The asymptotic number of planar, slim, semimodular lattice diagrams

Gábor Czédli (AAA90, Novi Sad, June 5-7, 2015) http://www.math.u-szeged.hu/~czedli/

June 4, 2015

All lattices and diagrams are assumed to be finite! Slim: $J(L)=$ Chain $_{1} \cup$ Chain $_{2} ; \Rightarrow$ planar. (Grätzer-Knapp 1997). Semimodular: $a \prec b \Longrightarrow a \vee c \preceq b \vee c$.
Natural example: if $\vec{S}:\{1\}=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=G$ and \vec{T} are composition series of G), then $\left(\left\{S_{i} \cap T_{j}\right\} ; \supseteq\right)$. Application (\Rightarrow motivation): uniqueness part to the classical Jordan-Hölder theorem:

Theorem (uniqueness for the classical Jordan-Hölder theorem)
$\exists \pi \in S_{n}$ such that the quotient S_{i} / S_{i-1} is "down-and-up" perspective to $T_{\pi(i)} / T_{\pi(i)-1}$, for $\forall i$. (Grätzer and Nation, $A U$ 2011). Furthermore, this π is unique. (\sim and Schmidt, AU 2011).

All lattices and diagrams are assumed to be finite!
Slim: $J(L)=$ Chain $_{1} \cup$ Chain $_{2} ; \Rightarrow$ planar. (Grätzer-Knapp 1997). Semimodular: $a \prec b \Longrightarrow a \vee c \preceq b \vee c$.
Natural example: if $\vec{S}:\{1\}=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=G$ and \vec{T} are composition series of G), then $\left(\left\{S_{i} \cap T_{j}\right\} ; \supseteq\right)$.
Application (\Rightarrow motivation): uniqueness part to the classical Jordan-Hölder theorem:

> Theorem (uniqueness for the classical Jordan-Hölder theorem)
> $\exists \pi \in S_{n}$ such that the quotient S_{i} / S_{i-1} is "down-and-up" perspective to $T_{\pi(i)} / T_{\pi(i)-1}$, for $\forall i$. (Grätzer and Nation, $A U$ 2011). Furthermore, this π is unique. (\sim and Schmidt, AU 2011).

All lattices and diagrams are assumed to be finite!
Slim: $J(L)=$ Chain $_{1} \cup$ Chain $_{2} ; \Rightarrow$ planar. (Grätzer-Knapp 1997).
Semimodular: $a \prec b \Longrightarrow a \vee c \preceq b \vee c$.
Natural example: if $\vec{S}:\{1\}=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=G$ and \vec{T} are composition series of $G)$, then $\left(\left\{S_{i} \cap T_{j}\right\} ; \supseteq\right)$.
Application (\Rightarrow motivation): uniqueness part to the classical Jordan-Hölder theorem:

Theorem (uniqueness for the classical Jordan-Hölder theorem)

$\exists \pi \in S_{n}$ such that the quotient S_{i} / S_{i-1} is "down-and-up" perspective to $T_{\pi(i)} / T_{\pi(i)-1}$, for $\forall i$. (Grätzer and Nation, $A U$ 2011). Furthermore, this π is unique. (\sim and Schmidt, AU 2011).

~ and Schmidt, Order 2012

Multifork extensions at distributive ideals (\sim, AU 2014)

This concept is due to Grätzer and Knapp, 2009.

Enumerating slim sm lattices of a given parameter (length, size) n \approx how many ways can the intersections $S_{i} \cap T_{j}$ be related, if $\{1\}=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=G$ and $\{1\}=T_{0} \subset \cdots \subset T_{n}=G$ are composition series of a finite group.
Enumerating the diagrams of these lattices \approx how many ways
can the intersection above be related with respect to " \subseteq " if the first composition series, \vec{S}, is distinguished from the second one.

Definition
We enumerate planar diagrams up to similarity. I.e., the "from left to right" ordering of the upper and lower covers of every element is relevant but Eucledian distances ands slopes are not. E.g., N_{5} has exactly 2 planar diagrams while M_{3} has only 1 .

Enumerating slim sm lattices of a given parameter (length, size) n \approx how many ways can the intersections $S_{i} \cap T_{j}$ be related, if $\{1\}=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=G$ and $\{1\}=T_{0} \subset \cdots \subset T_{n}=G$ are composition series of a finite group.
Enumerating the diagrams of these lattices \approx how many ways can the intersection above be related with respect to " \subseteq " if the first composition series, \vec{S}, is distinguished from the second one.

