# Permutation Pattern Avoidance and Constraint Satisfaction Problems AAA90 : Novi Sad, Serbia

Tom Hanika

Universität Kassel

June 6, 2015

For a given set of permutations *P*.

For a given set of permutations *P*.

Problem (FPCSP(P))

For a given set of permutations *P*.

```
Problem (FPCSP(P))
```

Input: A tuple  $(X, E_1, E_2)$  where  $E_1, E_2$  are binary relations on the finite set X.

For a given set of permutations P.

Problem (FPCSP(P))

Input: A tuple  $(X, E_1, E_2)$  where  $E_1, E_2$  are binary relations on the finite set X.

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that for any  $p \in P$ the permutation represented by  $L_1$  and  $L_2$  does not involve p?

For a given set of permutations P.

Problem (FPCSP(P))

Input: A tuple  $(X, E_1, E_2)$  where  $E_1, E_2$  are binary relations on the finite set X.

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that for any  $p \in P$ the permutation represented by  $L_1$  and  $L_2$  does not involve p?

For a given set of permutations P.

Problem (FPCSP(P))

Input: A tuple  $(X, E_1, E_2)$  where  $E_1, E_2$  are binary relations on the finite set X.

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that for any  $p \in P$ the permutation represented by  $L_1$  and  $L_2$  does not involve p?

For a given set of permutations P.

Problem (FPCSP(P))

Input: A tuple  $(X, E_1, E_2)$  where  $E_1, E_2$  are binary relations on the finite set X.

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that for any  $p \in P$ the permutation represented by  $L_1$  and  $L_2$  does not involve p?

Goal for this talk

For a given set of permutations P.

Problem (FPCSP(P))

Input: A tuple  $(X, E_1, E_2)$  where  $E_1, E_2$  are binary relations on the finite set X.

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that for any  $p \in P$ the permutation represented by  $L_1$  and  $L_2$  does not involve p?

Goal for this talk

• Structural properties leading to an algorithm for  $P = \{231\}$ .

# Permutations etc.

Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

**Definition (Permutation)** 

Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)

A permutation on a finite set X is a pair of linear orders on X.  $(X, L_1, L_2)$ .

Example ( $X = \{1, 2, 3, 4, 5\}$ )

Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)

Example 
$$(X = \{1, 2, 3, 4, 5\})$$
  
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$   
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$   
 $\pi = 12345$ 

Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)



Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)



Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)



Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)



Common definition (permutation)

A permutation on X is a bijection  $\pi : X \to X$ .

### **Definition** (Permutation)



### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

 $\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$ 

### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in ( $\leq$ ) seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .

### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in ( $\preceq$ ) seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .

#### Example

Given  $\pi = 14352$ , then

•  $\sigma = 132$  is involved in  $\pi$ , since 142 is a subsequence of  $\pi$ .

#### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in  $(\preceq)$  seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .



#### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition** (Involvement)

Seq.  $\sigma$  is involved in  $(\preceq)$  seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .



### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in  $(\preceq)$  seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .



Tom Hanika (Universität Kassel)

#### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in  $(\preceq)$  seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .



Tom Hanika (Universität Kassel)

### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in  $(\preceq)$  seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .



Tom Hanika (Universität Kassel)

### Definition (Sequences and order isomorphic)

 $\sigma = s_1 s_2 s_3 \dots s_k$  is sequence : $\Leftrightarrow s_i$  distinct numbers taken from  $(\mathbb{N}, \leq_{\mathbb{N}})$ . Sequences  $\sigma = s_1 s_2 \dots s_k$ ,  $\tau = t_1 t_2 \dots t_k$  are order isomorphic ( $\sigma \cong \tau$ ), if

$$\forall i,j \in \{1,\ldots,k\} : s_i \leq_{\mathbb{N}} s_j \Leftrightarrow t_i \leq_{\mathbb{N}} t_j.$$

#### **Definition (Involvement)**

Seq.  $\sigma$  is involved in ( $\preceq$ ) seq.  $\tau$ , if  $\sigma \cong \tau'$  for some subsequence  $\tau'$  of  $\tau$ .

