Deciding the existence of a k-wnu operation in polynomial time

Alexandr Kazda

Department of Mathematics
Vanderbilt University
Nashville
June 6th, 2015

Maltsev conditions

- A strong Maltsev condition is a system of equalities for some operations and variables, eg.

$$
p(p(x, y) r(y)) \approx x
$$

- A variety V satisfies the Maltsev condition M if we can replace the operations in M by terms of V and get a system of equalities true in
- Linear Maltsev: No nested operations. Example:

$$
\begin{aligned}
& m(x, x, y) \approx y \\
& m(y, x, x) \approx y
\end{aligned}
$$

- Libor Barto: CSP complexity can be characterized by linear Maltsev conditions.

Maltsev conditions

- A strong Maltsev condition is a system of equalities for some operations and variables, eg.

$$
p(p(x, y) r(y)) \approx x
$$

- A variety V satisfies the Maltsev condition M if we can replace the operations in M by terms of V and get a system of equalities true in V.
- Linear Maltsev: No nested operations. Example:

$m(y, x, x) \approx y$.
- Libor Barto: CSP complexity can be characterized by linear Maltsev conditions.

Maltsev conditions

- A strong Maltsev condition is a system of equalities for some operations and variables, eg.

$$
p(p(x, y) r(y)) \approx x
$$

- A variety V satisfies the Maltsev condition M if we can replace the operations in M by terms of V and get a system of equalities true in V.
- Linear Maltsev: No nested operations. Example:

$$
\begin{aligned}
& m(x, x, y) \approx y \\
& m(y, x, x) \approx y
\end{aligned}
$$

- Libor Barto: CSP complexity can be characterized by linear Maltsev conditions.

Maltsev conditions

- A strong Maltsev condition is a system of equalities for some operations and variables, eg.

$$
p(p(x, y) r(y)) \approx x
$$

- A variety V satisfies the Maltsev condition M if we can replace the operations in M by terms of V and get a system of equalities true in V.
- Linear Maltsev: No nested operations. Example:

$$
\begin{aligned}
& m(x, x, y) \approx y \\
& m(y, x, x) \approx y
\end{aligned}
$$

- Libor Barto: CSP complexity can be characterized by linear Maltsev conditions.

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz).
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed.

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz)
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize, the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed.

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz)
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize, the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed.

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz).
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize, the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed.

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz).
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize, the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed.

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz).
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize, the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed

The problem

- Given finite \mathbf{A}, we want to know if $V(\mathbf{A})$ satisfies a given fixed Maltsev condition.
- Example: "Does A have a Maltsev term?" (Complexity: Unknown.)
- Known to be EXPTIME-complete for numerous common Maltsev conditions (Freese, Valeriote, Horowitz).
- Restricting \mathbf{A} to be idempotent often allows us to find a polynomial time algorithm (Freese, Valeriote, Horowitz, K.).
- Big goal: Characterize, the complexity of all versions of the problem for all Maltsev conditions.
- Today's goal: Characterize, the complexity of deciding k-ary weak near unanimity for idempotent algebras when k is fixed.

Weak near unanimity

- A k-ary weak near unanimity (k-WNU) is any idempotent operation that satisfies

$$
t(y, x, \ldots, x) \approx t(x, y, \ldots, x) \approx \cdots \approx t(x, x, \ldots, y)
$$

- A $k-W N U$ is an example of a Taylor term.
- Given \mathbf{A} idempotent, we can test in polynomial time whether \mathbf{A} has a Taylor term (Bulatov).

Weak near unanimity

- A k-ary weak near unanimity (k-WNU) is any idempotent operation that satisfies

$$
t(y, x, \ldots, x) \approx t(x, y, \ldots, x) \approx \cdots \approx t(x, x, \ldots, y)
$$

- A $k-W N U$ is an example of a Taylor term.
- Given \mathbf{A} idempotent, we can test in polynomial time whether \mathbf{A} has a Taylor term (Bulatov).

Weak near unanimity

- A k-ary weak near unanimity (k-WNU) is any idempotent operation that satisfies

$$
t(y, x, \ldots, x) \approx t(x, y, \ldots, x) \approx \cdots \approx t(x, x, \ldots, y)
$$

- A $k-W N U$ is an example of a Taylor term.
- Given A idempotent, we can test in polynomial time whether \mathbf{A} has a Taylor term (Bulatov).

