Gergő Gyenizse and Miklós Maróti

University of Szeged

Novi Sad, 2015. June 5-7.

## The set of compatible quasiorders of an algebra A is

Quo(
$$\mathbf{A}$$
) = {  $\alpha \leq \mathbf{A}^2 \mid \alpha$  is reflexive and transitive }.

• A quasiorder  $\alpha \subseteq A^2$  is compatible with **A** if  $(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$ 

for all unary polinomials p of A.

- ② Quo(A) forms an (involution) lattice with  $\alpha \wedge \beta = \alpha \cap \beta$  and  $\alpha \vee \beta = \overline{\alpha \cup \beta}$ , where  $\overline{\alpha \cup \beta}$  is the transitive closure of  $\alpha \cup \beta$ .
- 3 The set Con(A) of congruences forms a sublattice of Quo(A).

### Goal

Systematic study of the connection between congruence identities, quasiorder identities and Maltsev conditions satisfied by varieties.

### Definition

The set of **compatible quasiorders** of an algebra **A** is

Quo(
$$\mathbf{A}$$
) = {  $\alpha \leq \mathbf{A}^2 \mid \alpha$  is reflexive and transitive }.

- **1** A quasiorder  $\alpha \subseteq A^2$  is compatible with **A** if  $(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$ 
  - for all unary polinomials p of A.
- ② Quo(A) forms an (involution) lattice with  $\alpha \wedge \beta = \alpha \cap \beta$  and
- **3** The set Con(A) of congruences forms a sublattice of Quo(A).

### Definition

The set of compatible quasiorders of an algebra A is

Quo(
$$\mathbf{A}$$
) = {  $\alpha \leq \mathbf{A}^2 \mid \alpha$  is reflexive and transitive }.

**①** A quasiorder  $\alpha \subseteq A^2$  is compatible with **A** if

$$(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$$

for all unary polinomials p of  $\mathbf{A}$ .

- **Quo(A)** forms an (involution) lattice with  $\alpha \wedge \beta = \alpha \cap \beta$  and  $\alpha \vee \beta = \overline{\alpha \cup \beta}$ , where  $\overline{\alpha \cup \beta}$  is the transitive closure of  $\alpha \cup \beta$ .
- **1** The set Con(A) of congruences forms a sublattice of Quo(A).

#### Goal

Systematic study of the connection between congruence identities, quasiorder identities and Maltsev conditions satisfied by varieties.

The set of **compatible quasiorders** of an algebra **A** is

Quo(
$$\mathbf{A}$$
) = {  $\alpha \leq \mathbf{A}^2 \mid \alpha$  is reflexive and transitive }.

**1** A quasiorder  $\alpha \subseteq A^2$  is compatible with **A** if

$$(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$$

for all unary polinomials p of  $\mathbf{A}$ .

- **2** Quo(**A**) forms an (involution) lattice with  $\alpha \wedge \beta = \alpha \cap \beta$  and  $\alpha \vee \beta = \overline{\alpha \cup \beta}$ , where  $\overline{\alpha \cup \beta}$  is the transitive closure of  $\alpha \cup \beta$ .
- **3** The set  $Con(\mathbf{A})$  of congruences forms a sublattice of  $Quo(\mathbf{A})$ .

### Definition

The set of compatible quasiorders of an algebra A is

Quo(
$$\mathbf{A}$$
) = {  $\alpha \leq \mathbf{A}^2 \mid \alpha$  is reflexive and transitive }.

**1** A quasiorder  $\alpha \subseteq A^2$  is compatible with **A** if

$$(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$$

for all unary polinomials p of  $\mathbf{A}$ .

- ② Quo(A) forms an (involution) lattice with  $\alpha \wedge \beta = \alpha \cap \beta$  and  $\alpha \vee \beta = \overline{\alpha \cup \beta}$ , where  $\overline{\alpha \cup \beta}$  is the transitive closure of  $\alpha \cup \beta$ .
- **3** The set  $Con(\mathbf{A})$  of congruences forms a sublattice of  $Quo(\mathbf{A})$ .