Definition
We enumerate planar diagrams up to similarity. I.e., the "from left
to right" ordering of the upper and lower covers of every element is relevant but Eucledian distances ands slopes are not. E.g., N_{5} has exactly 2 planar diagrams while M_{3} has only 1 .

Enumerating slim sm lattices of a given parameter (length, size) n \approx how many ways can the intersections $S_{i} \cap T_{j}$ be related, if $\{1\}=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=G$ and $\{1\}=T_{0} \subset \cdots \subset T_{n}=G$ are composition series of a finite group.
Enumerating the diagrams of these lattices \approx how many ways can the intersection above be related with respect to " \subseteq " if the first composition series, \vec{S}, is distinguished from the second one.

Definition

We enumerate planar diagrams up to similarity. I.e., the "from left to right" ordering of the upper and lower covers of every element is relevant but Eucledian distances ands slopes are not. E.g., N_{5} has exactly 2 planar diagrams while M_{3} has only 1 .

- M. Erné, J. Heitzig, J. Reinhold: On the number of distributive lattices, Electron. J. Combin. 9/1 (2002), Research Paper 24.
- J. Heitzig, J. Reinhold, Counting finite lattices, Algebra Universalis 48 (2002) 43-53 (of size ≤ 18).
- M.M. Pawar, B.N. Waphare, Enumeration of nonisomorphic lattices with equal number of elements and edges, Indian J. Math. 45 (2003) 315-323

More recent enumerations (slim semimodular lattices) 10 '/10

- ~, Ozsvárt, Udvari: How many ways can two composition series intersect, Discr. Math. (2012); recursive formula, lattices computed up to $\ell=100$, asymptotically $\sim \ell!/ 2$.
- ~, Dékány, Ozsvárt, Szakács, Udvari: On the number of slim, semimodular lattices, Math. Slovaca, to appear: |\{slim sm lattices, or diagrams, of size $n\} \mid$ recursively, up to $n=50$.
- ~, Dékány, Gyenizse, Kulin: The number of slim rectangular lattices, AU (to appear): recursively, effective up to $\ell=1000$ and asymptotically: $(\ell-2)!\cdot e^{2} / 2$, where $e=\lim (1+1 / n)^{n} \approx 2.71$.

More recent enumerations (slim semimodular lattices) 10'/10

- ~, Ozsvárt, Udvari: How many ways can two composition series intersect, Discr. Math. (2012); recursive formula, lattices computed up to $\ell=100$, asymptotically $\sim \ell!/ 2$.
- ~, Dékány, Ozsvárt, Szakács, Udvari: On the number of slim, semimodular lattices, Math. Slovaca, to appear: |\{slim sm lattices, or diagrams, of size $n\} \mid$ recursively, up to $n=50$.
- ~, Dékány, Gyenizse, Kulin: The number of slim rectangular lattices, AU (to appear): recursively, effective up to $\ell=1000$ and asymptotically: $(\ell-2)!\cdot e^{2} / 2$, where $e=\lim (1+1 / n)^{n} \approx 2.71$.

More recent enumerations (slim semimodular lattices) 10 / 10

- ~, Ozsvárt, Udvari: How many ways can two composition series intersect, Discr. Math. (2012); recursive formula, lattices computed up to $\ell=100$, asymptotically $\sim \ell!/ 2$.
- ~, Dékány, Ozsvárt, Szakács, Udvari: On the number of slim, semimodular lattices, Math. Slovaca, to appear: |\{slim sm lattices, or diagrams, of size $n\} \mid$ recursively, up to $n=50$.
- ~, Dékány, Gyenizse, Kulin: The number of slim rectangular lattices, AU (to appear): recursively, effective up to $\ell=1000$ and asymptotically: $(\ell-2)!\cdot e^{2} / 2$, where $e=\lim (1+1 / n)^{n} \approx 2.71$.

The number of planar diagrams of slim semimodular lattices of size n is denoted by $N_{\mathrm{d}}(n)$.

Theorem (~, arxiv:1206.3679, 16 June 2012)

There exists a constant C such that $0<C<1$ and $N_{\mathrm{d}}(n)$ is asymptotically $C \cdot 2^{n}$, that is, $\lim _{n \rightarrow \infty}\left(N_{\mathrm{d}}(n) / 2^{n}\right)=C$.

