# Permutation Pattern Avoidance and Constraint Satisfaction Problems 

AAA90 : Novi Sad, Serbia

Tom Hanika<br>Universität Kassel<br>June 6, 2015

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))
Input: A tuple $\left(X, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ are binary relations on the finite set $X$.

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))
Input: A tuple $\left(X, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ are binary relations on the finite set $X$.

Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that for any $p \in P$ the permutation represented by $L_{1}$ and $L_{2}$ does not involve $p$ ?

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))
Input: A tuple $\left(X, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ are binary relations on the finite set $X$.

Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that for any $p \in P$ the permutation represented by $L_{1}$ and $L_{2}$ does not involve $p$ ?

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))
Input: A tuple $\left(X, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ are binary relations on the finite set $X$.

Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that for any $p \in P$ the permutation represented by $L_{1}$ and $L_{2}$ does not involve $p$ ?

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))
Input: A tuple $\left(X, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ are binary relations on the finite set $X$.

Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that for any $p \in P$ the permutation represented by $L_{1}$ and $L_{2}$ does not involve $p$ ?

Goal for this talk

## The Forbidden Permutation Constraint Satisfaction Problem

For a given set of permutations $P$.
Problem (FPCSP(P))
Input: A tuple $\left(X, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ are binary relations on the finite set $X$.

Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that for any $p \in P$ the permutation represented by $L_{1}$ and $L_{2}$ does not involve $p$ ?

Goal for this talk

- Structural properties leading to an algorithm for $P=\{231\}$.


## Permutations etc.

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

## Example $(X=\{1,2,3,4,5\})$

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

$$
\begin{aligned}
& \text { Example ( } X=\{1,2,3,4,5\} \text { ) } \\
& \pi=12345
\end{aligned}
$$

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

```
Example ( \(X=\{1,2,3,4,5\}\) )
```



```
\[
\pi=12345
\]
```


## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

Example ( $X=\{1,2,3,4,5\}$ )


$\pi=45321$

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

Example ( $X=\{1,2,3,4,5\}$ )


## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

Example $(X=\{1,2,3,4,5\})$


$$
\pi=12345
$$



$$
\pi=45321
$$

## What is a permutation on $X$ ?

Common definition (permutation)
A permutation on $X$ is a bijection $\pi: X \rightarrow X$.

Definition (Permutation)
A permutation on a finite set $X$ is a pair of linear orders on $X . \quad\left(X, L_{1}, L_{2}\right)$.

Example $(X=\{1,2,3,4,5\})$

$\pi=12345$

$\pi=45321$

## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence : $\Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence $: \Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence : $\Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

## Example

Given $\pi=14352$, then

- $\sigma=132$ is involved in $\pi$, since 142 is a subsequence of $\pi$.


## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence : $\Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

Example

132

$$
\bullet \preceq
$$

$$
\text { - } 14352
$$

## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence : $\Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

Example

132

$$
\text { - } \preceq
$$

- 14352


## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence $: \Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

Example

132

$$
\text { - } \preceq
$$

- 14352


## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence $: \Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

Example

132

$$
\bullet \preceq
$$

- 14352


## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence $: \Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$. Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.

## Example

132

$$
\text { - } \preceq
$$

- 14352


## One permutation to another

Definition (Sequences and order isomorphic)
$\sigma=s_{1} s_{2} s_{3} \ldots s_{k}$ is sequence $: \Leftrightarrow s_{i}$ distinct numbers taken from $\left(\mathbb{N}, \leq_{\mathbb{N}}\right)$.
Sequences $\sigma=s_{1} s_{2} \ldots s_{k}, \tau=t_{1} t_{2} \ldots t_{k}$ are order isomorphic ( $\sigma \cong \tau$ ), if

$$
\forall i, j \in\{1, \ldots, k\}: s_{i} \leq_{\mathbb{N}} s_{j} \Leftrightarrow t_{i} \leq_{\mathbb{N}} t_{j}
$$

Definition (Involvement)
Seq. $\sigma$ is involved in ( $\preceq$ ) seq. $\tau$, if $\sigma \cong \tau^{\prime}$ for some subsequence $\tau^{\prime}$ of $\tau$.
Definition
Let $\pi \in S_{n}$ and $\tau$ a permutation (pattern) of length $k$ with $k \leq n$. The permutation $\pi$ avoids $\tau$ if $\tau \npreceq \pi$. Let $T$ be a set of patterns.

$$
\mathcal{A}_{n}(T):=\left\{\sigma \in S_{n} \mid \tau \npreceq \sigma \text { for all } \tau \in T\right\}
$$

