Orthomodular Posets Can Be Organized as Conditionally Residuated Structures

Ivan CHAJDA, Helmut LÄNGER

Abstract

It is proved that orthomodular posets are in a natural one-to-one correspondence with certain residuated structures.

2010 Mathematics Subject Classification: 06A11, 06C15

Keywords: Orthomodular poset, partial commutative groupoid with unit, conditionally residuated structure, divisibility condition, orthogonality condition

Orthomodular posets are well-known structures used in the foundations of quantum mechanics (cf. e.g. [4], [5], [9], [10] and [11]). They can be considered as effect algebras (see e.g. [6]). Residuated lattices were treated in [7]. In [3] the concept of a conditionally residuated structure was introduced. Since every orthomodular poset is in fact an effect algebra, it follows that also every orthomodular poset can be considered as a conditionally residuated structure. The question is which additional conditions have to be satisfied in order to get a one-to-one correspondence. Contrary to the case of effect algebras, orthomodular posets satisfy also the orthomodular law and a certain condition concerning the orthogonality of their elements.

We start with the definition of an orthomodular poset.

Definition 1

An orthomodular poset (cf. [8], [2] and [12]) is an ordered quintuple $\mathcal{P} = (P, \leq, ^{\perp}, 0, 1)$ where $(P, \leq, 0, 1)$ is a bounded poset, $^{\perp}$ is a unary operation on P and the following conditions hold for all $x, y \in P$:

(i)
$$(x^{\perp})^{\perp} = x$$

(ii) If $x \leq y$ then $y^{\perp} \leq x^{\perp}$.
(iii) If $x \perp y$ then $x \lor y$ exists.
(iv) If $x \leq y$ then $y = x \lor (y \land x^{\perp})$.

Here and in the following $x \perp y$ is an abbreviation for $x \leq y^{\perp}$.

Remark 1

If (P, \leq) is a poset and $^{\perp}$ a unary operation on P satisfying (i) and (ii) then the so-called de Morgan laws

$$(x \lor y)^{\perp} = x^{\perp} \land y^{\perp}$$
 in case $x \perp y$ and
 $(x \land y)^{\perp} = x^{\perp} \lor y^{\perp}$ in case $x^{\perp} \perp y^{\perp}$

hold. Moreover, (iv) is equivalent to the following condition: (v) If $x \le y$ then $x = y \land (x \lor y^{\perp})$.

If $x \leq y$ then $x \perp y^{\perp}$ and therefore $x \vee y^{\perp}$ is defined. Hence also $y \wedge x^{\perp}$ is defined. Moreover, $x \perp y \wedge x^{\perp}$ which shows that $x \vee (y \wedge x^{\perp})$ is defined. Thus the expression in (iv) is well-defined. The same is true for condition (v).

Next we define a partial commutative groupoid with unit.

Definition 2

A partial commutative groupoid with unit is a partial algebra $\mathcal{A} = (\mathcal{A}, \odot, 1)$ of type (2,0) satisfying the following conditions for all $x, y \in \mathcal{A}$:

- (i) If $x \odot y$ is defined so is $y \odot x$ and $x \odot y = y \odot x$.
- (ii) $x \odot 1$ and $1 \odot x$ are defined and $x \odot 1 = 1 \odot x = x$.

Now we are ready to define a conditionally residuated structure.

Definition 3

Let $\mathcal{A} = (A, \leq, \odot, \rightarrow, 0, 1)$ be an ordered sixtuple such that $(A, \leq, 0, 1)$ is a bounded poset, $(A, \odot, \rightarrow, 0, 1)$ is a partial algebra of type (2, 2, 0, 0), $(A, \odot, 1)$ is a partial commutative groupoid with unit and $x \rightarrow y$ is defined if and only if $y \leq x$. We write x' instead of $x \rightarrow 0$. Moreover, assume that the following conditions are satisfied for all $x, y, z \in A$:

- (i) $x \odot y$ is defined if and only if $x' \leq y$.
- (ii) If $x \odot y$ and $y \to z$ are defined then $x \odot y \le z$ if and only if $x \le y \to z$.
- (iii) If $x \to y$ is defined then so is $y' \to x'$ and $x \to y = y' \to x'$. (iv) If $y \le x$ and $x', y \le z$ then $x \to y \le z$.

Then \mathcal{A} is called a *conditionally residuated structure*.

Remark 2 Condition (ii) is called *left adjointness*, see e.g. [1].