We have also proved: $0.42 \cdot 10^{-57} \leq C \leq 0.073$.
We conjecture: $0.023 \leq C \leq 0.073$.
Lattices rather than diagrams of a given size n ? The earlier
recursion is only effective up to $n \approx 50$. We do not even know if
$\lim _{n \rightarrow \infty}\left(N_{1}(n) / N_{1}(n-1)\right)$ (conjecture: yes), and what is it.

The number of planar diagrams of slim semimodular lattices of size n is denoted by $N_{\mathrm{d}}(n)$.

Theorem (~, arxiv:1206.3679, 16 June 2012)

There exists a constant C such that $0<C<1$ and $N_{\mathrm{d}}(n)$ is asymptotically $C \cdot 2^{n}$, that is, $\lim _{n \rightarrow \infty}\left(N_{\mathrm{d}}(n) / 2^{n}\right)=C$.

We have also proved: $0.42 \cdot 10^{-57} \leq C \leq 0.073$.
We conjecture: $0.023 \leq C \leq 0.073$.
Lattices rather than diagrams of a given size n ? The earlier
recursion is only effective up to $n \approx 50$. We do not even know if
$\lim _{n \rightarrow \infty}\left(N_{1}(n) / N_{1}(n-1)\right)$ (conjecture: yes), and what is it.

The number of planar diagrams of slim semimodular lattices of size n is denoted by $N_{d}(n)$.

Theorem (\sim, arxiv:1206.3679, 16 June 2012)

There exists a constant C such that $0<C<1$ and $N_{\mathrm{d}}(n)$ is asymptotically $C \cdot 2^{n}, \quad$ that is, $\lim _{n \rightarrow \infty}\left(N_{\mathrm{d}}(n) / 2^{n}\right)=C$.

We have also proved: $0.42 \cdot 10^{-57} \leq C \leq 0.073$.
We conjecture: $0.023 \leq C \leq 0.073$.
Lattices rather than diagrams of a given size n ? The earlier recursion is only effective up to $n \approx 50$. We do not even know if $\lim _{n \rightarrow \infty}\left(N_{1}(n) / N_{l}(n-1)\right)$ (conjecture: yes), and what is it.

$\operatorname{rank}_{\ell}(D)=0$,
$\operatorname{rank}_{r}(D)=0$
$\operatorname{rank}_{\ell}(D)=3$,
$\operatorname{rank}_{r}(D)=2$

$\operatorname{rank}_{\ell}(D)=1$,
$\operatorname{rank}_{r}(D)=1$

We introduce the left and right rank of a slim sm. diagram. (Slim semimodular) diagrams of size n belong to three categories.

Classifying according to ranks

(a) left rank $=$ right rank $=0$: there are $N_{\mathrm{d}}(n-1)$ of them. (b) left rank $=$ right rank $=1$: there are $N_{\mathrm{d}}(n-3)$ of them.
(c) both ranks are >0 : Removing the left corner, $N_{d}(n-1)$ diagrams remain ??? No, not every diagram of size $n-1$ is obtained in this way. Nevertheless, (a)+(b) and (a)+(c) yield

$$
N_{\mathrm{d}}(n-1)+N_{\mathrm{d}}(n-3) \leq N_{\mathrm{d}}(n) \leq 2 \cdot N_{\mathrm{d}}(n-1) .
$$

Classifying according to ranks

(a) left rank $=$ right rank $=0$: there are $N_{\mathrm{d}}(n-1)$ of them.
(b) left rank $=$ right rank $=1$: there are $N_{\mathrm{d}}(n-3)$ of them.
(c) both ranks are >0 : Removing the left corner, $N_{d}(n-1)$ diagrams remain ??? No, not every diagram of size $n-1$ is obtained in this way. Nevertheless, (a)+(b) and (a)+(c) yield

$$
N_{\mathrm{d}}(n-1)+N_{\mathrm{d}}(n-3) \leq N_{\mathrm{d}}(n) \leq 2 \cdot N_{\mathrm{d}}(n-1) .
$$

