varieties of bands (idempotent semigroups)

Theorem (S., manuscript 2014)
Bands in the variety
[$\left.\bar{G}_{4} G_{4} \approx \bar{H}_{4} H_{4}\right]$ have SMP in P .
Proof.
Is based on the identities $G_{4} \approx H_{4}$ and $\bar{G}_{4} \approx \bar{H}_{4}$.

Varieties of bands (idempotent semigroups)

Theorem (S., manuscript 2014)
Bands in the variety
[$\bar{G}_{4} G_{4} \approx \bar{H}_{4} H_{4}$] have SMP in P .
Proof.
Is based on the identities $G_{4} \approx H_{4}$ and $\bar{G}_{4} \approx \bar{H}_{4}$.

The goal was to work our way up this lattice.

Varieties of bands (idempotent semigroups)

We started with the variety

$$
\mathcal{V}:=\left[\bar{G}_{3} \approx \bar{I}_{3}\right] \text { (red circle) }
$$

Varieties of bands (idempotent semigroups)

We started with the variety

$$
\left.\mathcal{V}:=\left[\bar{G}_{3} \approx \bar{I}_{3}\right] \text { (red circle }\right) .
$$

We were not able to determine the complexity for bands in \mathcal{V} using the equations of \mathcal{V}.

SMP for bands (idempotent semigroups)

The following surprised us:
Lemma (S., manuscript 2014)
There is a 9-element band $S_{9} \in \mathcal{V}$ with NP-hard SMP.

SMP for bands (idempotent semigroups)

The following surprised us:
Lemma (S., manuscript 2014)
There is a 9-element band $S_{9} \in \mathcal{V}$ with NP-hard SMP.
Idea of Proof.
Reduce SAT to $\operatorname{SMP}\left(S_{9}\right)$.

SMP for bands (idempotent semigroups)

The following surprised us:
Lemma (S., manuscript 2014)
There is a 9-element band $S_{9} \in \mathcal{V}$ with NP-hard SMP.
Idea of Proof.
Reduce SAT to $\operatorname{SMP}\left(S_{9}\right)$.

Theorem (S., manuscript 2014)
There is a 10 -element band $S_{10} \in \mathcal{V}$ such that:

1. S_{10} generates the same variety as S_{9};

SMP for bands (idempotent semigroups)

The following surprised us:
Lemma (S., manuscript 2014)
There is a 9-element band $S_{9} \in \mathcal{V}$ with NP-hard SMP.
Idea of Proof.
Reduce SAT to $\operatorname{SMP}\left(S_{9}\right)$.

Theorem (S., manuscript 2014)
There is a 10 -element band $S_{10} \in \mathcal{V}$ such that:

1. S_{10} generates the same variety as S_{9};
2. $\operatorname{SMP}\left(S_{10}\right)$ is still in P .

Eggbox diagrams of S_{10} and S_{9}
S_{10}

SMP in P
S_{9}

SMP NP-hard

Eggbox diagrams of S_{10} and S_{9}

S_{10}

SMP in P
S_{9}

SMP NP-hard

Corollary
The SMP for a homomorphic image can be harder than the SMP for the original semigroup (in case $\mathrm{P} \neq \mathrm{NP}$).

SMP for bands (idempotent semigroups)

The identities of $\mathcal{V}=\left[\bar{G}_{3} \approx \bar{T}_{3}\right]$ do not help us anymore.

Quasiidentities

For a finite semigroup S, let ISP (S) denote the class of semigroups that can be embedded into direct powers of S.

Quasiidentities

For a finite semigroup S, let ISP(S) denote the class of semigroups that can be embedded into direct powers of S.

We call $\operatorname{ISP}(S)$ the quasivariety generated by S.
Theorem
For two finite semigroups S, T, we have:

1. $\operatorname{ISP}(S)=\operatorname{ISP}(T)$ iff S and T satisfy the same quasiidentities.

Quasiidentities

For a finite semigroup S, let $\operatorname{ISP}(S)$ denote the class of semigroups that can be embedded into direct powers of S.

