A Birkhoff's theorem for varieties defined by linear equations

Jakub Opršal

joint work with L. Barto and M. Pinsker

Charles University in Prague

Novi Sad, June 7, 2015

Given a signature Σ , a term t over Σ is linear if it contains at most one operation symbol from Σ . E.g.

$$t(x_0, x_1, x_2, x_3) = f(x_1, x_0, x_0, x_2)$$

where f is a basic symbol, or a projection.

An equation is linear if both sides are linear terms. Example

$$f(x_{i_1},\ldots,x_{i_n})\approx g(x_{j_1},\ldots,x_{i_m}), \quad \text{or} \quad f(x_{i_1},\ldots,x_{i_n})\approx x_j.$$

CSP dichotomy conjecture

Let (A, Γ) be a finite relational structure. Then $CSP(A, \Gamma)$ is tractable iff $Pol(A, \Gamma)$ contains an operation *s* satisfying

$$s(x,x,x,y,y,y) \approx s(x,y,y,x,x,y) \approx s(y,x,y,x,y,x).$$

Many of naturally apearing Mal'cev conditions are linear, for example Mal'cev term, near unanimity term, cube terms, SD(\land), Gumm term, Jónsson terms, etc.

Another Valeriote's conjecture

For every strong linear idempotent Mal'cev condition there is a poly-time algorithm that decides whether an idempotent algebra \bf{A} satisfies this condition.

Birhoff's HSP theorem

Let ${\mathcal K}$ be a class of algebras of a given signature. Then

 $\mathsf{Mod} \,\mathsf{Eq}(\mathcal{K}) = \mathsf{HSP}(\mathcal{K}).$

Linear Birkhoff theorem

Let ${\mathcal K}$ be a class of algebras of a given signature. Then

 $Mod LinEq(\mathcal{K}) = ?(\mathcal{K}).$

An algebra **B** is a retraction of **A** if there are maps

such that $ba = 1_B$, and for every operation f we have

$$f_{\mathbf{B}}(b_0,\ldots,b_{n-1}) = bf_{\mathbf{A}}(a(b_0),\ldots,a(b_{n-1})).$$

Observation

If **B** is a retraction of **A** then it satifies all the linear equations valid in **A**.

The class of all retractions of algebras from \mathcal{K} will be denoted $\mathbf{R}(\mathcal{K})$. Note that $\mathbf{HS} \subseteq \mathbf{R}$.

Birhoff's HSP theorem

Let ${\mathcal K}$ be a class of algebras of a given signature. Then

 $\mathsf{Mod} \,\mathsf{Eq}(\mathcal{K}) = \mathsf{HSP}(\mathcal{K}).$

Linear Birkhoff theorem

Let ${\mathcal K}$ be a class of algebras of a given signature. Then

Mod LinEq (\mathcal{K}) = ? **RP** (\mathcal{K}) .

Let $\mathbf{B} \in Mod LinEq(\mathcal{K})$, $\mathcal{V} = HSP(\mathcal{K})$, and $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(B)$. Observe that LinEq(\mathbf{F}) \subseteq LinEq(\mathcal{K}).

Take $f: B \to F$ to be 1_B , and define $b: F \to B$ as

$$b(f) = \begin{cases} t_{\mathbf{B}}(b_0, \dots, b_{n-1}) & \text{if } f = t_{\mathbf{F}}(b_0, \dots, b_{n-1}) \text{ for some linear term } t \\ & \text{and } b_0, \dots, b_{n-1} \in B, \\ \text{whatever in } B & \text{otherwise.} \end{cases}$$

Finally, **B** is (f, b)-retraction of **F**. So,

 $B \in R(F) \subseteq RHSP(\mathcal{K}) = RP(\mathcal{K})$

Proposition

The following Mal'cev conditions are not equivalent to a linear one.

- congruence regularity,
- congruence singularity,
- ► congruence permutability ∧ congruence distributivity.

Theorem

An algebra A doesn't \dots if and only if there is an algebra X such that \dots and $X \in RP({\rm Clo}\,A).$

- ... have a Mal'cev term $X = \{0, 1, 2\}, \{01|2, 0|12\} \subseteq \text{Con } X \dots$
- ... generate congruence modular variety $X = \{0, 1, 2, 3\}, \{12|34, 13|24, 1|2|34\} \subseteq \text{Con } X \dots$
- ... have a k-cube term ...
 - $\ldots X = \{0,1\}^k \setminus \{(1,\ldots,1)\}$, Ker proj $_i \in \mathsf{Con} X$ for all $i \ldots$
- ... generate a variety satisfying a non-trivial congruence identity ... $X = \{0, 1, 2, 3\}, \{12|34, 13|24, 1|234\} \subseteq \text{Con } X \dots$

Thank you for your attention!