### Goal

Systematic study of the connection between congruence identities, quasiorder identities and Maltsev conditions satisfied by varieties.

- More general than congruences
- Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

For a subdirect power  $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$  and a closed path

$$p := k_1 \rightarrow k_2 \rightarrow \cdots \rightarrow k_m \rightarrow k_1$$
 with  $k_i \in \{1, \ldots, n\}$ 

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i$$
 where  $\eta_k = \ker \pi_k$ .

We have  $\alpha_p \in \operatorname{Quo}(\mathbf{R})$  and  $\alpha_p \vee \eta_{k_1}$  can be computed from the following two-projections:

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

"Prague strategy" iff range(p)  $\subseteq$  range(q)  $\Longrightarrow \alpha_p \le \alpha_q$ 

Semi-distributivity

# Why study compatible quasiorders?

- More general than congruences.

For a subdirect power  $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$  and a closed path

$$p := k_1 \rightarrow k_2 \rightarrow \cdots \rightarrow k_m \rightarrow k_1$$
 with  $k_i \in \{1, \ldots, n\}$ 

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i$$
 where  $\eta_k = \ker \pi_k$ .

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

- More general than congruences.
- 2 Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

For a subdirect power  $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$  and a closed path

$$p := k_1 \rightarrow k_2 \rightarrow \cdots \rightarrow k_m \rightarrow k_1$$
 with  $k_i \in \{1, \ldots, n\}$ 

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i$$
 where  $\eta_k = \ker \pi_k$ .

We have  $\alpha_p \in \operatorname{Quo}(\mathbf{R})$  and  $\alpha_p \vee \eta_{k_1}$  can be computed from the following two-projections:

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

"Prague strategy" iff range $(p) \subseteq \text{range}(q) \implies \alpha_p \le \alpha_q$ 

- More general than congruences.
- 2 Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

For a subdirect power  $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$  and a closed path

$$p := k_1 \rightarrow k_2 \rightarrow \cdots \rightarrow k_m \rightarrow k_1$$
 with  $k_i \in \{1, \ldots, n\}$ 

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i$$
 where  $\eta_k = \ker \pi_k$ .

We have  $\alpha_p \in \operatorname{Quo}(\mathbf{R})$  and  $\alpha_p \vee \eta_{k_1}$  can be computed from the following two-projections:

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

"Prague strategy" iff range $(p) \subseteq \text{range}(q) \implies \alpha_p \le \alpha_q$ 

- More general than congruences.
- Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

Congruence modularity

For a subdirect power  $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$  and a closed path

$$p := k_1 \rightarrow k_2 \rightarrow \cdots \rightarrow k_m \rightarrow k_1$$
 with  $k_i \in \{1, \ldots, n\}$ 

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i$$
 where  $\eta_k = \ker \pi_k$ .

We have  $\alpha_p \in \operatorname{Quo}(\mathbf{R})$  and  $\alpha_p \vee \eta_{k_1}$  can be computed from the

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

- More general than congruences.
- Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

Congruence modularity

For a subdirect power  $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$  and a closed path

$$p := k_1 \rightarrow k_2 \rightarrow \cdots \rightarrow k_m \rightarrow k_1$$
 with  $k_i \in \{1, \dots, n\}$ 

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i$$
 where  $\eta_k = \ker \pi_k$ .

We have  $\alpha_p \in \text{Quo}(\mathbf{R})$  and  $\alpha_p \vee \eta_{k_1}$  can be computed from the following two-projections:

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

"Prague strategy" iff  $\operatorname{range}(p) \subseteq \operatorname{range}(q) \implies \alpha_p \le \alpha_q$ .

