A Birkhoff's theorem for varieties defined by linear equations

Jakub Opršal
joint work with L. Barto and M. Pinsker

Charles University in Prague

Novi Sad, June 7, 2015

Linear equations

Given a signature Σ, a term t over Σ is linear if it contains at most one operation symbol from Σ. E.g.

$$
t\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{0}, x_{0}, x_{2}\right)
$$

where f is a basic symbol, or a projection.
An equation is linear if both sides are linear terms.
Example

$$
f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \approx g\left(x_{j_{1}}, \ldots, x_{i_{m}}\right), \quad \text { or } \quad f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \approx x_{j} .
$$

Motivation

CSP dichotomy conjecture

Let (A, Γ) be a finite relational structure. Then $\operatorname{CSP}(A, \Gamma)$ is tractable iff $\operatorname{Pol}(A, \Gamma)$ contains an operation s satisfying

$$
s(x, x, x, y, y, y) \approx s(x, y, y, x, x, y) \approx s(y, x, y, x, y, x)
$$

Many of naturally apearing Mal'cev conditions are linear, for example Mal'cev term, near unanimity term, cube terms, $\operatorname{SD}(\wedge)$, Gumm term, Jónsson terms, etc.

Another Valeriote's conjecture

For every strong linear idempotent Mal'cev condition there is a poly-time algorithm that decides whether an idempotent algebra \mathbf{A} satisfies this condition.

The question

Birhoff's HSP theorem

Let \mathcal{K} be a class of algebras of a given signature. Then

$$
\operatorname{Mod} \operatorname{Eq}(\mathcal{K})=\operatorname{HSP}(\mathcal{K})
$$

Linear Birkhoff theorem
Let \mathcal{K} be a class of algebras of a given signature. Then

$$
\operatorname{Mod} \operatorname{LinEq}(\mathcal{K})=?(\mathcal{K})
$$

Retractions

An algebra \mathbf{B} is a retraction of \mathbf{A} if there are maps

such that $b a=1_{B}$, and for every operation f we have

$$
f_{\mathbf{B}}\left(b_{0}, \ldots, b_{n-1}\right)=b f_{\mathbf{A}}\left(a\left(b_{0}\right), \ldots, a\left(b_{n-1}\right)\right) .
$$

Observation

If \mathbf{B} is a retraction of \mathbf{A} then it satifies all the linear equations valid in \mathbf{A}.

The class of all retractions of algebras from \mathcal{K} will be denoted $\mathbf{R}(\mathcal{K})$.
Note that HS $\subseteq \mathbf{R}$.

The question

Birhoff's HSP theorem

Let \mathcal{K} be a class of algebras of a given signature. Then

$$
\operatorname{Mod} \operatorname{Eq}(\mathcal{K})=\operatorname{HSP}(\mathcal{K})
$$

Linear Birkhoff theorem
Let \mathcal{K} be a class of algebras of a given signature. Then

$$
\operatorname{Mod} \operatorname{LinEq}(\mathcal{K})=\quad \mathbf{R P}(\mathcal{K})
$$

Proof of 'Mod LinEq $\subseteq \mathbf{R P}^{\prime}$

Let $\mathbf{B} \in \operatorname{Mod} \operatorname{LinEq}(\mathcal{K}), \mathcal{V}=\mathbf{H S P}(\mathcal{K})$, and $\mathbf{F}=\mathbf{F}_{\mathcal{V}}(B)$.
Observe that $\operatorname{LinEq}(\mathbf{F}) \subseteq \operatorname{LinEq}(\mathcal{K})$.
Take $f: B \rightarrow F$ to be 1_{B}, and define $b: F \rightarrow B$ as

$$
b(f)= \begin{cases}t_{\mathbf{B}}\left(b_{0}, \ldots, b_{n-1}\right) & \text { if } f=t_{\mathbf{F}}\left(b_{0}, \ldots, b_{n-1}\right) \text { for some linear term } t \\ & \text { and } b_{0}, \ldots, b_{n-1} \in B \\ \text { whatever in } B & \text { otherwise. }\end{cases}
$$

Finally, \mathbf{B} is (f, b)-retraction of \mathbf{F}. So,

$$
\mathbf{B} \in \mathbf{R}(\mathbf{F}) \subseteq \mathbf{R H S P}(\mathcal{K})=\mathbf{R} \mathbf{P}(\mathcal{K})
$$

Applications

Proposition

The following Mal'cev conditions are not equivalent to a linear one.

- congruence regularity,
- congruence singularity,
- congruence permutability \wedge congruence distributivity.

Applications (cont.)

Theorem

An algebra \mathbf{A} doesn't ... if and only if there is an algebra \mathbf{X} such that ... and $\mathbf{X} \in \mathbf{R P}(\mathrm{Clo} \mathbf{A})$.

- ... have a Mal'cev term

$$
\ldots X=\{0,1,2\},\{01|2,0| 12\} \subseteq \operatorname{Con} \mathbf{X} \ldots
$$

- ... generate congruence modular variety ...

$$
\ldots X=\{0,1,2,3\},\{12|34,13| 24,1|2| 34\} \subseteq \operatorname{Con} \mathbf{X} \ldots
$$

- ... have a k-cube term ...

$$
\ldots X=\{0,1\}^{k} \backslash\{(1, \ldots, 1)\}, \text { Ker proj} j_{i} \in \operatorname{Con} \mathbf{X} \text { for all } i \ldots
$$

- ... generate a variety satisfying a non-trivial congruence identity ... $\ldots X=\{0,1,2,3\},\{12|34,13| 24,1 \mid 234\} \subseteq \operatorname{Con} \mathbf{X} \ldots$

Thank you for your attention!

