Critical points for congruence lattices

Miroslav Ploščica

P. J. Šafárik University, Košice

June 6, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,

for given classes \mathcal{K} , \mathcal{L} determine if Con $\mathcal{K} = \text{Con } \mathcal{L}$ (Con $\mathcal{K} \subseteq \text{Con } \mathcal{L}$)

and, if Con $\mathcal{K} \nsubseteq$ Con \mathcal{L} , determine

 $\operatorname{Crit}(\mathcal{K},\mathcal{L}) = \min\{\operatorname{card}(L_c) \mid L \in \operatorname{Con} \mathcal{K} \setminus \operatorname{Con} \mathcal{L}\}$

 $(L_c = \text{compact elements of } L)$

- ロト - (同 ト - 4 三 ト - 4 三 ト - -

 Con_cA reflects the size of A better.

Theorem

If an infinite algebra A is a subdirect product of finite algebras of bounded size, then $|Con_cA| = |A|$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

We are especially interested in the case when \mathcal{K} and \mathcal{L} are congruence-distributive varieties (in most results also finitely generated). For instance, $Crit(N_5, M_3) = 5$, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{N}_5) = \operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) = \aleph_0,$ $\operatorname{Crit}(\mathbf{M}_4, \mathbf{M}_3) = \aleph_2$ $\operatorname{Crit}(\operatorname{Maj}, \operatorname{Lat}) = \aleph_2.$ $(N_5, M_3, M_4, D \text{ are well-known lattice varieties, } Lat = all$ lattices, Maj = all majority algebras.)P. Gillibert: under some reasonable finiteness conditions, the critical point between two varieties cannot be larger than \aleph_2 .

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Miroslav Ploščica Critical points for congruence lattices

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

æ

Theorem

(Gillibert)

Let \mathcal{V} and \mathcal{W} be locally finite varieties. Assume that for any finite $A \in \mathcal{V}$ there are, up to isomorphism, finitely many $B \in \mathcal{W}$ with $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$, and each such B is finite. Then $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_{2}$ or $\operatorname{Con} \mathcal{V} \subseteq \operatorname{Con} \mathcal{W}$.

Any finitely generated congruence-distributive varieties satisfy the assumptions.

・ロト ・四ト ・ヨト ・ヨト

For finitely generated congruence-distributive varieties there are following possible cases:

- $\operatorname{Crit}(\mathcal{V},\mathcal{W})$ is finite;
- $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) = \aleph_0;$
- $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) = \aleph_1;$
- $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) = \aleph_2;$
- $\operatorname{Con} \mathcal{V} \subseteq \operatorname{Con} \mathcal{W}$.

How to distinguish?

> < 同> < 回> < 回>

The Con functor:

For any homomorphism of algebras $f:\ A\to B$ we define ${\rm Con}\,f:\ {\rm Con}\,A\to {\rm Con}\,B$

by

 $\alpha \mapsto \text{congruence generated by } \{(f(x),f(y)) \mid (x,y) \in \alpha\}.$

Fact. Con f preserves \lor and 0, not necessarily \land .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let

• $\varphi:\ S\to T$ be a $(\vee,0)\text{-homomorphisms}$ of lattices;

• $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ , if there are isomorphisms $\psi_1: S \to \operatorname{Con} A$, $\psi_2: T \to \operatorname{Con} B$ such that

$$\begin{array}{ccc} \operatorname{Con} A & \xrightarrow{\operatorname{Con} f} & \operatorname{Con} B \\ \psi_1 & & \psi_2 \\ S & \xrightarrow{\varphi} & T \end{array}$$

commutes.

A generalization: lifting of semilattice diagrams

Theorem

(Gillibert) $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_0$ if and only if there is a diagram of finite semilattices indexed by a finite chain, which is liftable in \mathcal{V} but not in \mathcal{W} .

Theorem

(Gillibert) If there is a diagram of finite semilattices indexed by the product of two finite chains, which is liftable in \mathcal{V} but not in \mathcal{W} , then $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

The semilattice homomorphism

has a lifting in \mathbf{M}_3 (the embedding of a 3-element chain into M_3 lifts it), but not in \mathbf{D} . Therefore, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) \leq \aleph_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Critical point \aleph_1

Let N_6^* be the varieties of bounded lattices with an additional unary operation ' generated by the algebra N_6 .

э

Lattice T

 N_5 and N_6^* have the same congruence lattice T:

◆□ > ◆□ > ◆豆 > ◆豆 >

Let φ be the identity homomorphism $T \to T$. Now:

- There is only one possibility of lifting of φ in \mathbf{N}_5 (the identity $N_5 \rightarrow N_5$).
- There are two different liftings of φ in \mathbf{N}_6^* : the identity on N_6^* and the vertical symmetry $h: N_6^* \to N_6^*$. The homomorphism $\operatorname{Con}_c h$ interchanges α and β .

イロト イポト イヨト イヨト

Critical points \aleph_1

For the following diagram \mathcal{D} in \mathbf{N}_6^* , the corresponding semilattice diagram Con \mathcal{D} has no lifting in \mathbf{N}_5 . By Gillibert's criterion, $\operatorname{Crit}(\mathbf{N}_6^*, \mathbf{N}_5) \leq \aleph_1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Symmetries of liftings

Let $\varphi: S \to T$ be a homomorphism of $(\lor, 0)$ -semilattices and let τ be an automorphism of T. A τ -symmetric lifting of φ in a variety \mathcal{V} consists of algebras $A_1, A_2, B_1, B_2 \in \mathcal{V}$, homomorphisms $f_{ij}: A_i \to B_j$, isomorphisms $\psi_i: \operatorname{Con}_c A_i \to S$ and $\tau_{ij}: \operatorname{Con} B_j \to T$ such that

 $(\operatorname{rng} f_{11} \times f_{12}) \cap (\operatorname{rng} f_{21} \times f_{22}) \neq \emptyset,$

the diagram

commutes for every $i, j \in \{1, 2\}$, and

$$\tau = \tau_{11} \tau_{21}^{-1} \tau_{22} \tau_{12}^{-1}.$$

Theorem

Let $\varphi : S \to T$ be a homomorphism of finite $(\lor, 0)$ -semilattices and let τ be an automorphism of T. If φ has a τ -symmetric lifting in \mathcal{V} but not in \mathcal{W} , then $\operatorname{Crit}(\mathcal{V}, \mathcal{W}) \leq \aleph_1$.

In the N_5 versus N_6^* case we used the identity $\varphi: T \to T$ and the automorphism $\tau: T \to T$ interchanging α and β .

イロト イポト イヨト イヨト

Another example

Let \mathbf{M}^* be the variety of bounded lattices with an additional unary operation ' generated by the algebra M. depicted below. The unary operation on the elements x_i is defined by $x'_i = x_{i+1}$ and $x'_6 = x_1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let φ be the following semilattice homomorphism $S \to T$:

Let $\tau : T \to T$ be the same as before (interchanging α and β). Then φ has a τ -symmetric lifting in \mathbf{N}_5 but not in \mathbf{M} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Lifting in N5

There is no τ -symmetric lifting of φ in \mathbf{M} . On the other hand, a τ -symmetric lifting of φ in \mathbf{N}_5 can be constructed using the following two embeddings $C_3 \rightarrow N_5$.

< 同 > < 三 > < 三 >

- G-symmetric lifings with G a subgroup of Aut(T);
- τ -symmetric (or *G*-symmetric) liftings of diagrams indexed by finite chains;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Thank you for attention.

ploscica.science.upjs.sk

Miroslav Ploščica Critical points for congruence lattices

・ロト ・雪ト ・ヨト ・ヨト

æ