- distributive for all  $A \in \mathcal{V}$ ) if and only if it is quasiorder distributive (Quo(A) is distributive for all  $A \in \mathcal{V}$ ).
- A locally finite variety is congruence modular if and only if it
- Quo(A) is not in the lattice quasivariety generated by the
- For a finite algebra A in a congruence meet semi-distributive variety Quo(A) has no sublattice isomorphic to  $M_3$ .
- quasiorder lattice contains a sublattice isomorphic to  $M_3$ .

- **1** A locally finite variety  $\mathcal V$  is congruence distributive  $(\operatorname{Con}(\mathbf A))$  is distributive for all  $\mathbf A \in \mathcal V$  if and only if it is quasiorder distributive  $(\operatorname{Quo}(\mathbf A))$  is distributive for all  $\mathbf A \in \mathcal V$ .
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive)
- ①  $\operatorname{Quo}(\mathbf{A})$  is not in the lattice quasivariety generated by the congruence lattices  $\operatorname{Con}(\mathbf{B})$  for  $\mathbf{B} \in \operatorname{HSP}(\mathbf{A})$ .
- $\odot$  For a finite algebra **A** in a congruence meet semi-distributive variety  $\mathrm{Quo}(\mathbf{A})$  has no sublattice isomorphic to  $\mathbf{M}_3$ .
- $\odot$  We conjecture/show that there is an infinite semilattice whose quasiorder lattice contains a sublattice isomorphic to  $M_3$ .

- **1** A locally finite variety  $\mathcal{V}$  is congruence distributive (Con(A) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ) if and only if it is quasiorder distributive (Quo( $\mathbf{A}$ ) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ).
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- Quo(A) is not in the lattice quasivariety generated by the
- For a finite algebra A in a congruence meet semi-distributive variety Quo(A) has no sublattice isomorphic to  $M_3$ .
- quasiorder lattice contains a sublattice isomorphic to  $M_3$ .

- **1** A locally finite variety  $\mathcal{V}$  is congruence distributive (Con(A) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ) if and only if it is quasiorder distributive (Quo( $\mathbf{A}$ ) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ).
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- Quo(A) is not in the lattice quasivariety generated by the
- For a finite algebra A in a congruence meet semi-distributive variety Quo(A) has no sublattice isomorphic to  $M_3$ .
- quasiorder lattice contains a sublattice isomorphic to  $M_3$ .

- **1** A locally finite variety  $\mathcal V$  is congruence distributive  $(\operatorname{Con}(\mathbf A))$  is distributive for all  $\mathbf A \in \mathcal V$  if and only if it is quasiorder distributive  $(\operatorname{Quo}(\mathbf A))$  is distributive for all  $\mathbf A \in \mathcal V$ .
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- **1** Quo( $\bf A$ ) is not in the lattice quasivariety generated by the congruence lattices Con( $\bf B$ ) for  $\bf B \in {\rm HSP}(\bf A)$ .
- $\odot$  For a finite algebra **A** in a congruence meet semi-distributive variety  $\mathrm{Quo}(\mathbf{A})$  has no sublattice isomorphic to  $\mathbf{M}_3$ .
- We conjecture/show that there is an infinite semilattice whose quasiorder lattice contains a sublattice isomorphic to M<sub>3</sub>.

- **1** A locally finite variety  $\mathcal{V}$  is congruence distributive (Con(A) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ) if and only if it is quasiorder distributive (Quo( $\mathbf{A}$ ) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ).
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- Quo(A) is not in the lattice quasivariety generated by the congruence lattices Con(B) for  $B \in HSP(A)$ .
- For a finite algebra **A** in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  has no sublattice isomorphic to  $\mathbf{M}_3$ .
- quasiorder lattice contains a sublattice isomorphic to  $M_3$ .

