Independence of algebras

Erhard Aichinger and Peter Mayr

Department of Algebra Johannes Kepler University Linz, Austria

June 2015, AAA90

Supported by the Austrian Science Fund (FWF) P24077 and P24285

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

We will study:

- ▶ relation between $Clo_k(\mathbf{A})$, $Clo_k(\mathbf{B})$ and $Clo_k(\mathbf{A} \times \mathbf{B})$.
- ► relation between $\mathbf{F}_{V(\mathbf{A})}(k) \times \mathbf{F}_{V(\mathbf{B})}(k)$ and $\mathbf{F}_{V(\mathbf{A}\times\mathbf{B})}(k)$.

▶ relation between $V(\mathbf{A})$, $V(\mathbf{B})$ and $V(\mathbf{A}) \lor V(\mathbf{B})$.

Term functions on direct products

Question

How do the term functions of $\textbf{A}\times\textbf{B}$ depend on the term functions of A and B?

Proposition

Let **A**, **B** be similar algebras, $k \in \mathbb{N}$, and define

$$\phi : \operatorname{Clo}_{k}(\mathbf{A} \times \mathbf{B}) \longrightarrow \operatorname{Clo}_{k}(\mathbf{A}) \times \operatorname{Clo}_{k}(\mathbf{B})$$
$$t^{\mathbf{A} \times \mathbf{B}} \longmapsto (t^{\mathbf{A}}, t^{\mathbf{B}}).$$

Then ϕ is a subdirect embedding.

Proposition

A, **B** from a cp variety, $k \in \mathbb{N}$. Then for all *k*-ary terms *s*, *t*:

$$(s^{\mathsf{A}}, t^{\mathsf{B}}) \in \operatorname{Im}(\phi) \iff V(\mathsf{A}) \cap V(\mathsf{B}) \models s \approx t.$$

Disjoint varieties

$$\phi : \operatorname{Clo}_{k}(\mathbf{A} \times \mathbf{B}) \longrightarrow \operatorname{Clo}_{k}(\mathbf{A}) \times \operatorname{Clo}_{k}(\mathbf{B})$$
$$t^{\mathbf{A} \times \mathbf{B}} \longmapsto (t^{\mathbf{A}}, t^{\mathbf{B}}).$$

If A, B are from a cp variety, then

$$(s^{\mathbf{A}}, t^{\mathbf{B}}) \in \operatorname{Im}(\phi) \quad \Leftrightarrow \quad \exists u : u^{\mathbf{A}} = s^{\mathbf{A}} \text{ and } u^{\mathbf{B}} = t^{\mathbf{B}} \\ \Leftrightarrow \quad V(\mathbf{A}) \cap V(\mathbf{B}) \models s \approx t.$$

Definition

 V_1 and V_2 are *disjoint* if $V_1 \cap V_2 \models x \approx y$.

Corollary

A, **B** from a cp variety, $k \ge 2$. Then ϕ is an isomorphism from $\operatorname{Clo}_k(\mathbf{A} \times \mathbf{B})$ to $\operatorname{Clo}_k(\mathbf{A}) \times \operatorname{Clo}_k(\mathbf{B}) \iff V(\mathbf{A})$ and $V(\mathbf{B})$ are disjoint.

History (1955 – 1969)

Definition [Foster, 1955] A sequence $(V_1, ..., V_n)$ of subvarities of *W* is *independent* if there is a term $t(x_1, ..., x_n)$ such that $\forall i \in [n] : V_i \models t(x_1, ..., x_n) \approx x_i$.

Example [Grätzer, Lakser, Płonka, 1969]

$$\begin{array}{rcl} V_0 & := & \{ & (G, \ f_0(x,y) = x \cdot y, \ f_1(x,y) = x \cdot y^{-1}) | \\ & & (G,\cdot,^{-1},1) \text{ is a group} \} \\ V_1 & := & \{ & (L, \ f_0(x,y) = x \lor y, \ f_1(x,y) = x \land y) | \\ & & (L,\vee,\wedge) \text{ is a lattice} \}, \\ t(x,y) & := & f_1(f_0(x,y),y). \end{array}$$

Then

•
$$V_0 \models f_1(f_0(x, y), y) = (x \cdot y) \cdot y^{-1} \approx x$$
 and
• $V_1 \models f_1(f_0(x, y), y) = (x \lor y) \land y \approx y.$

・ロト・日本・日本・日本・日本

Theorem [Grätzer, Lakser, Płonka, 1969]

Let V_0 and V_1 be independent subvarieties of W. Then every $\mathbf{A} \in V_0 \vee V_1$ is isomorphic to a direct product $\mathbf{A}_0 \times \mathbf{A}_1$ with $\mathbf{A}_0 \in V_0$ and $\mathbf{A}_1 \in V_1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Consequence

Let V_0 and V_1 be independent. Then $(V_0 \vee V_1)_{SI} = (V_0)_{SI} \cup (V_1)_{SI}$.

