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Outline

We will study:

◮ relation between Clok (A),Clok (B) and Clok (A × B).

◮ relation between FV (A)(k) × FV (B)(k) and FV (A×B)(k).

◮ relation between V (A),V (B) and V (A) ∨ V (B).



Term functions on direct products

Question
How do the term functions of A × B depend on the term

functions of A and B?

Proposition

Let A, B be similar algebras, k ∈ N, and define

φ : Clok (A × B) −→ Clok (A)× Clok (B)

tA×B 7−→ (tA, tB).

Then φ is a subdirect embedding.

Proposition

A, B from a cp variety, k ∈ N. Then for all k-ary terms s, t :

(sA, tB) ∈ Im(φ) ⇐⇒ V (A) ∩ V (B) |= s ≈ t .



Disjoint varieties

φ : Clok (A × B) −→ Clok (A)× Clok (B)

tA×B 7−→ (tA, tB).

If A,B are from a cp variety, then

(sA, tB) ∈ Im(φ) ⇔ ∃u : uA = sA and uB = tB

⇔ V (A) ∩ V (B) |= s ≈ t .

Definition
V1 and V2 are disjoint if V1 ∩ V2 |= x ≈ y .

Corollary

A, B from a cp variety, k ≥ 2. Then φ is an isomorphism from

Clok (A × B) to Clok (A)× Clok (B) ⇐⇒ V (A) and V (B) are

disjoint.



History (1955 – 1969)

Definition [Foster, 1955]

A sequence (V1, . . . ,Vn) of subvarities of W is independent if

there is a term t(x1, . . . , xn) such that

∀i ∈ [n] : Vi |= t(x1, . . . , xn) ≈ xi .

Example [Grätzer, Lakser, Płonka, 1969]

V0 := { (G, f0(x , y) = x · y , f1(x , y) = x · y−1) |||

(G, ·,−1,1) is a group}
V1 := { (L, f0(x , y) = x ∨ y , f1(x , y) = x ∧ y) |||

(L,∨,∧) is a lattice},
t(x , y) := f1(f0(x , y), y).

Then

◮ V0 |= f1(f0(x , y), y) = (x · y) · y−1 ≈ x and

◮ V1 |= f1(f0(x , y), y) = (x ∨ y) ∧ y ≈ y .



History (1969)

Theorem [Grätzer, Lakser, Płonka, 1969]

Let V0 and V1 be independent subvarieties of W . Then every

A ∈ V0 ∨ V1 is isomorphic to a direct product A0 × A1 with

A0 ∈ V0 and A1 ∈ V1.

Consequence

Let V0 and V1 be independent. Then

(V0 ∨ V1)SI = (V0)SI ∪ (V1)SI .



History (1971)

Theorem [Hu and Kelenson, 1971]

Let (V1, . . . ,Vn) be a sequence of subvarieties of a cp variety

W . If for all i 6= j , Vi ∩ Vj |= x ≈ y (Vi and Vj are disjoint), then

(V1, . . . ,Vn) is independent.

Proof for n = 2:

◮ Goal: construct t(x1, x2) with V1 |= t(x1, x2) ≈ x1 and
V2 |= t(x1, x2) ≈ x2.

◮ φ : FV1∨V2
(x , y) → FV1

(x , y)× FV2
(x , y),

t/∼V1∨V2
7→ (t/∼V1

, t/∼V2
).

◮ Im(φ) ≤sd FV1
(x , y)× FV2

(x , y).

◮ Fleischer’s Lemma yields D, α1 : FV1
(x , y) ։ D,

α2 : FV2
(x , y) ։ D with

Im(φ) = {(f , g) |||α1(f ) = α2(g)}.

◮ |D| = 1, hence φ is surjective.

◮ Thus (x/∼V1
, y/∼V2

) ∈ Im(φ), which yields t.



History (2004 – 2013)

Theorem [Jónsson and Tsinakis, 2004]

The join of two independent finitely based varieties is finitely

based.

Theorem [Kowalski, Paoli, Ledda, 2013]

Let V1,V2 be disjoint subvarieties of W . Then V1 and V2 are

independent iff ∃q(x , y , z) : V1 |= q(x , x , y) ≈ y and

V2 |= q(x , y , y) ≈ x .