Local to global

- We say that \mathbf{A} has n-local k-WNUs if for every $\bar{r}, \bar{s} \in A^{n}$ there exists a term t such that

$$
t\left(s_{i}, r_{i}, \ldots, r_{i}\right)=t\left(r_{i}, s_{i}, r_{i}, \ldots, r_{i}\right)=\cdots=t\left(r_{i}, r_{i}, \ldots, s_{i}\right)
$$

for all i.

- Translating to relations:

has a member $(\bar{a}, \bar{a}, \ldots, \bar{a})^{T}$ for some $\bar{a} \in A^{n}$.

Local to global

- We say that \mathbf{A} has n-local k-WNUs if for every $\bar{r}, \bar{s} \in A^{n}$ there exists a term t such that

$$
t\left(s_{i}, r_{i}, \ldots, r_{i}\right)=t\left(r_{i}, s_{i}, r_{i}, \ldots, r_{i}\right)=\cdots=t\left(r_{i}, r_{i}, \ldots, s_{i}\right)
$$

for all i.

- Translating to relations:

$$
\mathrm{Sg}_{\mathbf{A}^{n}}\left(\left(\begin{array}{c}
\bar{s} \\
\bar{r} \\
\vdots \\
\bar{r}
\end{array}\right),\left(\begin{array}{c}
\bar{r} \\
\bar{s} \\
\vdots \\
\bar{r}
\end{array}\right), \ldots,\left(\begin{array}{c}
\bar{r} \\
\bar{r} \\
\vdots \\
\bar{s}
\end{array}\right)\right)
$$

has a member $(\bar{a}, \bar{a}, \ldots, \bar{a})^{T}$ for some $\bar{a} \in A^{n}$.

Local to global, continued

Observation
 If \mathbf{A} has $k-W N U$ then it has n-local $k-W N U$ for all n.

```
Lemma
If \mathbf{A is idempotent, has a Taylor term and has n-local k-WNUs then A also}
has (n+1)-local k-WNUs.
```


Corollary

We only need to check for the existence of a Taylor term and for all 1-local k-WNUs. This is polynomial for k fixed.

Local to global, continued

Observation

If \mathbf{A} has $k-W N U$ then it has n-local $k-W N U s$ for all n.

Lemma

If \mathbf{A} is idempotent, has a Taylor term and has n-local k-WNUs then \mathbf{A} also has $(n+1)$-local $k-W N U s$.

Corollary
We only need to check for the existence of a Taylor term and for all 1-local $k-W N U s$. This is polynomial for k fixed.

Local to global, continued

Observation

If \mathbf{A} has $k-W N U$ then it has n-local $k-W N U s$ for all n.

Lemma

If \mathbf{A} is idempotent, has a Taylor term and has n-local k-WNUs then \mathbf{A} also has $(n+1)$-local $k-W N U s$.

Corollary

We only need to check for the existence of a Taylor term and for all 1-local $k-W N U s$. This is polynomial for k fixed.

Proof for $k=4$

$$
R=\operatorname{Sg}\left(\begin{array}{llll}
\bar{s} & \bar{r} & \bar{r} & \bar{r} \\
\bar{r} & \bar{s} & \bar{r} & \bar{r} \\
\bar{r} & \bar{r} & \bar{s} & \bar{r} \\
\bar{r} & \bar{r} & \bar{r} & \bar{s} \\
d & c & c & c \\
c & d & c & c \\
c & c & d & c \\
c & c & c & d
\end{array}\right) .
$$

Applying an n-local 4-WNU, we have

$$
\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, b_{1}, b_{2}, b_{3}, b_{4}\right)^{T} \in R
$$

The last four entries can be permuted.

Proof for $k=4$

$$
R=\operatorname{Sg}\left(\begin{array}{llll}
\bar{s} & \bar{r} & \bar{r} & \bar{r} \\
\bar{r} & \bar{s} & \bar{r} & \bar{r} \\
\bar{r} & \bar{r} & \bar{s} & \bar{r} \\
\bar{r} & \bar{r} & \bar{r} & \bar{s} \\
d & c & c & c \\
c & d & c & c \\
c & c & d & c \\
c & c & c & d
\end{array}\right) .
$$

Applying an n-local $4-W N U$, we have

$$
\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, b_{1}, b_{2}, b_{3}, b_{4}\right)^{T} \in R
$$

The last four entries can be permuted.

