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Deciding subpower membership for semigroups

Fix a �nite semigroup S .
De�ne the subpower membership problem for S (Willard, 2007 [5])

SMP(S)
Input: Tuples a1, . . . , ak , b ∈ Sn.

Problem: Is b in the subsemigroup of Sn generated by
a1, . . . , ak?

Convention
All semigroups in this talk are �nite.

What is the complexity with respect to n, k?

Theorem (Bulatov, Mayr, S., manuscript 2015)

SMP(S) for a semigroup S is in PSPACE.
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Theorem (S., manuscript 2014)

Let S be a semigroup. If there are a, e, f ∈ S s.t.

a /∈ {a2, a3, . . .} and ea = a = af , (1)

then SMP(S) is NP-hard.

Proof.
By reducing SAT to SMP(S).

Lemma (Bulatov, Mayr, S., manuscript 2015)

In a commutative semigroup S , TFAE:

1. S violates (1)

2. S has an ideal C which is a union of groups, and

S/C is nilpotent, i.e.

∃d ∈ N ∀s1, . . . , sd ∈ S : s1 · · · sd ∈ C .

In this case we say S is a nilpotent ideal extension of C .
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Lemma (Bulatov, Mayr, S., manuscript 2015)

SMP(C ) for a commutative union of groups C is in P.

Theorem (Bulatov, Mayr, S., manuscript 2015)

If S is a nilpotent ideal extension of a semigroup C ,

then SMP(S) ≤ SMP(C ).

Lemma (Bulatov, Mayr, S., manuscript 2015)

SMP(S) for a commutative semigroup S is in NP.

Proof.
Fix an instance a1, . . . , ak , b ∈ Sn.
Assume b ∈ 〈a1, . . . , ak〉.
Then b = a1

e1 · · · akek for some e1, . . . , ek ≤ |S |!.
Now (e1, . . . , ek) is a witness whose size is linear in k .
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Dichotomy for commutative semigroups

We have established:

Theorem (Bulatov, Mayr, S., manuscript 2015)

Let S be a commutative semigroup.

1. SMP(S) is in P if S is a nilpotent ideal extension of a union of

groups.

2. It is NP-complete otherwise.



SMP for semigroups

Reminder:

Theorem (S., manuscript 2014)

Let S be a semigroup. If there are a, e, f ∈ S s.t.

a /∈ {a2, a3, . . .} and ea = a = af , (1)

then SMP(S) is NP-hard.

Let L,R,J ,H,D denote Green's equivalences.

Corollary

If a semigroup S has a D-class with group and non-group

H-classes, then SMP(S) is NP-hard.
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SMP for the Brandt semigroup

Corollary

The SMP for the Brandt Semigroup

B2 := {
(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
}

is NP-hard.

Theorem (S., manuscript 2014)

SMP(B2) is NP-complete.

Proof.
Fix an instance a1, . . . , ak , b ∈ B2

n.
Assume b = f (a1, . . . , ak) for some k-ary term f .
Now there is a k-ary term g s.t.

1. g(a1, . . . , ak) = f (a1, . . . , ak), and

2. `(g) ≤ (n + 1)k .
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SMP for 0-simple semigroups

The Brandt semigroup is 0-simple.

A nonempty subset I ⊆ S of a semigroup S is an ideal if

I · S ⊆ I and S · I ⊆ I .

A semigroup with zero is 0-simple if {0} is the only proper ideal.

Theorem (S., manuscript 2014)

1. If a 0-simple semigroup S is a union of groups,

then SMP(S) is in P.

2. Otherwise it is NP-hard.
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SMP for bands

Commutative unions of groups and 0-simple unions of groups have
SMP in P.

Questions

I Do unions of groups have SMP in P?

I An idempotent semigroup (band ) is a union of groups of
order 1. Do bands have SMP in P?

A band is called regular i� it satis�es xyxzx ≈ xyzx .

Theorem (S., manuscript 2014)

SMP(S) for a regular band S is in P.

Proof.
Is based on xyxzx ≈ xyzx .
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Varieties of bands (idempotent semigroups)

The lattice of varieties of bands is well-known:

Theorem (Birjukov, Fennemore, Gerhard, 1970s [1, 2, 3])

1. There are countably many varieties of bands.

2. Each variety is de�ned by

(xy)z ≈ x(yz),

x2 ≈ x ,

one additional identity.

3. The proper subvarieties form the lattice on the next slide.



Varieties of bands (idempotent semigroups)

The lattice of varieties of bands is well-known:

Theorem (Birjukov, Fennemore, Gerhard, 1970s [1, 2, 3])

1. There are countably many varieties of bands.

2. Each variety is de�ned by

(xy)z ≈ x(yz),

x2 ≈ x ,

one additional identity.

3. The proper subvarieties form the lattice on the next slide.



Varieties of bands (idempotent semigroups)

The lattice of varieties of bands is well-known:

Theorem (Birjukov, Fennemore, Gerhard, 1970s [1, 2, 3])

1. There are countably many varieties of bands.

2. Each variety is de�ned by

(xy)z ≈ x(yz),

x2 ≈ x ,

one additional identity.

3. The proper subvarieties form the lattice on the next slide.



Varieties of bands (idempotent semigroups)

Lattice of varieties of bands, taken
from "Varieties of bands revisited"
by Gerhard and Petrich, 1989 [4].

