Profinite algebras and polynomial boundedness

Martin Schneider (joint work with Jens Zumbrägel)

TU Dresden

Novi Sad, June 6, 2015

Martin Schneider (TU Dresden)

Profinite algebras

Profinite algebras

Let Ω be a signature. A topological Ω -algebra **A** is called profinite if *A* is a compact space and, for any two distinct $x, y \in A$, there exists a continuous hom. $h: \mathbf{A} \to \mathbf{B}$ into a finite discrete Ω -algebra **B** with $h(x) \neq h(y)$.

Let Ω be a signature. A topological Ω -algebra **A** is called profinite if *A* is a compact space and, for any two distinct $x, y \in A$, there exists a continuous hom. $h: \mathbf{A} \to \mathbf{B}$ into a finite discrete Ω -algebra **B** with $h(x) \neq h(y)$.

Theorem (van Dantzig, Numakura, Kaplansky, Anzai)

If **A** is a topological group, semigroup, ring, or distributive lattice, then the following are equivalent:

Let Ω be a signature. A topological Ω -algebra **A** is called profinite if *A* is a compact space and, for any two distinct $x, y \in A$, there exists a continuous hom. $h: \mathbf{A} \to \mathbf{B}$ into a finite discrete Ω -algebra **B** with $h(x) \neq h(y)$.

Theorem (van Dantzig, Numakura, Kaplansky, Anzai)

If **A** is a topological group, semigroup, ring, or distributive lattice, then the following are equivalent:

(1) A is profinite.

Let Ω be a signature. A topological Ω -algebra **A** is called profinite if *A* is a compact space and, for any two distinct $x, y \in A$, there exists a continuous hom. $h: \mathbf{A} \to \mathbf{B}$ into a finite discrete Ω -algebra **B** with $h(x) \neq h(y)$.

Theorem (van Dantzig, Numakura, Kaplansky, Anzai)

If **A** is a topological group, semigroup, ring, or distributive lattice, then the following are equivalent:

(1) **A** is profinite.

(2) A is a Stone space, i.e., a totally disconnected compact Hausdorff space.

Let Ω be a signature. A topological Ω -algebra **A** is called profinite if *A* is a compact space and, for any two distinct $x, y \in A$, there exists a continuous hom. $h: \mathbf{A} \to \mathbf{B}$ into a finite discrete Ω -algebra **B** with $h(x) \neq h(y)$.

Theorem (van Dantzig, Numakura, Kaplansky, Anzai)

If **A** is a topological group, semigroup, ring, or distributive lattice, then the following are equivalent:

(1) A is profinite.

(2) A is a Stone space, i.e., a totally disconnected compact Hausdorff space.

Question

Is this true for general topological algebras?

Consider the Stone-Čech compactification $\beta \mathbb{N}$ of the natural numbers and let $f: \beta \mathbb{N} \to \beta \mathbb{N}$ be the continuous extension of the map $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$.

Consider the Stone-Čech compactification $\beta \mathbb{N}$ of the natural numbers and let $f: \beta \mathbb{N} \to \beta \mathbb{N}$ be the continuous extension of the map $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$. Although $\beta \mathbb{N}$ is a Stone space, we have the following:

Proposition

 $\mathbf{A} := (\beta \mathbb{N}, f)$ is not profinite.

Consider the Stone-Čech compactification $\beta \mathbb{N}$ of the natural numbers and let $f: \beta \mathbb{N} \to \beta \mathbb{N}$ be the continuous extension of the map $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$. Although $\beta \mathbb{N}$ is a Stone space, we have the following:

Proposition

 $\mathbf{A} := (\beta \mathbb{N}, f)$ is not profinite.

Proof.

Consider the Stone-Čech compactification $\beta \mathbb{N}$ of the natural numbers and let $f: \beta \mathbb{N} \to \beta \mathbb{N}$ be the continuous extension of the map $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$. Although $\beta \mathbb{N}$ is a Stone space, we have the following:

Proposition

 $\mathbf{A} := (\beta \mathbb{N}, f)$ is not profinite.

Proof.

The map $\text{Con}_{o}(\mathbf{A}) \to \text{Con}(\mathbb{N}, s), \ \theta \mapsto \theta \cap \mathbb{N}^{2}$ is injective.

Consider the Stone-Čech compactification $\beta \mathbb{N}$ of the natural numbers and let $f: \beta \mathbb{N} \to \beta \mathbb{N}$ be the continuous extension of the map $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$. Although $\beta \mathbb{N}$ is a Stone space, we have the following:

Proposition

 $\mathbf{A} := (\beta \mathbb{N}, f)$ is not profinite.

Proof.