## Separable and stack-sortable permutations

## Direct sum and skew sum

## Definition

For $\pi \in S_{n}$ and $\tau \in S_{m}$, the direct sum of $\pi$ and $\tau$ is defined by

$$
\pi \oplus \tau:=\pi(1), \ldots, \pi(n), \tau(1)+n, \ldots, \tau(m)+n
$$

and the skew sum of $\pi$ and $\tau$ by

$$
\pi \ominus \tau:=\pi(1)+m, \ldots, \pi(n)+m, \tau(1), \ldots, \tau(m)
$$

## Direct sum and skew sum

## Definition

For $\pi \in S_{n}$ and $\tau \in S_{m}$, the direct sum of $\pi$ and $\tau$ is defined by

$$
\pi \oplus \tau:=\pi(1), \ldots, \pi(n), \tau(1)+n, \ldots, \tau(m)+n
$$

and the skew sum of $\pi$ and $\tau$ by

$$
\pi \ominus \tau:=\pi(1)+m, \ldots, \pi(n)+m, \tau(1), \ldots, \tau(m)
$$

$$
1342 \oplus 53421=134297865
$$



## Direct sum and skew sum

## Definition

For $\pi \in S_{n}$ and $\tau \in S_{m}$, the direct sum of $\pi$ and $\tau$ is defined by

$$
\pi \oplus \tau:=\pi(1), \ldots, \pi(n), \tau(1)+n, \ldots, \tau(m)+n
$$

and the skew sum of $\pi$ and $\tau$ by

$$
\pi \ominus \tau:=\pi(1)+m, \ldots, \pi(n)+m, \tau(1), \ldots, \tau(m)
$$



## Separable permutations

Definition (Separable permutation)
$\pi$ a separable if either

- $\pi$ is the identity permutation of length one, or
- there are separable permutations $\sigma, \tau$ such that $\pi=\sigma \oplus \tau$ or $\pi=\sigma \ominus \tau$.


## Separable permutations

Definition (Separable permutation)
$\pi$ a separable if either

- $\pi$ is the identity permutation of length one, or
- there are separable permutations $\sigma, \tau$ such that $\pi=\sigma \oplus \tau$ or $\pi=\sigma \ominus \tau$.

Example (The permutation 765984132 is separable)

$$
\begin{aligned}
765984132 & =32154 \ominus 1 \ominus 132 \\
& =((1 \ominus 1 \ominus 1) \oplus(1 \ominus 1)) \ominus 1 \ominus(1 \oplus(1 \ominus 1))
\end{aligned}
$$

## Separable permutations

Definition (Separable permutation)
$\pi$ a separable if either

- $\pi$ is the identity permutation of length one, or
- there are separable permutations $\sigma, \tau$ such that $\pi=\sigma \oplus \tau$ or $\pi=\sigma \ominus \tau$.

Example (The permutation 765984132 is separable)

$$
\begin{aligned}
765984132 & =32154 \ominus 1 \ominus 132 \\
& =((1 \ominus 1 \ominus 1) \oplus(1 \ominus 1)) \ominus 1 \ominus(1 \oplus(1 \ominus 1))
\end{aligned}
$$

## Separable permutations

Definition (Separable permutation)
$\pi$ a separable if either

- $\pi$ is the identity permutation of length one, or
- there are separable permutations $\sigma, \tau$ such that $\pi=\sigma \oplus \tau$ or $\pi=\sigma \ominus \tau$.

Example (The permutation 765984132 is separable)

$$
\begin{aligned}
765984132 & =32154 \ominus 1 \ominus 132 \\
& =((1 \ominus 1 \ominus 1) \oplus(1 \ominus 1)) \ominus 1 \ominus(1 \oplus(1 \ominus 1))
\end{aligned}
$$

Theorem (Folklore)
Permutations that do not involve 2413 and 3142 are separable, i. e., $\mathcal{A}(3124,2413)$.

## Stack-sortable permutations

Definition (Stack sortable)
$\pi \in S_{n}$ is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

## Stack-sortable permutations

Definition (Stack sortable)
$\pi \in S_{n}$ is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

Theorem (Knuth (1968))
$\pi \in S_{n}$ is stack sortable, iff $\pi \in \mathcal{A}_{n}(231)$.

## Stack-sortable permutations

Definition (Stack sortable)
$\pi \in S_{n}$ is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

Theorem (Knuth (1968))
$\pi \in S_{n}$ is stack sortable, iff $\pi \in \mathcal{A}_{n}(231)$.
Remark
Since $231 \preceq 3142$ and $231 \preceq 2413$ the $\mathcal{A}_{\leq n}(231) \subseteq \mathcal{A}_{\leq n}(\{3142,2413\})$. Further, for $\sigma, \tau \in \mathcal{A}_{\leq n}(231)$ :

## Stack-sortable permutations

## Definition (Stack sortable)

$\pi \in S_{n}$ is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

Theorem (Knuth (1968))
$\pi \in S_{n}$ is stack sortable, iff $\pi \in \mathcal{A}_{n}(231)$.
Remark
Since $231 \preceq 3142$ and $231 \preceq 2413$ the $\mathcal{A}_{\leq n}(231) \subseteq \mathcal{A}_{\leq n}(\{3142,2413\})$. Further, for $\sigma, \tau \in \mathcal{A}_{\leq n}(231)$ :

- $\sigma \oplus \tau \in \mathcal{A}_{\leq n}(231)$


## Stack-sortable permutations

## Definition (Stack sortable)

$\pi \in S_{n}$ is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

Theorem (Knuth (1968))
$\pi \in S_{n}$ is stack sortable, iff $\pi \in \mathcal{A}_{n}(231)$.
Remark
Since $231 \preceq 3142$ and $231 \preceq 2413$ the $\mathcal{A}_{\leq n}(231) \subseteq \mathcal{A}_{\leq n}(\{3142,2413\})$. Further, for $\sigma, \tau \in \mathcal{A}_{\leq n}(231)$ :

- $\sigma \oplus \tau \in \mathcal{A}_{\leq n}(231)$
- $\sigma \ominus \tau \in \mathcal{A}_{\leq n}(231)$, iff $\sigma$ is not ascending.