- **1** A locally finite variety  $\mathcal{V}$  is congruence distributive (Con(**A**) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ) if and only if it is quasiorder distributive (Quo( $\mathbf{A}$ ) is distributive for all  $\mathbf{A} \in \mathcal{V}$ ).
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- Quo(A) is not in the lattice quasivariety generated by the congruence lattices Con(B) for  $B \in HSP(A)$ .
- For a finite algebra **A** in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  has no sublattice isomorphic to  $\mathbf{M}_3$ .
- We conjecture/show that there is an infinite semilattice whose quasiorder lattice contains a sublattice isomorphic to  $M_3$ .

# Congruence distributivity

### Theorem (B. Jónsson, 1967)

A variety is congruence distributive iff it has Jónsson terms

$$x \approx p_1(x, x, y)$$
 and  $p_n(x, y, y) \approx y$ ,  $p_i(x, y, y) \approx p_{i+1}(x, y, y)$  for odd  $i$ ,  $p_i(x, x, y) \approx p_{i+1}(x, x, y)$  for even  $i$ , and  $p_i(x, y, x) \approx x$  for all  $i$ .

# Congruence distributivity

### Theorem (B. Jónsson, 1967)

A variety is congruence distributive iff it has Jónsson terms

$$x \approx p_1(x,x,y)$$
 and  $p_n(x,y,y) \approx y$ ,  $p_i(x,y,y) \approx p_{i+1}(x,y,y)$  for odd  $i$ ,  $p_i(x,x,y) \approx p_{i+1}(x,x,y)$  for even  $i$ , and  $p_i(x,y,x) \approx x$  for all  $i$ .

### Theorem (G. Czédli and A. Lenkehegyi, 1983; I. Chajda, 1991)

There is a Maltsev condition charaterizing quasiorder distributivity.

### Corollary (G. Czédli and A. Lenkehegyi, 1983)

If a variety V has a majority term, then it is quasiorder distributive.

## Directed Jónsson terms

### Definition

The ternary terms  $p_1, \ldots, p_n$  are **directed Jónsson terms** if

$$x pprox p_1(x,x,y)$$
 and  $p_n(x,y,y) pprox y$ ,  $p_i(x,y,y) pprox p_{i+1}(x,x,y)$  for  $i=1,\ldots,n-1$ , and  $p_i(x,y,x) pprox x$  for  $i=1,\ldots,n$ .

If  $\alpha \triangleleft_{WJ} \beta$  (weak Jónsson absorbs) for  $\alpha, \beta \in Quo(\mathbf{A})$  then  $\alpha = \beta$ .

## Directed Jónsson terms

### Definition

The ternary terms  $p_1, \ldots, p_n$  are **directed Jónsson terms** if

$$x pprox p_1(x,x,y)$$
 and  $p_n(x,y,y) pprox y$ ,  $p_i(x,y,y) pprox p_{i+1}(x,x,y)$  for  $i=1,\ldots,n-1$ , and  $p_i(x,y,x) pprox x$  for  $i=1,\ldots,n$ .

## Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence distributive if and only if it has directed Jónsson terms.

### Lemma (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

If  $\alpha \triangleleft_{w,i} \beta$  (weak Jónsson absorbs) for  $\alpha, \beta \in Quo(\mathbf{A})$  then  $\alpha = \beta$ .

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y,x,\ldots,x)\approx t(x,y,x\ldots,x)\approx \cdots \approx t(x,\ldots,x,y)\approx x.$$

### Theorem

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

#### Proof

Let  $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$  be the two-generated free algebra, and put

$$R = Sg\{(x, x, x), (x, y, y), (y, x, y)\} \le \mathbf{F}^3.$$

The algebra  $(F; \operatorname{Pol}(R))$  is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples  $t((y,x,y),\ldots,(y,x,y),(x,y,y),(x,x,x),\ldots,(x,x,x))$  are directed Jónsson terms

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y,x,\ldots,x)\approx t(x,y,x\ldots,x)\approx \cdots \approx t(x,\ldots,x,y)\approx x.$$