The map $\text{Con}_{o}(\mathbf{A}) \to \text{Con}(\mathbb{N}, s), \ \theta \mapsto \theta \cap \mathbb{N}^{2}$ is injective. Hence, $\text{Con}_{o}(\mathbf{A})$ is countable.

Consider the Stone-Čech compactification $\beta \mathbb{N}$ of the natural numbers and let $f: \beta \mathbb{N} \to \beta \mathbb{N}$ be the continuous extension of the map $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$. Although $\beta \mathbb{N}$ is a Stone space, we have the following:

Proposition

 $\mathbf{A} := (\beta \mathbb{N}, f)$ is not profinite.

Proof.

The map $\text{Con}_{o}(\mathbf{A}) \to \text{Con}(\mathbb{N}, s), \ \theta \mapsto \theta \cap \mathbb{N}^{2}$ is injective. Hence, $\text{Con}_{o}(\mathbf{A})$ is countable. If **A** was profinite, then

$$eta\mathbb{N} o \prod_{ heta\in \mathsf{Con}_{\mathsf{o}}(\mathsf{A})}eta\mathbb{N}/ heta, \qquad \mathbf{a}\mapsto ([\mathbf{a}]_{ heta})_{ heta\in \mathsf{Con}_{\mathsf{o}}(\mathsf{A})}$$

would be an embedding, and thus $\beta \mathbb{N}$ would be metrizable. Contradiction!

Let Ω be a signature. For an Ω -algebra **A** let $M(\mathbf{A})$ denote the translation monoid of **A**, i.e., the monoid generated by the maps

$$A \rightarrow A, \qquad x \mapsto \omega^{\mathbf{A}}(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$$

where $n \in \mathbb{N} \setminus \{0\}, \omega \in \Omega_n, i \in \{1, \ldots, n\}, a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A$.

Let Ω be a signature. For an Ω -algebra **A** let $M(\mathbf{A})$ denote the translation monoid of **A**, i.e., the monoid generated by the maps

$$A \rightarrow A, \qquad x \mapsto \omega^{\mathbf{A}}(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$$

where $n \in \mathbb{N} \setminus \{0\}, \omega \in \Omega_n, i \in \{1, \ldots, n\}, a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A$.

Theorem

A topological Ω -algebra **A** is profinite if and only if the following hold:

Let Ω be a signature. For an Ω -algebra **A** let $M(\mathbf{A})$ denote the translation monoid of **A**, i.e., the monoid generated by the maps

$$A \rightarrow A, \qquad x \mapsto \omega^{\mathbf{A}}(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$$

where $n \in \mathbb{N} \setminus \{0\}, \omega \in \Omega_n, i \in \{1, \ldots, n\}, a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A$.

Theorem

A topological Ω -algebra **A** is profinite if and only if the following hold:

(1) A is a Stone space, and

Let Ω be a signature. For an Ω -algebra **A** let $M(\mathbf{A})$ denote the translation monoid of **A**, i.e., the monoid generated by the maps

$$A \rightarrow A, \qquad x \mapsto \omega^{\mathbf{A}}(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$$

where $n \in \mathbb{N} \setminus \{0\}, \omega \in \Omega_n, i \in \{1, \dots, n\}, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n \in A$.

Theorem

A topological Ω -algebra **A** is profinite if and only if the following hold:

- (1) A is a Stone space, and
- (2) $M(\mathbf{A})$ is relatively compact in C(A, A) w.r.t. the compact-open topology.

Let Ω be a signature. For an Ω -algebra **A** let $M(\mathbf{A})$ denote the translation monoid of **A**, i.e., the monoid generated by the maps

$$A \rightarrow A, \qquad x \mapsto \omega^{\mathbf{A}}(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$$

where $n \in \mathbb{N} \setminus \{0\}, \omega \in \Omega_n, i \in \{1, \ldots, n\}, a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A$.

Theorem

A topological Ω -algebra **A** is profinite if and only if the following hold:

- (1) A is a Stone space, and
- (2) $M(\mathbf{A})$ is relatively compact in C(A, A) w.r.t. the compact-open topology.

Question

How can we assure the second condition?

If $\mathbf{G} = (G, \cdot, -1, e)$ is a group, then

 $M(\mathbf{G}) = \{x \mapsto axb \mid a, b \in G\} \cup \{x \mapsto ax^{-1}b \mid a, b \in G\}.$

If $\mathbf{G} = (G, \cdot, -1, e)$ is a group, then

$$M(\mathbf{G}) = \{x \mapsto axb \mid a, b \in G\} \cup \{x \mapsto ax^{-1}b \mid a, b \in G\}.$$

If **G** is a topological group, then the maps

$$\begin{split} \varphi_1 \colon G^2 &\to M(\mathbf{G}), \, (a,b) \mapsto \lambda_a \circ \rho_b, \\ \varphi_2 \colon G^2 &\to M(\mathbf{G}), \, (a,b) \mapsto \lambda_a \circ \rho_b \circ \iota \end{split}$$

are continuous w.r.t. the compact-open topology.