#### Definition

Let  $\pi \in S_n$  and  $\tau$  a permutation (pattern) of length k with  $k \leq n$ . The permutation  $\pi$  avoids  $\tau$  if  $\tau \not\preceq \pi$ . Let T be a set of patterns.

$$\mathcal{A}_n(\mathcal{T}) := \{ \sigma \in \mathcal{S}_n \mid \tau 
eq \sigma \text{ for all } \tau \in \mathcal{T} \}$$

# Separable and stack-sortable permutations

## Direct sum and skew sum

Definition

For  $\pi \in S_n$  and  $\tau \in S_m$ , the direct sum of  $\pi$  and  $\tau$  is defined by

$$\pi \oplus \tau := \pi(1), \ldots, \pi(n), \tau(1) + n, \ldots, \tau(m) + n,$$

and the skew sum of  $\pi$  and  $\tau$  by

$$\pi \ominus \tau := \pi(1) + m, \ldots, \pi(n) + m, \tau(1), \ldots, \tau(m).$$

### Direct sum and skew sum

Definition

For  $\pi \in S_n$  and  $\tau \in S_m$ , the direct sum of  $\pi$  and  $\tau$  is defined by

$$\pi \oplus \tau := \pi(1), \ldots, \pi(n), \tau(1) + n, \ldots, \tau(m) + n,$$

and the skew sum of  $\pi$  and  $\tau$  by

$$\pi \ominus \tau := \pi(1) + m, \ldots, \pi(n) + m, \tau(1), \ldots, \tau(m)$$



### Direct sum and skew sum

Definition

For  $\pi \in S_n$  and  $\tau \in S_m$ , the direct sum of  $\pi$  and  $\tau$  is defined by

$$\pi \oplus \tau := \pi(1), \ldots, \pi(n), \tau(1) + n, \ldots, \tau(m) + n,$$

and the skew sum of  $\pi$  and  $\tau$  by

$$\pi \ominus \tau := \pi(1) + m, \ldots, \pi(n) + m, \tau(1), \ldots, \tau(m)$$



### Definition (Separable permutation)

 $\pi$  a separable if either

- $\pi$  is the identity permutation of length one, or
- there are separable permutations  $\sigma, \tau$  such that  $\pi = \sigma \oplus \tau$  or  $\pi = \sigma \ominus \tau$ .

### Definition (Separable permutation)

 $\pi$  a separable if either

- $\pi$  is the identity permutation of length one, or
- there are separable permutations  $\sigma, \tau$  such that  $\pi = \sigma \oplus \tau$  or  $\pi = \sigma \ominus \tau$ .

Example (The permutation 765984132 is separable)

$$765984132 = 32154 \ominus 1 \ominus 132$$
$$= ((1 \ominus 1 \ominus 1) \oplus (1 \ominus 1)) \ominus 1 \ominus (1 \oplus (1 \ominus 1))$$

### Definition (Separable permutation)

 $\pi$  a separable if either

- $\pi$  is the identity permutation of length one, or
- there are separable permutations  $\sigma, \tau$  such that  $\pi = \sigma \oplus \tau$  or  $\pi = \sigma \ominus \tau$ .

Example (The permutation 765984132 is separable)

$$765984132 = 32154 \ominus 1 \ominus 132$$
$$= ((1 \ominus 1 \ominus 1) \oplus (1 \ominus 1)) \ominus 1 \ominus (1 \oplus (1 \ominus 1))$$

### Definition (Separable permutation)

 $\pi$  a separable if either

- $\pi$  is the identity permutation of length one, or
- there are separable permutations  $\sigma, \tau$  such that  $\pi = \sigma \oplus \tau$  or  $\pi = \sigma \ominus \tau$ .

Example (The permutation 765984132 is separable)

$$765984132 = 32154 \ominus 1 \ominus 132$$
$$= ((1 \ominus 1 \ominus 1) \oplus (1 \ominus 1)) \ominus 1 \ominus (1 \oplus (1 \ominus 1))$$

#### Theorem (Folklore)

Permutations that do not involve 2413 and 3142 are separable, i. e.,  $\mathcal{A}(3124, 2413)$ .

Tom Hanika (Universität Kassel)

Forb Perm CSP

#### Definition (Stack sortable)

 $\pi \in S_n$  is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

#### Definition (Stack sortable)

 $\pi \in S_n$  is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

#### Theorem (Knuth (1968))

 $\pi \in S_n$  is stack sortable, iff  $\pi \in A_n(231)$ .

#### Definition (Stack sortable)

 $\pi \in S_n$  is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

#### Theorem (Knuth (1968))

 $\pi \in S_n$  is stack sortable, iff  $\pi \in A_n(231)$ .

#### Remark

Since 231  $\leq$  3142 and 231  $\leq$  2413 the  $A_{\leq n}(231) \subseteq A_{\leq n}(\{3142, 2413\})$ . Further, for  $\sigma, \tau \in A_{\leq n}(231)$ :

#### Definition (Stack sortable)

 $\pi \in S_n$  is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

#### Theorem (Knuth (1968))

 $\pi \in S_n$  is stack sortable, iff  $\pi \in A_n(231)$ .