We call $\operatorname{ISP}(S)$ the quasivariety generated by S.
Theorem
For two finite semigroups S, T, we have:

1. $\operatorname{ISP}(S)=\operatorname{ISP}(T)$ iff S and T satisfy the same quasiidentities.
2. In this case $\operatorname{SMP}(S) \equiv \operatorname{SMP}(T)$.

Quasiidentities

For a finite semigroup S, let $\operatorname{ISP}(S)$ denote the class of semigroups that can be embedded into direct powers of S.

We call $\operatorname{ISP}(S)$ the quasivariety generated by S.
Theorem
For two finite semigroups S, T, we have:

1. $\operatorname{ISP}(S)=\operatorname{ISP}(T)$ iff S and T satisfy the same quasiidentities.
2. In this case $\operatorname{SMP}(S) \equiv \operatorname{SMP}(T)$.

A quasiidentity is an expression of the form

$$
\left(s_{1} \approx t_{1} \& \ldots \& s_{k} \approx t_{k}\right) \rightarrow u \approx v
$$

We say a semigroup S fulfills a quasiidentity iff S satisfies the identity on the RHS whenever it satisfies the identities on the LHS.

Quasiidentities

The "behavior" of S_{9} and S_{10} led us to the following quasiidentity:

$$
\&\left(\begin{array}{c}
d x y e \approx d e \\
h e \approx e \\
h x \approx x \\
d e d \approx d \\
e x e \approx e \\
\text { eye } \approx e
\end{array}\right) \rightarrow d x e \approx d e .
$$

The band S_{10} fulfills λ, whereas S_{9} does not.

Quasiidentities

The "behavior" of S_{9} and S_{10} led us to the following quasiidentity:

$$
\&\left(\begin{array}{c}
d x y e \approx d e \\
h e \approx e \\
h x \approx x \\
d e d \approx d \\
e x e \approx e \\
\text { eye } \approx e
\end{array}\right) \rightarrow d x e \approx d e .
$$

The band S_{10} fulfills λ, whereas S_{9} does not.

Theorem (S., manuscript 2015)

1. If a band S fulfills λ and the dual quasiidentity, then $\operatorname{SMP}(S)$ is in P .
2. Otherwise it is NP-hard.

SMP for bands is in NP

Lemma (cf. Gerhard and Petrich, 1989 [4])

Let S be a finite band. Then there is a polynomial p such that each term function $t: S^{k} \rightarrow S$ is induced by a term of length $p(k)$.

SMP for bands is in NP

Lemma (cf. Gerhard and Petrich, 1989 [4])

Let S be a finite band. Then there is a polynomial p such that each term function $t: S^{k} \rightarrow S$ is induced by a term of length $p(k)$.

Corollary
SMP(S) for a band S is in NP.

SMP for bands is in NP

Lemma (cf. Gerhard and Petrich, 1989 [4])
Let S be a finite band. Then there is a polynomial p such that each term function $t: S^{k} \rightarrow S$ is induced by a term of length $p(k)$.

Corollary
SMP(S) for a band S is in NP.
Proof.
Fix an instance $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Assume $b \in\left\langle a_{1}, \ldots, a_{k}\right\rangle$.

SMP for bands is in NP

Lemma (cf. Gerhard and Petrich, 1989 [4])

Let S be a finite band. Then there is a polynomial p such that each term function $t: S^{k} \rightarrow S$ is induced by a term of length $p(k)$.

Corollary
SMP(S) for a band S is in NP.
Proof.
Fix an instance $a_{1}, \ldots, a_{k}, b \in S^{n}$.
Assume $b \in\left\langle a_{1}, \ldots, a_{k}\right\rangle$.
Then $b=t\left(a_{1}, \ldots, a_{k}\right)$ for a term t with length $p(k)$.

Conclusion

Theorem (Bulatov, Mayr, S., manuscript 2015)
Let S be a commutative semigroup.

1. $\operatorname{SMP}(S)$ is in P if S is a nilpotent ideal extension of a union of groups.
2. It is NP-complete otherwise.

Conclusion

Theorem (Bulatov, Mayr, S., manuscript 2015)
Let S be a commutative semigroup.

1. $\operatorname{SMP}(S)$ is in P if S is a nilpotent ideal extension of a union of groups.
2. It is NP-complete otherwise.