Proof for $k=4$

$$
R=\operatorname{Sg}\left(\begin{array}{llll}
\bar{s} & \bar{r} & \bar{r} & \bar{r} \\
\bar{r} & \bar{s} & \bar{r} & \bar{r} \\
\bar{r} & \bar{r} & \bar{s} & \bar{r} \\
\bar{r} & \bar{r} & \bar{r} & \bar{s} \\
d & c & c & c \\
c & d & c & c \\
c & c & d & c \\
c & c & c & d
\end{array}\right) .
$$

Applying an n-local $4-W N U$, we have

$$
\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, b_{1}, b_{2}, b_{3}, b_{4}\right)^{T} \in R
$$

The last four entries can be permuted.

Loop lemma

Lemma (Barto, Kozik, Niven)

If \mathbf{G} is a Taylor algebra, $E \leq_{s} \mathbf{G}^{2}$ and (G, E) has a component of algebraic length 1, then E contains a loop.

In our case, let

$E=\left\{\left(\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right): \exists z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, x_{3}, z\right)^{T} \in R\right\}$.
\bar{G} has a Taylor term, E is subdirect, and (G, E) contains a 3-cycle and a 4-cycle in the same component $(\Rightarrow$ algebraic length 1$)$ The loop lemma gives us e, f such that $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, e, e, e, f) \in R$.

Loop lemma

Lemma (Barto, Kozik, Niven)

If \mathbf{G} is a Taylor algebra, $E \leq_{s} \mathbf{G}^{2}$ and (G, E) has a component of algebraic length 1, then E contains a loop.

In our case, let

$$
\begin{gathered}
G=\left\{\left(x_{1}, x_{2}\right): \exists y, z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, y, z\right)^{T} \in R\right\} \\
E=\left\{\left(\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right): \exists z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, x_{3}, z\right)^{T} \in R\right\} .
\end{gathered}
$$

\bar{G} has a Taylor term, E is subdirect, and (G, E) contains a 3-cycle and a 4 -cycle in the same component (\Rightarrow algebraic length 1). The loop lemma gives us e, f such that $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, e, e, e, f) \in R$.

Loop lemma

Lemma (Barto, Kozik, Niven)

If \mathbf{G} is a Taylor algebra, $E \leq_{s} \mathbf{G}^{2}$ and (G, E) has a component of algebraic length 1, then E contains a loop.

In our case, let

$$
\begin{gathered}
G=\left\{\left(x_{1}, x_{2}\right): \exists y, z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, y, z\right)^{T} \in R\right\} \\
E=\left\{\left(\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right): \exists z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, x_{3}, z\right)^{T} \in R\right\} .
\end{gathered}
$$

\bar{G} has a Taylor term, E is subdirect, and (G, E) contains a 3-cycle and a 4 -cycle in the same component (\Rightarrow algebraic length 1). The loop lemma gives us e, f such that $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, e, e, e, f) \in R$.

Loop lemma

Lemma (Barto, Kozik, Niven)

If \mathbf{G} is a Taylor algebra, $E \leq_{s} \mathbf{G}^{2}$ and (G, E) has a component of algebraic length 1, then E contains a loop.

In our case, let

$$
\begin{aligned}
& G=\left\{\left(x_{1}, x_{2}\right): \exists y, z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, y, z\right)^{T} \in R\right\} \\
E= & \left\{\left(\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right): \exists z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, x_{3}, z\right)^{T} \in R\right\} .
\end{aligned}
$$

\bar{G} has a Taylor term, E is subdirect, and (G, E) contains a 3-cycle and a 4 -cycle in the same component (\Rightarrow algebraic length 1) The loop lemma gives us e, f such that $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, e, e, e, f) \in R$

Loop lemma

Lemma (Barto, Kozik, Niven)

If \mathbf{G} is a Taylor algebra, $E \leq_{s} \mathbf{G}^{2}$ and (G, E) has a component of algebraic length 1, then E contains a loop.