#### Remark

Since 231  $\leq$  3142 and 231  $\leq$  2413 the  $A_{\leq n}(231) \subseteq A_{\leq n}(\{3142, 2413\})$ . Further, for  $\sigma, \tau \in A_{\leq n}(231)$ : •  $\sigma \oplus \tau \in A_{\leq n}(231)$ 

#### Definition (Stack sortable)

 $\pi \in S_n$  is stack-sortable if it may be sorted by an algorithm using a single stack data structure only.

#### Theorem (Knuth (1968))

 $\pi \in S_n$  is stack sortable, iff  $\pi \in A_n(231)$ .

#### Remark

Since 231  $\leq$  3142 and 231  $\leq$  2413 the  $A_{\leq n}(231) \subseteq A_{\leq n}(\{3142, 2413\})$ . Further, for  $\sigma, \tau \in A_{\leq n}(231)$ :

• 
$$\sigma \oplus \tau \in \mathcal{A}_{\leq n}(231)$$

•  $\sigma \ominus \tau \in \mathcal{A}_{\leq n}(231)$ , iff  $\sigma$  is not ascending.

# FPCSP({231})

# FPCSP({231})

#### Problem (FPCSP({231}))

Input: A tuple  $(\underline{n}, E_1, E_2)$  where  $\underline{n} = \{1, ..., n\}$ , and  $E_1, E_2$  are binary relations on  $\underline{n}$ .

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that  $\Pi(\underline{n}, L_1, L_2) \in \mathcal{A}_n(231)$ .

# FPCSP({231})

#### Problem (FPCSP({231}))

Input: A tuple  $(\underline{n}, E_1, E_2)$  where  $\underline{n} = \{1, ..., n\}$ , and  $E_1, E_2$  are binary relations on  $\underline{n}$ .

Question: Are there linear orders  $L_1 \supseteq E_1$ ,  $L_2 \supseteq E_2$  such that  $\Pi(\underline{n}, L_1, L_2) \in \mathcal{A}_n(231)$ .

Theorem

FPCSP({231}) is solvable in polynomial time.

#### Definition (Strongly connected)

Directed graph G = (V, E) is strongly connected if for any two vertices  $v, w \in V$  there is a directed path in *G* from *v* to *w*.

#### Definition (Strongly connected)

Directed graph G = (V, E) is strongly connected if for any two vertices  $v, w \in V$  there is a directed path in *G* from *v* to *w*.

#### Lemma (Stack-sortable)

For  $(V, E_1, E_2)$  where  $E_1, E_2$  acyclic binary relations on finite set V with  $|V| \ge 2$ .

If there are two linear extensions  $L_1, L_2$  for  $E_1, E_2$  such that  $\pi := \Pi(V, L_1, L_2)$  is a stack-sortable permutation, then either

#### Definition (Strongly connected)

Directed graph G = (V, E) is strongly connected if for any two vertices  $v, w \in V$  there is a directed path in *G* from *v* to *w*.

#### Lemma (Stack-sortable)

For  $(V, E_1, E_2)$  where  $E_1, E_2$  acyclic binary relations on finite set V with  $|V| \ge 2$ .

If there are two linear extensions  $L_1$ ,  $L_2$  for  $E_1$ ,  $E_2$  such that  $\pi := \Pi(V, L_1, L_2)$  is a stack-sortable permutation, then either

•  $G := (V, E_1 \cup E_2)$  has more than one scc, or

#### Definition (Strongly connected)

Directed graph G = (V, E) is strongly connected if for any two vertices  $v, w \in V$  there is a directed path in *G* from *v* to *w*.

#### Lemma (Stack-sortable)

For  $(V, E_1, E_2)$  where  $E_1, E_2$  acyclic binary relations on finite set V with  $|V| \ge 2$ .

If there are two linear extensions  $L_1, L_2$  for  $E_1, E_2$  such that  $\pi := \Pi(V, L_1, L_2)$  is a stack-sortable permutation, then either

- $G := (V, E_1 \cup E_2)$  has more than one scc, or
- G' := (V, E<sub>1</sub> ∪ E<sub>2</sub><sup>-1</sup>) has more than one strongly connected component and a final scc C has no accents (i.e., there is a solution to FPCSP(12)).



Identify strongly connected components



- Identify strongly connected components
- If only one, check inverted with E<sub>2</sub>



- Identify strongly connected components
- If only one, check inverted with E<sub>2</sub>



- Identify strongly connected components
- If only one, check inverted with E<sub>2</sub>



- Identify strongly connected components
- If only one, check inverted with E<sub>2</sub>



- Identify strongly connected components
- If only one, check inverted with E<sub>2</sub>
- If more than one scc, check a final scc for not accending calls on terminal scc and complement.
  Example 2



- Identify strongly connected components
- If only one, check inverted with E<sub>2</sub>
- If more than one scc, check a final scc for not accending calls on terminal scc and complement.



# Thank you very much!