If $\mathbf{G} = (G, \cdot, -1, e)$ is a group, then

$$M(\mathbf{G}) = \{x \mapsto axb \mid a, b \in G\} \cup \{x \mapsto ax^{-1}b \mid a, b \in G\}.$$

If **G** is a topological group, then the maps

$$\begin{split} \varphi_1 \colon G^2 &\to M(\mathbf{G}), \, (a,b) \mapsto \lambda_a \circ \rho_b, \\ \varphi_2 \colon G^2 &\to M(\mathbf{G}), \, (a,b) \mapsto \lambda_a \circ \rho_b \circ \iota \end{split}$$

are continuous w.r.t. the compact-open topology. Hence:

$$G \text{ compact } \implies M(\mathbf{G}) = \varphi_1(G^2) \cup \psi_2(G^2) \text{ compact.}$$

If $\mathbf{R} = (R, +, \cdot)$ is a ring, then

$$M(\mathbf{R}) = \{x \mapsto axb + c \mid a, b, c \in R\} \cup \{x \mapsto ax + c \mid a, c \in R\}$$
$$\cup \{x \mapsto xb + c \mid b, c \in R\} \cup \{x \mapsto x + c \mid c \in R\}.$$

If
$$\mathbf{R} = (R, +, \cdot)$$
 is a ring, then

$$M(\mathbf{R}) = \{x \mapsto axb + c \mid a, b, c \in R\} \cup \{x \mapsto ax + c \mid a, c \in R\}$$

$$\cup \{x \mapsto xb + c \mid b, c \in R\} \cup \{x \mapsto x + c \mid c \in R\}.$$

If \mathbf{R} is a topological ring, then

$$\begin{split} \varphi_1 \colon R^3 &\to M(\mathbf{R}), \ (a, b, c) \mapsto \tau_c \circ \lambda_a \circ \rho_b, \\ \varphi_2 \colon R^2 &\to M(\mathbf{R}), \ (a, c) \mapsto \tau_c \circ \lambda_a, \\ \varphi_3 \colon R^2 &\to M(\mathbf{R}), \ (b, c) \mapsto \tau_c \circ \rho_b, \\ \varphi_4 \colon R \to M(\mathbf{R}), \ c \mapsto \tau_c \end{split}$$

are continuous w.r.t. the compact-open topology.

If
$$\mathbf{R} = (R, +, \cdot)$$
 is a ring, then

$$M(\mathbf{R}) = \{x \mapsto axb + c \mid a, b, c \in R\} \cup \{x \mapsto ax + c \mid a, c \in R\}$$

$$\cup \{x \mapsto xb + c \mid b, c \in R\} \cup \{x \mapsto x + c \mid c \in R\}.$$

If \mathbf{R} is a topological ring, then

$$\varphi_{1} \colon R^{3} \to M(\mathbf{R}), \ (a, b, c) \mapsto \tau_{c} \circ \lambda_{a} \circ \rho_{b},$$

$$\varphi_{2} \colon R^{2} \to M(\mathbf{R}), \ (a, c) \mapsto \tau_{c} \circ \lambda_{a},$$

$$\varphi_{3} \colon R^{2} \to M(\mathbf{R}), \ (b, c) \mapsto \tau_{c} \circ \rho_{b},$$

$$\varphi_{4} \colon R \to M(\mathbf{R}), \ c \mapsto \tau_{c}$$

are continuous w.r.t. the compact-open topology. Hence:

 $R \text{ compact } \implies M(\mathbf{R}) = \varphi_1(R^3) \cup \varphi_2(R^2) \cup \varphi_3(R^2) \cup \varphi_4(R) \text{ compact.}$

}

Polynomial boundedness

Let Ω be a signature and A a set. Consider the extended signature $\Omega + A$ where $(\Omega + A)_0 := \Omega_0 + A$ and $(\Omega + A)_n := \Omega_n$ for $n \ge 1$. Let

 $L_{\Omega+A}(x) \coloneqq \{t \in T_{\Omega+A}(x) \mid x \text{ occurs exactly once in } t\}.$

Let Ω be a signature and A a set. Consider the extended signature $\Omega + A$ where $(\Omega + A)_0 := \Omega_0 + A$ and $(\Omega + A)_n := \Omega_n$ for $n \ge 1$. Let

$$L_{\Omega+A}(x) \coloneqq \{t \in T_{\Omega+A}(x) \mid x \text{ occurs exactly once in } t\}.$$

If **A** is an Ω -algebra, then we have $M(\mathbf{A}) = \psi_{\mathbf{A}}(L_{\Omega+A}(x))$ with regard to the canonical map $\psi_{\mathbf{A}} : T_{\Omega+A}(x) \to A^A$.