History (1971)

Theorem [Hu and Kelenson, 1971]

Let (V_1, \ldots, V_n) be a sequence of subvarieties of a cp variety *W*. If for all $i \neq j$, $V_i \cap V_j \models x \approx y$ (V_i and V_j are disjoint), then (V_1, \ldots, V_n) is independent.

Proof for n = 2:

► Goal: construct $t(x_1, x_2)$ with $V_1 \models t(x_1, x_2) \approx x_1$ and $V_2 \models t(x_1, x_2) \approx x_2$.

$$\phi: \mathbf{F}_{V_1 \vee V_2}(x, y) \to \mathbf{F}_{V_1}(x, y) \times \mathbf{F}_{V_2}(x, y), \\ t/\sim_{V_1 \vee V_2} \mapsto (t/\sim_{V_1}, t/\sim_{V_2}).$$

► Im(
$$\phi$$
) ≤_{sd} $\mathbf{F}_{V_1}(x, y) \times \mathbf{F}_{V_2}(x, y)$.

► Fleischer's Lemma yields \mathbf{D} , $\alpha_1 : \mathbf{F}_{V_1}(x, y) \twoheadrightarrow \mathbf{D}$, $\alpha_2 : \mathbf{F}_{V_2}(x, y) \twoheadrightarrow \mathbf{D}$ with

$$\operatorname{Im}(\phi) = \{(f,g) \mid \alpha_1(f) = \alpha_2(g)\}.$$

- $|\mathbf{D}| = 1$, hence ϕ is surjective.
- ► Thus $(x/\sim_{V_1}, y/\sim_{V_2}) \in \text{Im}(\phi)$, which yields *t*.

Theorem [Jónsson and Tsinakis, 2004]

The join of two independent finitely based varieties is finitely based.

Theorem [Kowalski, Paoli, Ledda, 2013]

Let V_1 , V_2 be disjoint subvarieties of W. Then V_1 and V_2 are independent iff $\exists q(x, y, z) : V_1 \models q(x, x, y) \approx y$ and $V_2 \models q(x, y, y) \approx x$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Product subalgebras

Definition

 $C \leq E \times F$ is a product subalgebra if $C = \pi_E(C) \times \pi_F(C)$.

Proposition

 $C \leq E \times F$ is a product subalgebra iff for all a, b, c, d: $(a, b) \in C$ and $(c, d) \in C \Longrightarrow (a, d) \in C$.

Definition

 $\alpha \in \text{Con}(\mathbf{E} \times \mathbf{F})$ is a *product congruence* if $\alpha = \beta \times \gamma$ for some $\beta \in \text{Con}(\mathbf{E})$ and $\gamma \in \text{Con}(\mathbf{F})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Product subalgebras of powers

Theorem [EA and Mayr, 2015]

Let $\boldsymbol{\mathsf{A}}, \boldsymbol{\mathsf{B}}$ be algebras in a congruence permutable variety. We assume that

- 1. all subalgebras of $\boldsymbol{A}\times\boldsymbol{B}$ are product subalgebras, and
- 2. for all $E \leq A$ and $F \leq B$, all congruences of $E \times F$ are product congruences.

Then for all $m, n \in \mathbb{N}_0$, all subalgebras of $\mathbf{A}^m \times \mathbf{B}^n$ are product subalgebras.

Product subalgebras of powers

Theorem [EA and Mayr, 2015]

Let $k \ge 2$, let **A**, **B** be algebras in a variety with *k*-edge term. We assume that

1. for all $r, s \in \mathbb{N}$ with $r + s \le \max(2, k - 1)$, every subalgebra of $\mathbf{A}^r \times \mathbf{B}^s$ is a product subalgebra, and

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </

2. for all $\mathbf{E} \leq \mathbf{A}$ and $\mathbf{F} \leq \mathbf{B}$, every tolerance of $\mathbf{E} \times \mathbf{F}$ is a product tolerance.

Then for all $m, n \in \mathbb{N}_0$, every subalgebra of $\mathbf{A}^m \times \mathbf{B}^n$ is a product subalgebra.

Direct products and independence

Definition $\mathbf{A}, \mathbf{B} \in W$ are *independent* : $\iff V(\mathbf{A})$ and $V(\mathbf{B})$ are independent.

Independence in cp varieties

Proposition (known before 2000)

Let **A** and **B** be similar algebras. TFAE:

- 1. A and B are independent.
- 2. For all sets *I*, *J* with $|I| \le |A|^2$ and $|J| \le |B|^2$, all subalgebras of $\mathbf{A}^I \times \mathbf{B}^J$ are product subalgebras.

