Critical points for congruence lattices

Miroslav Ploščica
P. J. Šafárik University, Košice

$$
\text { June 6, } 2015
$$

General problem

Problem. For a given class \mathcal{K} of algebras describe $\operatorname{Con} \mathcal{K}=$ all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least, for given classes \mathcal{K}, \mathcal{L} determine if $\operatorname{Con} \mathcal{K}=\operatorname{Con} \mathcal{L}$
$($ Con $\mathcal{K} \subseteq \operatorname{Con} \mathcal{L})$
and, if Con $\mathcal{K} \nsubseteq$ Con \mathcal{L}, determine

$$
\operatorname{Crit}(\mathcal{K}, \mathcal{L})=\min \left\{\operatorname{card}\left(L_{c}\right) \mid L \in \operatorname{Con} \mathcal{K} \backslash \operatorname{Con} \mathcal{L}\right\}
$$

($L_{c}=$ compact elements of L)

Why L_{c} ?

$\operatorname{Con}_{c} A$ reflects the size of A better.

Theorem

If an infinite algebra A is a subdirect product of finite algebras of bounded size, then $\left|\operatorname{Con}_{c} A\right|=|A|$.

Some critical points

We are especially interested in the case when \mathcal{K} and \mathcal{L} are congruence-distributive varieties (in most results also finitely generated). For instance,
$\operatorname{Crit}\left(\mathbf{N}_{5}, \mathbf{M}_{3}\right)=5$,
$\operatorname{Crit}\left(\mathbf{M}_{3}, \mathbf{N}_{5}\right)=\operatorname{Crit}\left(\mathbf{M}_{3}, \mathbf{D}\right)=\aleph_{0}$,
$\operatorname{Crit}\left(\mathbf{M}_{4}, \mathbf{M}_{3}\right)=\aleph_{2}$,
$\operatorname{Crit}(\mathbf{M a j}, \mathbf{L a t})=\aleph_{2}$.
$\left(\mathbf{N}_{5}, \mathbf{M}_{3}, \mathbf{M}_{4}, \mathbf{D}\right.$ are well-known lattice varieties, Lat $=$ all
lattices, $\mathbf{M a j}=$ all majority algebras.)
P. Gillibert: under some reasonable finiteness conditions, the critical point between two varieties cannot be larger than \aleph_{2}.

N_{5} and M_{n}

No \aleph_{3} ?

Theorem

(Gillibert)
Let \mathcal{V} and \mathcal{W} be locally finite varieties. Assume that for any finite $A \in \mathcal{V}$ there are, up to isomorphism, finitely many $B \in \mathcal{W}$ with $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$, and each such B is finite. Then $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_{2}$ or $\operatorname{Con} \mathcal{V} \subseteq \operatorname{Con} \mathcal{W}$.

Any finitely generated congruence-distributive varieties satisfy the assumptions.

Possible cases

For finitely generated congruence-distributive varieties there are following possible cases:

- $\operatorname{Crit}(\mathcal{V}, \mathcal{W})$ is finite;
- $\operatorname{Crit}(\mathcal{V}, \mathcal{W})=\aleph_{0}$;
- $\operatorname{Crit}(\mathcal{V}, \mathcal{W})=\aleph_{1}$;
- $\operatorname{Crit}(\mathcal{V}, \mathcal{W})=\aleph_{2}$;
- $\operatorname{Con} \mathcal{V} \subseteq \operatorname{Con} \mathcal{W}$.

How to distinguish?

Con functor

The Con functor:

For any homomorphism of algebras $f: A \rightarrow B$ we define

$$
\operatorname{Con} f: \operatorname{Con} A \rightarrow \operatorname{Con} B
$$

by
$\alpha \mapsto$ congruence generated by $\{(f(x), f(y)) \mid(x, y) \in \alpha\}$.
Fact. Con f preserves \vee and 0 , not necessarily \wedge.

Lifting of semilattice morphisms

Let

- $\varphi: S \rightarrow T$ be a ($V, 0$)-homomorphisms of lattices;
- $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ, if there are isomorphisms $\psi_{1}: S \rightarrow \operatorname{Con} A$, $\psi_{2}: T \rightarrow$ Con B such that

$$
\begin{array}{ccc}
\operatorname{Con} A \xrightarrow{\operatorname{Con} f} & \operatorname{Con} B \\
\psi_{1} \downarrow & & \psi_{2} \downarrow \\
S & \xrightarrow{\varphi} & T
\end{array}
$$

commutes.
A generalization: lifting of semilattice diagrams

\aleph_{0} and \aleph_{1} criteria

Theorem

(Gillibert)

$\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_{0}$ if and only if there is a diagram of finite semilattices indexed by a finite chain, which is liftable in \mathcal{V} but not in \mathcal{W}.