### **Theorem**

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

#### Proof

Let  $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$  be the two-generated free algebra, and put

$$R = Sg\{(x, x, x), (x, y, y), (y, x, y)\} \le \mathbf{F}^3.$$

The algebra  $(F; \operatorname{Pol}(R))$  is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples  $t((y,x,y),\ldots,(y,x,y),(x,y,y),(x,x,x),\ldots,(x,x,x))$  are directed Jónsson terms

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y, x, ..., x) \approx t(x, y, x, ..., x) \approx ... \approx t(x, ..., x, y) \approx x.$$

### Theorem

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

### Proof.

Let  $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$  be the two-generated free algebra, and put  $R = \operatorname{Sg}\{(x, x, x), (x, y, y), (y, x, y)\} \leq \mathbf{F}^3$ .

The algebra  $(F; \operatorname{Pol}(R))$  is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples  $t((y, x, y), \dots, (y, x, y), (x, y, y), (x, x, x), \dots, (x, x, x))$  are directed Jónsson terms

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y, x, ..., x) \approx t(x, y, x, ..., x) \approx ... \approx t(x, ..., x, y) \approx x.$$

### Theorem

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

### Proof.

Let  $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$  be the two-generated free algebra, and put  $R = \operatorname{Sg}\{(x, x, x), (x, y, y), (y, x, y)\} \leq \mathbf{F}^3$ .

The algebra  $(F; \operatorname{Pol}(R))$  is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples  $t((y, x, y), \dots, (y, x, y), (x, y, y), (x, x, x), \dots, (x, x, x))$  are directed Jónsson terms

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y,x,\ldots,x)\approx t(x,y,x\ldots,x)\approx\cdots\approx t(x,\ldots,x,y)\approx x.$$

### Theorem

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

### Proof.

Let  $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$  be the two-generated free algebra, and put

$$R = \operatorname{Sg}\{(x, x, x), (x, y, y), (y, x, y)\} \leq \mathbf{F}^{3}.$$

The algebra  $(F; \operatorname{Pol}(R))$  is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples  $t((y, x, y), \dots, (y, x, y), (x, y, y), (x, x, x), \dots, (x, x, x))$  are directed Jónsson terms.

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

- ① We show  $(\alpha \vee \beta) \wedge \gamma < (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in Quo(\mathbf{A})$
- interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$
- We have a chain of  $\alpha \cup \beta$  links connecteing a and b
- interval  $[a, b] = \{x \mid a \gamma x \gamma b\}.$
- **1** The links inside  $a/\gamma^*$  are in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .
- The first link leaving  $a/\gamma^*$  is also in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .
- **1** By minimality the rest is also in  $(\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$ .

### Theorem

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

- We show  $(\alpha \vee \beta) \wedge \gamma \leq (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$



### Theorem

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

- We show  $(\alpha \vee \beta) \wedge \gamma \leq (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$



If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

- We show  $(\alpha \vee \beta) \wedge \gamma \leq (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$
- **3** Choose  $(a, b) \in (\alpha \vee \beta) \wedge \gamma (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  such that the interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$



If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

- We show  $(\alpha \vee \beta) \wedge \gamma \leq (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$
- **3** Choose  $(a, b) \in (\alpha \vee \beta) \wedge \gamma (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  such that the interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$
- We have a chain of  $\alpha \cup \beta$  links connecteing a and b

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

Congruence modularity

- We show  $(\alpha \vee \beta) \wedge \gamma \leq (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$
- **3** Choose  $(a, b) \in (\alpha \vee \beta) \wedge \gamma (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  such that the interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$
- We have a chain of  $\alpha \cup \beta$  links connecteing a and b
- Use the directed Jónsson terms to move this chain inside the interval  $[a, b] = \{ x \mid a \gamma x \gamma b \}.$

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

Congruence modularity

- We show  $(\alpha \vee \beta) \wedge \gamma \leq (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$
- **3** Choose  $(a, b) \in (\alpha \vee \beta) \wedge \gamma (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  such that the interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$
- We have a chain of  $\alpha \cup \beta$  links connecteing a and b
- 1 Use the directed Jónsson terms to move this chain inside the interval  $[a, b] = \{ x \mid a \gamma x \gamma b \}.$
- **1** The links inside  $a/\gamma^*$  are in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