## $\operatorname{FPCSP}(\{231\})$

## $\operatorname{FPCSP}(\{231\})$

## Problem (FPCSP(\{231\}))

Input: $\operatorname{A}$ tuple $\left(\underline{n}, E_{1}, E_{2}\right)$ where $\underline{n}=\{1, \ldots, n\}$, and $E_{1}, E_{2}$ are binary relations on $\underline{n}$.
Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that $\Pi\left(\underline{n}, L_{1}, L_{2}\right) \in \mathcal{A}_{n}(231)$.

## $\operatorname{FPCSP}(\{231\})$

## Problem (FPCSP(\{231\}))

Input: $\operatorname{A}$ tuple $\left(\underline{n}, E_{1}, E_{2}\right)$ where $\underline{n}=\{1, \ldots, n\}$, and $E_{1}, E_{2}$ are binary relations on $\underline{n}$.
Question: Are there linear orders $L_{1} \supseteq E_{1}, L_{2} \supseteq E_{2}$ such that $\Pi\left(\underline{n}, L_{1}, L_{2}\right) \in \mathcal{A}_{n}(231)$.

Theorem
$\operatorname{FPCSP}(\{231\})$ is solvable in polynomial time.

## Graph tools

## Definition (Strongly connected)

Directed graph $G=(V, E)$ is strongly connected if for any two vertices $v, w \in V$ there is a directed path in $G$ from $v$ to $w$.

## Graph tools

## Definition (Strongly connected)

Directed graph $G=(V, E)$ is strongly connected if for any two vertices $v, w \in V$ there is a directed path in $G$ from $v$ to $w$.

## Lemma (Stack-sortable)

For $\left(V, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ acyclic binary relations on finite set $V$ with $|V| \geq 2$.
If there are two linear extensions $L_{1}, L_{2}$ for $E_{1}, E_{2}$ such that $\pi:=\Pi\left(V, L_{1}, L_{2}\right)$ is a stack-sortable permutation, then either

## Graph tools

## Definition (Strongly connected)

Directed graph $G=(V, E)$ is strongly connected if for any two vertices $v, w \in V$ there is a directed path in $G$ from $v$ to $w$.

## Lemma (Stack-sortable)

For $\left(V, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ acyclic binary relations on finite set $V$ with $|V| \geq 2$.
If there are two linear extensions $L_{1}, L_{2}$ for $E_{1}, E_{2}$ such that $\pi:=\Pi\left(V, L_{1}, L_{2}\right)$ is a stack-sortable permutation, then either

- $G:=\left(V, E_{1} \cup E_{2}\right)$ has more than one scc, or


## Graph tools

## Definition (Strongly connected)

Directed graph $G=(V, E)$ is strongly connected if for any two vertices $v, w \in V$ there is a directed path in $G$ from $v$ to $w$.

## Lemma (Stack-sortable)

For $\left(V, E_{1}, E_{2}\right)$ where $E_{1}, E_{2}$ acyclic binary relations on finite set $V$ with $|V| \geq 2$.
If there are two linear extensions $L_{1}, L_{2}$ for $E_{1}, E_{2}$ such that $\pi:=\Pi\left(V, L_{1}, L_{2}\right)$ is a stack-sortable permutation, then either

- $G:=\left(V, E_{1} \cup E_{2}\right)$ has more than one scc, or
- $G^{\prime}:=\left(V, E_{1} \cup E_{2}^{-1}\right)$ has more than one strongly connected component and a final scc C has no accents (i.e., there is a solution to FPCSP(12)).


## Outline of algorithm by example



## Outline of algorithm by example

(1) Identify strongly connected components


## Outline of algorithm by example

(1) Identify strongly connected components
(2) If only one, check inverted with $E_{2}$


## Outline of algorithm by example

(1) Identify strongly connected components
(2) If only one, check inverted with $E_{2}$


## Outline of algorithm by example

(1) Identify strongly connected components
(2) If only one, check inverted with $E_{2}$


## Outline of algorithm by example

(1) Identify strongly connected components
(2) If only one, check inverted with $E_{2}$


## Outline of algorithm by example

(1) Identify strongly connected components
(2) If only one, check inverted with $E_{2}$
(3) If more than one scc, check a final scc for not accending calls on terminal scc and complement.

Example 2


## Outline of algorithm by example

(1) Identify strongly connected components
(2) If only one, check inverted with $E_{2}$
(3) If more than one scc, check a final scc for not accending calls on terminal scc and complement.

Example 2

i


## Thank you very much!