Theorem (S., manuscript 2014)

1. If a 0 -simple semigroup S is zero divisor free, then $\operatorname{SMP}(S)$ is in P.
2. Otherwise it is NP-hard.

Conclusion

Theorem (S., manuscript 2014)
There are two finite bands

1. which generate the same variety, and
2. whose SMPs have distinct complexity (in case $\mathrm{P} \neq \mathrm{NP}$).

Conclusion

Theorem (S., manuscript 2014)
There are two finite bands

1. which generate the same variety, and
2. whose SMPs have distinct complexity (in case $\mathrm{P} \neq \mathrm{NP}$).

Theorem (S., manuscript 2015)

1. If a band S fulfills λ and the dual quasiidentity, then $\operatorname{SMP}(S)$ is in P .

$$
\&\left(\begin{array}{l}
d x y e \approx d e \\
h e \approx e \\
h x \approx x \\
d e d \approx d \\
e x e \approx e \\
\text { eye } \approx e
\end{array}\right) \rightarrow d x e \approx d e .
$$

2. Otherwise it is NP-complete.

目 A．P．Birjukov．
Varieties of idempotent semigroups．
Algebra i Logika，9：255－273， 1970.
图 C．F．Fennemore．
All varieties of bands．I，II．
Math．Nachr．，48：237－252；ibid． 48 （1971），253－262， 1971.
围 J．A．Gerhard．
The lattice of equational classes of idempotent semigroups． J．Algebra，15：195－224， 1970.
圊 J．A．Gerhard and M．Petrich．
Varieties of bands revisited．
Proc．London Math．Soc．（3），58（2）：323－350， 1989.
R R．Willard．
Four unsolved problems in congruence permutable varieties．
Talk at International Conference on Order，Algebra，and Logics，Vanderbilt University，Nashville，June 12－16， 2007.

Много вам хвала!

Multiplication tables

S_{9}	1	2	3	4	5	6	7	8	9	
1	1	2	3	4	5	6	7	8	9	
2	2	2	4	4	5	6	7	8	9	
3	3	3	3	3	3	6	7	8	9	
4	4	4	4	4	4	6	7	8	9	
5	5	5	5	5	5	6	7	8	9	
6	6	7	8	9	8	6	7	8	9	
7	7	7	9	9	8	6	7	8	9	
8	8	8	8	8	8	6	7	8	9	
9	9	9	9	9	9	6	7	8	9	
S_{10}	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	2	3	5	5	6	7	8	9	10
3	3	3	3	3	3	6	7	8	9	10
4	4	4	4	4	4	6	7	8	9	10
5	5	5	5	5	5	6	7	8	9	10
6	6	7	10	8	9	6	7	8	9	10
7	7	7	10	9	9	6	7	8	9	10
8	8	8	8	8	8	6	7	8	9	10
9	9	9	9	9	9	6	7	8	9	10
10	10	10	10	10	10	6	7	8	9	10

Reduce SAT to $\operatorname{SMP}\left(S_{9}\right)$

SAT (satisfiability of boolean formulas)
Input: A boolean formula $\phi:=\bigwedge_{i=1}^{n} c_{i}\left(x_{1}, \ldots, x_{k}\right)$ in conjunctive normal form.
Problem: Is ϕ satisfiable?

Reduce SAT to $\operatorname{SMP}\left(S_{9}\right)$

SAT (satisfiability of boolean formulas)
Input: A boolean formula $\phi:=\bigwedge_{i=1}^{n} c_{i}\left(x_{1}, \ldots, x_{k}\right)$ in conjunctive normal form.
Problem: Is ϕ satisfiable?

Encode the SAT instance into one of $\operatorname{SMP}\left(S_{9}\right)$:

$$
\left\{a_{1}^{0}, \ldots, a_{k}^{0}, a_{1}^{1}, \ldots, a_{k}^{1}, u, v\right\}, b \text { in } S_{9}{ }^{n+2 k} .
$$

In a_{i}^{0} we encode in which clauses $\neg x_{i}$ occurs.
In a_{i}^{1} we encode in which clauses x_{i} occurs.