If **A** and **B** lie in a cp variety, then these two items are furthermore equivalent to

3. $V(\mathbf{A})$ and $V(\mathbf{B})$ are disjoint.

Theorem (EA, Mayr, 2015)

Let **A**, **B** be finite algebras in a cp variety. TFAE:

- 1. A and B are independent.
- 2. All subalgebras of $\mathbf{A} \times \mathbf{B}$ are product subalgebras, and all congruences of all subalgebras of $\mathbf{A} \times \mathbf{B}$ are product congruences.
- 3. All subalgebras of $\mathbf{A}^2 \times \mathbf{B}^2$ are product subalgebras.
- 4. $HS(\mathbf{A}^2) \cap HS(\mathbf{B}^2)$ contains only one element algebras.

Independence for algebras with edge term

Theorem [EA and Mayr, 2015]

Let $k \ge 2$, and let **A**, **B** be finite algebras in a variety with *k*-edge term. Then the following are equivalent:

- 1. A and B are independent.
- 2. For all $r, s \in \mathbb{N}$ with $r + s \le \max(2, k 1)$, every subalgebra of $\mathbf{A}^r \times \mathbf{B}^s$ is a product subalgebra, and for all $E \le \mathbf{A}, F \le \mathbf{B}$, every tolerance of $\mathbf{E} \times \mathbf{F}$ is a product tolerance.
- 3. For all $r, s \in \mathbb{N}$ with $r + s \le \max(4, k 1)$, every subalgebra of $\mathbf{A}^r \times \mathbf{B}^s$ is a product subalgebra.

Example - infinite groups

Let p, q be primes, $p \neq q$, $\mathbf{A} := C_{p^{\infty}} = \{z \in \mathbb{C} \mid \exists n \in \mathbb{N} : z^{p^n} = 1\}, \mathbf{B} := C_{q^{\infty}}$. Then all subalgebras of $\mathbf{A}^m \times \mathbf{B}^n$ are product subalgebras, but \mathbf{A} and \mathbf{B} are not independent.

Application to polynomial functions

Theorem

Let **A** and **B** be finite algebras in a variety with a 3-edge term, and let $k \in \mathbb{N}$. We assume that every tolerance of $\mathbf{A} \times \mathbf{B}$ is a product tolerance. Let $\psi : \operatorname{Pol}_k(\mathbf{A}) \times \operatorname{Pol}_k(\mathbf{B}) \to (A \times B)^{(A \times B)^k}$ be the mapping defined by

$$\psi(f,g)\left((a_1,b_1),\ldots,(a_k,b_k)\right) := (f(\mathbf{a}),g(\mathbf{b}))$$

for $f \in \text{Pol}_k(\mathbf{A}), g \in \text{Pol}_k(\mathbf{B})$, $\mathbf{a} \in A^k$, and $\mathbf{b} \in B^k$. Then ψ is a bijection from $\text{Pol}_k(\mathbf{A}) \times \text{Pol}_k(\mathbf{B})$ to $\text{Pol}_k(\mathbf{A} \times \mathbf{B})$.

(日) (日) (日) (日) (日) (日) (日) (日)

Application to polynomial functions

Corollary

Let **A** and **B** be algebras in the variety *V*, and let $k \in \mathbb{N}$. If either

- 1. V has a majority term, or
- 2. *V* is congruence permutable, and every congruence of $\mathbf{A} \times \mathbf{B}$ is a product congruence,

then for all polynomial functions $f \in \text{Pol}_k(\mathbf{A})$ and $g \in \text{Pol}_k(\mathbf{B})$, there is a polynomial function $h \in \text{Pol}_k(\mathbf{A} \times \mathbf{B})$ with $h((a_1, b_1), \dots, (a_k, b_k)) = (f(\mathbf{a}), g(\mathbf{b}))$ for all $\mathbf{a} \in A^k$ and $\mathbf{b} \in B^k$.

(日) (日) (日) (日) (日) (日) (日) (日)

Aichinger, E. and Mayr, P. (2015).

Independence of algebras with edge term. manuscript, available on arXiv:1504.02663v1[math.RA].

Foster, A. L. (1955).

The identities of—and unique subdirect factorization within—classes of universal algebras. *Math. Z.*, 62:171–188.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Grätzer, G., Lakser, H., and Płonka, J. (1969).

Joins and direct products of equational classes. *Canad. Math. Bull.*, 12:741–744.

Hu, T. K. and Kelenson, P. (1971).

Independence and direct factorization of universal algebras. *Math. Nachr.*, 51:83–99.

Jónsson, B. and Tsinakis, C. (2004).

Products of classes of residuated structures. *Studia Logica*, 77(2):267–292.

Kowalski, T., Paoli, F., and Ledda, A. (2013).

On independent varieties and some related notions. *Algebra Universalis*, 70(2):107–136.

▲日▼▲国▼★国▼★国▼ ▲日▼