In our case, let

$$
\begin{aligned}
& G=\left\{\left(x_{1}, x_{2}\right): \exists y, z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, y, z\right)^{T} \in R\right\} \\
E= & \left\{\left(\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right): \exists z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, x_{3}, z\right)^{T} \in R\right\} .
\end{aligned}
$$

\bar{G} has a Taylor term, E is subdirect, and (G, E) contains a 3 -cycle and a 4 -cycle in the same component (\Rightarrow algebraic length 1).

Loop lemma

Lemma (Barto, Kozik, Niven)

If \mathbf{G} is a Taylor algebra, $E \leq_{s} \mathbf{G}^{2}$ and (G, E) has a component of algebraic length 1, then E contains a loop.

In our case, let

$$
\begin{aligned}
& G=\left\{\left(x_{1}, x_{2}\right): \exists y, z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, y, z\right)^{T} \in R\right\} \\
E= & \left\{\left(\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right): \exists z,\left(\bar{a}, \bar{a}, \bar{a}, \bar{a}, x_{1}, x_{2}, x_{3}, z\right)^{T} \in R\right\} .
\end{aligned}
$$

\bar{G} has a Taylor term, E is subdirect, and (G, E) contains a 3 -cycle and a 4-cycle in the same component (\Rightarrow algebraic length 1).
The loop lemma gives us e, f such that $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, e, e, e, f) \in R$.

Final step

$$
\left(\begin{array}{c}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
e \\
e \\
e \\
f
\end{array}\right),\left(\begin{array}{c}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
e \\
e \\
f \\
e
\end{array}\right),\left(\begin{array}{l}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
e \\
f \\
e \\
e
\end{array}\right),\left(\begin{array}{l}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
f \\
e \\
e \\
e
\end{array}\right) \in R .
$$

Apply 4-WNU for e, f and obtain a tuple $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, b, b, b, b)^{\top}$

Final step

$$
\left(\begin{array}{c}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
e \\
e \\
e \\
f
\end{array}\right),\left(\begin{array}{l}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
e \\
e \\
f \\
e
\end{array}\right),\left(\begin{array}{l}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
e \\
f \\
e \\
e
\end{array}\right),\left(\begin{array}{l}
\bar{a} \\
\bar{a} \\
\bar{a} \\
\bar{a} \\
f \\
e \\
e \\
e
\end{array}\right) \in R .
$$

Apply 4-WNU for e, f and obtain a tuple $(\bar{a}, \bar{a}, \bar{a}, \bar{a}, b, b, b, b)^{T}$.

Future outlooks

- The "local to global" idea works for many linear Maltsev conditions in the idempotent case...
- ... but Dmitriy Zhuk has recently shown that "local to global" does not work for the minority operation:

$$
t(x, x, y) \approx t(x, y, x) \approx t(y, x, x) \approx y
$$

- Question: How hard is it to decide if \mathbf{A} idempotent has a minority?
- Related problem: Given A that satisfies a strong Maltsev condition M, produce operations of \mathbf{A} that witness M.

Future outlooks

- The "local to global" idea works for many linear Maltsev conditions in the idempotent case...
- ... but Dmitriy Zhuk has recently shown that "local to global" does not work for the minority operation:

$$
t(x, x, y) \approx t(x, y, x) \approx t(y, x, x) \approx y
$$

- Question: How hard is it to decide if \mathbf{A} idempotent has a minority?
- Related problem: Given \mathbf{A} that satisfies a strong Maltsev condition M, produce operations of \mathbf{A} that witness M.

Future outlooks

- The "local to global" idea works for many linear Maltsev conditions in the idempotent case...
- ... but Dmitriy Zhuk has recently shown that "local to global" does not work for the minority operation:

$$
t(x, x, y) \approx t(x, y, x) \approx t(y, x, x) \approx y
$$

- Question: How hard is it to decide if \mathbf{A} idempotent has a minority?
- Related problem: Given \mathbf{A} that satisfies a strong Maltsev condition M, produce operations of \mathbf{A} that witness M.

Future outlooks

- The "local to global" idea works for many linear Maltsev conditions in the idempotent case...
- ... but Dmitriy Zhuk has recently shown that "local to global" does not work for the minority operation:

$$
t(x, x, y) \approx t(x, y, x) \approx t(y, x, x) \approx y
$$

- Question: How hard is it to decide if \mathbf{A} idempotent has a minority?
- Related problem: Given A that satisfies a strong Maltsev condition M, produce operations of \mathbf{A} that witness M.

Thank you for your attention.