Let Ω be a signature and A a set. Consider the extended signature $\Omega + A$ where $(\Omega + A)_0 := \Omega_0 + A$ and $(\Omega + A)_n := \Omega_n$ for $n \ge 1$. Let

$$L_{\Omega+A}(x) \coloneqq \{t \in T_{\Omega+A}(x) \mid x \text{ occurs exactly once in } t\}.$$

If **A** is an Ω -algebra, then we have $M(\mathbf{A}) = \psi_{\mathbf{A}}(L_{\Omega+A}(x))$ with regard to the canonical map $\psi_{\mathbf{A}} : T_{\Omega+A}(x) \to A^A$.

Definition

An Ω -algebra **A** is called bounded if there exists some $m \in \mathbb{N}$ such that

$$M(\mathbf{A}) = \{\psi_{\mathbf{A}}(t) \mid t \in L_{\Omega+A}(x), \, \operatorname{ht}(t) \leq m, \, \operatorname{ar}(t) \leq m\}$$

Let Ω be a signature and A a set. Consider the extended signature $\Omega + A$ where $(\Omega + A)_0 := \Omega_0 + A$ and $(\Omega + A)_n := \Omega_n$ for $n \ge 1$. Let

$$L_{\Omega+A}(x) \coloneqq \{t \in T_{\Omega+A}(x) \mid x \text{ occurs exactly once in } t\}.$$

If **A** is an Ω -algebra, then we have $M(\mathbf{A}) = \psi_{\mathbf{A}}(L_{\Omega+A}(x))$ with regard to the canonical map $\psi_{\mathbf{A}} : T_{\Omega+A}(x) \to A^A$.

Definition

An Ω -algebra **A** is called bounded if there exists some $m \in \mathbb{N}$ such that

$$M(\mathbf{A}) = \{\psi_{\mathbf{A}}(t) \mid t \in L_{\Omega+A}(x), \, \mathsf{ht}(t) \leq m, \, \mathsf{ar}(t) \leq m\}$$

Groups, semigroups, rings, and distributive lattices are bounded!

Let Ω be a finite (compact) signature and let **A** be a topological Ω -algebra.

Let Ω be a finite (compact) signature and let **A** be a topological Ω -algebra.

Proposition

If **A** is bounded and A is compact, then M(A) is compact w.r.t. the compact-open topology.

Let Ω be a finite (compact) signature and let **A** be a topological Ω -algebra.

Proposition

If **A** is bounded and A is compact, then M(A) is compact w.r.t. the compact-open topology.

Sketch of proof.

Let Ω be a finite (compact) signature and let **A** be a topological Ω -algebra.

Proposition

If **A** is bounded and A is compact, then M(A) is compact w.r.t. the compact-open topology.

Sketch of proof.

(1) Endow $T_{\Omega+A}(x)$ with a topology such that $\psi_{\mathbf{A}}: T_{\Omega+A}(x) \to C(A, A)$ is continuous w.r.t. the compact-open topology.

Let Ω be a finite (compact) signature and let **A** be a topological Ω -algebra.

Proposition

If **A** is bounded and A is compact, then M(A) is compact w.r.t. the compact-open topology.

Sketch of proof.

- (1) Endow $T_{\Omega+A}(x)$ with a topology such that $\psi_{\mathbf{A}}: T_{\Omega+A}(x) \to C(A, A)$ is continuous w.r.t. the compact-open topology.
- (2) Show that $L := \{t \in L_{\Omega+A}(x) \mid ht(t) \le m, ar(t) \le m\}$ is a compact subset of $T_{\Omega+A}(x)$.

Let Ω be a finite (compact) signature and let **A** be a topological Ω -algebra.

Proposition

If **A** is bounded and A is compact, then $M(\mathbf{A})$ is compact w.r.t. the compact-open topology.

Sketch of proof.

- (1) Endow $T_{\Omega+A}(x)$ with a topology such that $\psi_{\mathbf{A}}: T_{\Omega+A}(x) \to C(A, A)$ is continuous w.r.t. the compact-open topology.
- (2) Show that $L := \{t \in L_{\Omega+A}(x) \mid ht(t) \le m, ar(t) \le m\}$ is a compact subset of $T_{\Omega+A}(x)$.
- (3) Conclude that $M(\mathbf{A}) = \psi_{\mathbf{A}}(L)$ is compact.

Bounded profinite algebras

Bounded profinite algebras

Theorem

Let Ω be a finite (compact) signature. If **A** is a bounded topological Ω -algebra, then the following are equivalent:

- (1) **A** is profinite.
- (2) A is a Stone space.

Thanks!