Gn, Hn, In are systems of terms.
Ḡn, H̄n, Īn are the reversed
counterparts.
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Theorem (S., manuscript 2014)

Bands in the variety

[Ḡ4G4 ≈ H̄4H4] have SMP in P.

Proof.
Is based on the identities G4 ≈ H4

and Ḡ4 ≈ H̄4.

The goal was to work our way up
this lattice.
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Varieties of bands (idempotent semigroups)

We started with the variety
V := [Ḡ3 ≈ Ī3] (red circle).

We were not able to determine the
complexity for bands in V using
the equations of V.
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SMP for bands (idempotent semigroups)

The following surprised us:

Lemma (S., manuscript 2014)

There is a 9-element band S9 ∈ V with NP-hard SMP.

Idea of Proof.
Reduce SAT to SMP(S9).

Theorem (S., manuscript 2014)

There is a 10-element band S10 ∈ V such that:

1. S10 generates the same variety as S9;

2. SMP(S10) is still in P.
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Eggbox diagrams of S10 and S9

S10 S9

surjective hom.−−−−−−−−→

SMP in P SMP NP-hard

Corollary

The SMP for a homomorphic image can be harder than the SMP
for the original semigroup (in case P 6= NP).
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SMP for bands (idempotent semigroups)

The identities of V = [Ḡ3 ≈ Ī3] do
not help us anymore.



Quasiidentities

For a �nite semigroup S , let ISP(S) denote the class of semigroups
that can be embedded into direct powers of S .

We call ISP(S) the quasivariety generated by S .

Theorem
For two �nite semigroups S , T , we have:

1. ISP(S) = ISP(T ) i� S and T satisfy the same quasiidentities.

2. In this case SMP(S) ≡ SMP(T ).

A quasiidentity is an expression of the form

(s1 ≈ t1 & . . . & sk ≈ tk)→ u ≈ v .

We say a semigroup S ful�lls a quasiidentity i� S satis�es the
identity on the RHS whenever it satis�es the identities on the LHS.
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Quasiidentities

The �behavior" of S9 and S10 led us to the following quasiidentity:

&



dxye ≈ de
he ≈ e
hx ≈ x

ded ≈ d
exe ≈ e
eye ≈ e

→ dxe ≈ de. (λ)

The band S10 ful�lls λ, whereas S9 does not.

Theorem (S., manuscript 2015)

1. If a band S ful�lls λ and the dual quasiidentity, then SMP(S)
is in P.

2. Otherwise it is NP-hard.
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SMP for bands is in NP

Lemma (cf. Gerhard and Petrich, 1989 [4])

Let S be a �nite band. Then there is a polynomial p such that each

term function t : Sk → S is induced by a term of length p(k).

Corollary

SMP(S) for a band S is in NP.

Proof.
Fix an instance a1, . . . , ak , b ∈ Sn.
Assume b ∈ 〈a1, . . . , ak〉.
Then b = t(a1, . . . , ak) for a term t with length p(k).
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Conclusion

Theorem (Bulatov, Mayr, S., manuscript 2015)

Let S be a commutative semigroup.

1. SMP(S) is in P if S is a nilpotent ideal extension of a union of

groups.

2. It is NP-complete otherwise.

Theorem (S., manuscript 2014)

1. If a 0-simple semigroup S is zero divisor free,

then SMP(S) is in P.

2. Otherwise it is NP-hard.
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Conclusion

Theorem (S., manuscript 2014)

There are two �nite bands

1. which generate the same variety, and

2. whose SMPs have distinct complexity (in case P 6= NP).
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1. If a band S ful�lls λ and the dual quasiidentity, then SMP(S)
is in P.
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Multiplication tables

S9 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 2 4 4 5 6 7 8 9

3 3 3 3 3 3 6 7 8 9

4 4 4 4 4 4 6 7 8 9

5 5 5 5 5 5 6 7 8 9

6 6 7 8 9 8 6 7 8 9

7 7 7 9 9 8 6 7 8 9

8 8 8 8 8 8 6 7 8 9

9 9 9 9 9 9 6 7 8 9

S10 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 2 3 5 5 6 7 8 9 10

3 3 3 3 3 3 6 7 8 9 10

4 4 4 4 4 4 6 7 8 9 10

5 5 5 5 5 5 6 7 8 9 10

6 6 7 10 8 9 6 7 8 9 10

7 7 7 10 9 9 6 7 8 9 10

8 8 8 8 8 8 6 7 8 9 10

9 9 9 9 9 9 6 7 8 9 10

10 10 10 10 10 10 6 7 8 9 10



Reduce SAT to SMP(S9)

SAT (satis�ability of boolean formulas)

Input: A boolean formula φ :=
∧n

i=1 ci (x1, . . . , xk) in con-
junctive normal form.

Problem: Is φ satis�able?

Encode the SAT instance into one of SMP(S9):

{a01, . . . , a0k , a11, . . . , a1k , u, v}, b in S9
n+2k .

In a0i we encode in which clauses ¬xi occurs.
In a1i we encode in which clauses xi occurs.
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Encode the SAT instance into one of SMP(S9):
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In a0i we encode in which clauses ¬xi occurs.
In a1i we encode in which clauses xi occurs.