Example 1

Let $M := \{1, ..., 6\}$ and $P := \{C \subseteq M \mid |C| \text{ is even}\}$. If one defines for arbitrary $A, B \in P$

$$A \odot M = M \odot A := A,$$

$$A \odot (M \setminus A) := \emptyset,$$

$$A \odot B := A \cap B \text{ if } |A| = |B| = 4 \text{ and } A \cup B = M,$$

$$A \to \emptyset := M \setminus A,$$

$$A \to A := M,$$

$$M \to A := A \text{ and}$$

$$A \to B := (M \setminus A) \cup B \text{ if } B \subseteq A, |B| = 2 \text{ and } |A| = 4$$

then $(P,\subseteq,\odot,\rightarrow,\emptyset,M)$ is a conditionally residuated structure.

The following lemma lists some easy properties of conditionally residuated structures used later on.

Lemma 1

If $\mathcal{A} = (A, \leq, \odot, \rightarrow, 0, 1)$ is a conditionally residuated structure then the following conditions hold for all $x, y \in A$:

(i)
$$(x')' = x$$

(ii) If $x \le y$ then $y' \le x'$.
(iii) If $x \odot y$ is defined then $x \odot y = 0$ if and only if $x \le y'$.
(iv) $x \to y = 1$ if and only if $x \le y$.

We now introduce two more properties of conditionally residuated structures.

Definition 4

A conditionally residuated structure $\mathcal{A} = (A, \leq, \odot, \rightarrow, 0, 1)$ is said to satisfy the *divisibility condition* if $y \leq x$ implies that $x \odot (x \rightarrow y)$ exists and $x \odot (x \rightarrow y) = y$ and it is said to satisfy the *orthogonality condition* if $x \leq y'$, $y \leq z'$ and $z \leq x'$ together imply $z \leq x' \odot y'$.

In the following theorem we show that an orthomodular poset can be considered as a special conditionally residuated structure. Theorem 1 If $\mathcal{P} = (P, \leq, ^{\perp}, 0, 1)$ is an orthomodular poset and one defines

$$x \odot y := x \land y$$
 if and only if $x^{\perp} \le y$ and
 $x \to y := x^{\perp} \lor y$ if and only if $y \le x$

for all $x, y \in P$ then $\mathbf{A}(\mathcal{P}) := (P, \leq, \odot, \rightarrow, 0, 1)$ is a conditionally residuated structure satisfying both the divisibility and orthogonality condition.

Conversely, we show that certain conditionally residuated structures can be converted in an orthomodular poset.

Theorem 2

If $\mathcal{A} = (A, \leq, \odot, \rightarrow, 0, 1)$ is a conditionally residuated structure satisfying the divisibility and orthogonality condition then $\mathbf{P}(\mathcal{A}) := (A, \leq, ', 0, 1)$ is an orthomodular poset.

Finally, we show that the correspondence described in the last two theorems is one-to-one.

Theorem 3 If $\mathcal{P} = (P, \leq, ^{\perp}, 0, 1)$ is an orthomodular poset then $\mathbf{P}(\mathbf{A}(\mathcal{P})) = \mathcal{P}$. If $\mathcal{A} = (A, \leq, \odot, \rightarrow, 0, 1)$ is a conditionally residuated structure satisfying the divisibility and orthogonality condition then $\mathbf{A}(\mathbf{P}(\mathcal{A})) = \mathcal{A}$.

- R. Bělohlávek: Fuzzy Relational Systems. Foundations and Principles Kluwer, New York, 2002.
- L. Beran: Orthomodular Lattices, Algebraic Approach Academia, Prague, 1984.
- I. Chajda, R. Halaš: Effect algebras are conditionally residuated structures Soft Computing 15 (2011), 1383–1387.
- A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures Kluwer, Dordrecht, 2000.
 - K. Engesser, D. M. Gabbay, D. Lehmann (Eds.): Handbook of Quantum Logic and Quantum Structures Quantum Logic Elsevier/North-Holland, Amsterdam, 2009.
- D. J. Foulis, M. K. Bennett: Effect algebras and unsharp quantum logics Found. Phys. 24 (1994), 1331–1352.
- N. Galatos, P. Jipsen, T. Kowalski, H. Ono: Residuated Lattices: An Algebraic Glimpse at Substructural Logics Elsevier, Amsterdam, 2007.
 - G. Kalmbach: Orthomodular Lattices Academic Press, London, 1983.

- M. Matoušek, P. Pták: Orthocomplemented posets with a symmetric difference Order 26 (2009), 1–21.
- M. Navara: Characterization of state spaces of orthomodular structures In: Proc. Summer School on Real Analysis and Measure Theory, Grado, Italy, (1997), 97–123.
- P. Pták: Some nearly Boolean orthomodular posets Proc. Amer. Math. Soc. 126 (1998), 2039–2046.
 - P. Pták, S. Pulmannová: Orthomodular Structures as Quantum Logics Kluwer,Dordrecht, 1991.