Product subalgebras

Definition
C ≤ E × F is a product subalgebra if C = πE(C)× πF(C).

Proposition

C ≤ E × F is a product subalgebra iff for all a,b, c,d :

(a,b) ∈ C and (c,d) ∈ C =⇒ (a,d) ∈ C.

Definition
α ∈ Con(E × F) is a product congruence if α = β × γ for some

β ∈ Con(E) and γ ∈ Con(F).



Product subalgebras of powers

Theorem [EA and Mayr, 2015]

Let A,B be algebras in a congruence permutable variety. We

assume that

1. all subalgebras of A × B are product subalgebras, and

2. for all E ≤ A and F ≤ B, all congruences of E × F are

product congruences.

Then for all m,n ∈ N0, all subalgebras of Am × Bn are product

subalgebras.



Product subalgebras of powers

Theorem [EA and Mayr, 2015]

Let k ≥ 2, let A,B be algebras in a variety with k-edge term.

We assume that

1. for all r , s ∈ N with r + s ≤ max(2, k − 1), every subalgebra

of Ar × Bs is a product subalgebra, and

2. for all E ≤ A and F ≤ B, every tolerance of E × F is a

product tolerance.

Then for all m,n ∈ N0, every subalgebra of Am × Bn is a

product subalgebra.



Direct products and independence

Definition
A,B ∈ W are independent :⇐⇒ V (A) and V (B) are

independent.



Independence in cp varieties

Proposition (known before
2000)
Let A and B be similar algebras.

TFAE:

1. A and B are independent.

2. For all sets I, J with
|I| ≤ |A|2 and |J | ≤ |B|2, all

subalgebras of AI × BJ are

product subalgebras.

If A and B lie in a cp variety,

then these two items are
furthermore equivalent to

3. V (A) and V (B) are
disjoint.

Theorem (EA, Mayr, 2015)
Let A, B be finite algebras in a

cp variety. TFAE:

1. A and B are independent.

2. All subalgebras of A × B

are product subalgebras,

and all congruences of all

subalgebras of A × B are
product congruences.

3. All subalgebras of A2 × B2

are product subalgebras.

4. HS(A2) ∩ HS(B2) contains
only one element algebras.



Independence for algebras with edge term

Theorem [EA and Mayr, 2015]

Let k ≥ 2, and let A, B be finite algebras in a variety with

k-edge term. Then the following are equivalent:

1. A and B are independent.

2. For all r , s ∈ N with r + s ≤ max(2, k − 1), every

subalgebra of Ar × Bs is a product subalgebra, and for all

E ≤ A,F ≤ B, every tolerance of E × F is a product

tolerance.

3. For all r , s ∈ N with r + s ≤ max(4, k − 1), every

subalgebra of Ar × Bs is a product subalgebra.

Example - infinite groups

Let p,q be primes, p 6= q,

A := Cp∞ = {z ∈ C ||| ∃n ∈ N : zpn
= 1}, B := Cq∞ . Then all

subalgebras of Am × Bn are product subalgebras, but A and B

are not independent.



Application to polynomial functions

Theorem
Let A and B be finite algebras in a variety with a 3-edge term,

and let k ∈ N. We assume that every tolerance of A × B is a

product tolerance. Let ψ : Polk (A)× Polk (B) → (A × B)(A×B)k

be the mapping defined by

ψ(f ,g) ((a1,b1), . . . , (ak ,bk )) := (f (a),g(b))

for f ∈ Polk (A),g ∈ Polk (B), a ∈ Ak , and b ∈ Bk . Then ψ is a

bijection from Polk (A)× Polk (B) to Polk (A × B).



Application to polynomial functions

Corollary

Let A and B be algebras in the variety V , and let k ∈ N. If either

1. V has a majority term, or

2. V is congruence permutable, and every congruence of

A × B is a product congruence,

then for all polynomial functions f ∈ Polk (A) and g ∈ Polk (B),
there is a polynomial function h ∈ Polk (A × B) with

h((a1,b1), . . . , (ak ,bk )) = (f (a),g(b)) for all a ∈ Ak and b ∈ Bk .
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