Theorem

(Gillibert)

If there is a diagram of finite semilattices indexed by the product of two finite chains, which is liftable in \mathcal{V} but not in \mathcal{W}, then $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_{1}$.

Example

The semilattice homomorphism

has a lifting in \mathbf{M}_{3} (the embedding of a 3-element chain into M_{3} lifts it), but not in \mathbf{D}. Therefore, $\operatorname{Crit}\left(\mathbf{M}_{3}, \mathbf{D}\right) \leq \aleph_{0}$.

Critical point \aleph_{1}

Let \mathbf{N}_{6}^{*} be the varieties of bounded lattices with an additional unary operation ' generated by the algebra N_{6}.

N_{6}

Lattice T

N_{5} and N_{6}^{*} have the same congruence lattice T :

N6 versus N5

Let φ be the identity homomorphism $T \rightarrow T$. Now:

- There is only one possibility of lifting of φ in \mathbf{N}_{5} (the identity $N_{5} \rightarrow N_{5}$).
- There are two different liftings of φ in \mathbf{N}_{6}^{*} : the identity on N_{6}^{*} and the vertical symmetry $h: N_{6}^{*} \rightarrow N_{6}^{*}$. The homomorphism $\mathrm{Con}_{c} h$ interchanges α and β.

Critical points \aleph_{1}

For the following diagram \mathcal{D} in \mathbf{N}_{6}^{*}, the corresponding semilattice diagram Con \mathcal{D} has no lifting in \mathbf{N}_{5}. By Gillibert's criterion, $\operatorname{Crit}\left(\mathbf{N}_{6}^{*}, \mathbf{N}_{5}\right) \leq \aleph_{1}$.

Symmetries of liftings

Let $\varphi: S \rightarrow T$ be a homomorphism of $(\vee, 0)$-semilattices and let τ be an automorphism of T. A τ-symmetric lifting of φ in a variety \mathcal{V} consists of algebras $A_{1}, A_{2}, B_{1}, B_{2} \in \mathcal{V}$, homomorphisms
$f_{i j}: A_{i} \rightarrow B_{j}$, isomorphisms $\psi_{i}: \operatorname{Con}_{c} A_{i} \rightarrow S$ and
$\tau_{i j}: \operatorname{Con} B_{j} \rightarrow T$ such that

$$
\left(\operatorname{rng} f_{11} \times f_{12}\right) \cap\left(\operatorname{rng} f_{21} \times f_{22}\right) \neq \emptyset
$$

the diagram

$$
\begin{array}{ccc}
\operatorname{Con} A_{i} & \xrightarrow{\operatorname{Con} f_{i j}} & \operatorname{Con} B_{j} \\
\psi_{i} \downarrow & & \tau_{i j} \downarrow \\
S & \xrightarrow{\varphi} & T
\end{array}
$$

commutes for every $i, j \in\{1,2\}$, and

$$
\tau=\tau_{11} \tau_{21}^{-1} \tau_{22} \tau_{12}^{-1}
$$

Main result

Theorem

Let $\varphi: S \rightarrow T$ be a homomorphism of finite $(\vee, 0)$-semilattices and let τ be an automorphism of T. If φ has a τ-symmetric lifting in \mathcal{V} but not in \mathcal{W}, then $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_{1}$.

In the \mathbf{N}_{5} versus \mathbf{N}_{6}^{*} case we used the identity $\varphi: T \rightarrow T$ and the automorphism $\tau: T \rightarrow T$ interchanging α and β.

Another example

Let \mathbf{M}^{*} be the variety of bounded lattices with an additional unary operation ' generated by the algebra M. depicted below. The unary operation on the elements x_{i} is defined by $x_{i}^{\prime}=x_{i+1}$ and $x_{6}^{\prime}=x_{1}$.

M

N5 versus M

Let φ be the following semilattice homomorphism $S \rightarrow T$:

Let $\tau: T \rightarrow T$ be the same as before (interchanging α and β). Then φ has a τ-symmetric lifting in \mathbf{N}_{5} but not in \mathbf{M}.

Lifting in N5

There is no τ-symmetric lifting of φ in \mathbf{M}. On the other hand, a τ-symmetric lifting of φ in \mathbf{N}_{5} can be constructed using the following two embeddings $C_{3} \rightarrow N_{5}$.

Possible generalizations

- G-symmetric lifings with G a subgroup of $\operatorname{Aut}(T)$;
- τ-symmetric (or G-symmetric) liftings of diagrams indexed by finite chains;

Thanks

Thank you for attention.
ploscica.science.upjs.sk