Classifying according to ranks

(a) left rank $=$ right rank $=0$: there are $N_{\mathrm{d}}(n-1)$ of them.
(b) left rank $=$ right rank $=1$: there are $N_{\mathrm{d}}(n-3)$ of them.
(c) both ranks are >0 : Removing the left corner, $N_{d}(n-1)$ diagrams remain ?? No, not every diagram of size $n-1$ is
obtained in this way. Nevertheless, (a)+(b) and (a)+(c) yield

$$
N_{\mathrm{d}}(n-1)+N_{\mathrm{d}}(n-3) \leq N_{\mathrm{d}}(n) \leq 2 \cdot N_{\mathrm{d}}(n-1) .
$$

Classifying according to ranks

(a) left rank $=$ right rank $=0$: there are $N_{\mathrm{d}}(n-1)$ of them.
(b) left rank $=$ right rank $=1$: there are $N_{\mathrm{d}}(n-3)$ of them.
(c) both ranks are >0 : Removing the left corner, $N_{d}(n-1)$ diagrams remain ??? No, not every diagram of size $n-1$ is obtained in this way. Nevertheless, (a)+(b) and (a)+(c) yield

$$
N_{\mathrm{d}}(n-1)+N_{\mathrm{d}}(n-3) \leq N_{\mathrm{d}}(n) \leq 2 \cdot N_{\mathrm{d}}(n-1)
$$

$$
\operatorname{rank}_{\ell}(D)=3
$$

$$
\operatorname{rank}_{r}(D)=2
$$

Lemma

D^{\prime} with $\left|D^{\prime}\right|=n-1$ is obtained from some D by omitting the left corner iff the left corner of D^{\prime} is not a coatom.

Proof of the easier direction: length(left corner) decreases by 1 . (The other direction is longer.)

Lemma

D^{\prime} with $\left|D^{\prime}\right|=n-1$ is obtained from some D by omitting the left corner iff the left corner of D^{\prime} is not a coatom.

Proof of the easier direction: length(left corner) decreases by 1 . (The other direction is longer.)

Analysis is needed: logarithm

Lemma

If $0<z \leq z_{0}<1$, then

$$
-\ln (1-z) \leq z /(1-z) \leq z /\left(1-z_{0}\right)
$$

Proof:

With $\kappa_{n}:=N_{\mathrm{d}}(n) / N_{\mathrm{d}}(n-1), \quad p_{n}=\prod_{j=m+1}^{n}\left(\kappa_{j} / 2\right)$, $N_{\mathrm{d}}(n) / 2^{n}=p_{n} \cdot N_{\mathrm{d}}(m) / 2^{m}, s_{n}=-\ln p_{n}$, and $\alpha:=4 / 5$,

With $\kappa_{n}:=N_{\mathrm{d}}(n) / N_{\mathrm{d}}(n-1), \quad p_{n}=\prod_{j=m+1}^{n}\left(\kappa_{j} / 2\right)$,
$N_{\mathrm{d}}(n) / 2^{n}=p_{n} \cdot N_{\mathrm{d}}(m) / 2^{m}, s_{n}=-\ln p_{n}$, and $\alpha:=4 / 5$,

$$
\begin{aligned}
0 & <s_{n}=\sum_{j=m+1}^{n}\left(-\ln \left(\kappa_{j} / 2\right)\right) \leq^{\prime} \sum_{j=m+1}^{n}\left(1-\kappa_{j} / 2\right) /\left(1-z_{0}\right) \\
& \leq^{*} \mu \cdot \sum_{j=m+1}^{n} \alpha^{\lceil\sqrt{j-1}\rceil-2} \leq \mu \cdot \sum_{j=m+1}^{n} \alpha^{\sqrt{j-1}-1} \leq \mu \cdot \sum_{k=m}^{n-1} \alpha^{\sqrt{k}-1} \\
& =\nu \cdot \sum_{k=m}^{n-1} \alpha^{\sqrt{k}} \leq \nu \cdot \int_{x=m-1}^{n-1} \alpha^{\sqrt{x}} d x \leq \nu \cdot(F(\infty)-F(m-1)),
\end{aligned}
$$

where $F(x)=-2 \cdot \delta^{-2} \cdot(1+\delta \sqrt{x}) \cdot \alpha^{\sqrt{x}} \cdot \exists F(\infty) \Longrightarrow$ Q.e.d.
http://www.math.u-szeged.hu/~czedli/

Thank you for your attention.