Congruence modularity

- We show  $(\alpha \vee \beta) \wedge \gamma < (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$
- **3** Choose  $(a, b) \in (\alpha \vee \beta) \wedge \gamma (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  such that the interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$
- We have a chain of  $\alpha \cup \beta$  links connecteing a and b
- Use the directed Jónsson terms to move this chain inside the interval  $[a, b] = \{ x \mid a \gamma x \gamma b \}.$
- **1** The links inside  $a/\gamma^*$  are in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .
- The first link leaving  $a/\gamma^*$  is also in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .

## If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

Congruence modularity

- We show  $(\alpha \vee \beta) \wedge \gamma < (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  for  $\alpha, \beta, \gamma \in \text{Quo}(\mathbf{A})$
- 2 Put  $\gamma^* = \gamma \cap \gamma^{-1} \in \text{Con}(\mathbf{A})$
- **3** Choose  $(a, b) \in (\alpha \vee \beta) \wedge \gamma (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$  such that the interval  $[a/\gamma^*, b/\gamma^*]$  is minimal in the poset  $(A/\gamma^*; \gamma/\gamma^*)$
- We have a chain of  $\alpha \cup \beta$  links connecteing a and b
- Use the directed Jónsson terms to move this chain inside the interval  $[a, b] = \{ x \mid a \gamma x \gamma b \}.$
- **1** The links inside  $a/\gamma^*$  are in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .
- The first link leaving  $a/\gamma^*$  is also in  $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$ .
- **8** By minimality the rest is also in  $(\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$ .

For a locally finite variety V the following are equivalent:

- $oldsymbol{0}$   $\mathcal V$  is congruence distributive,
- V has [directed] Jónsson terms,
- $oldsymbol{\circ}$   $\mathcal V$  is quasiorder distributive.

### Problem

Does the above equivalence hold for all varieties? Does quasiorder distributivity imply directed Jónsson terms syntactically?

#### Theorem

For a finite algebra with directed Jónsson terms and  $\alpha, \beta$  compatible reflexive relations we have  $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha} \cap \overline{\beta}$ .

### Problem

Do we have  $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha \cap \beta}$  in the above theorem? Is taking the transitive closure a lattice homomorphism (for monounary algs)?

For a locally finite variety V the following are equivalent:

- 1 V is congruence distributive,
- V has [directed] Jónsson terms,
- $\odot V$  is quasiorder distributive.

### Problem

Does the above equivalence hold for all varieties? Does quasiorder distributivity imply directed Jónsson terms syntactically?

For a locally finite variety V the following are equivalent:

- $\mathcal V$  is congruence distributive,
- V has [directed] Jónsson terms,
- $\odot$   $\mathcal{V}$  is quasiorder distributive.

### Problem

Does the above equivalence hold for all varieties? Does quasiorder distributivity imply directed Jónsson terms syntactically?

#### Theorem

For a finite algebra with directed Jónsson terms and  $\alpha, \beta$  compatible reflexive relations we have  $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha \cap \overline{\beta}}$ .

## Problem

Do we have  $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha \cap \beta}$  in the above theorem? Is taking the transitive closure a lattice homomorphism (for monounary algs)?

## Directed Gumm terms

#### Definition

The ternary terms  $p_1, \ldots, p_n, q$  are **directed Gumm terms** if

$$x pprox p_1(x,x,y),$$
  $p_i(x,y,y) pprox p_{i+1}(x,x,y) ext{ for } i=1,\ldots,n-1,$   $p_i(x,y,x) pprox x ext{ for } i=1,\ldots,n,$   $p_n(x,y,y) pprox q(x,y,y) ext{ and } q(x,x,y) pprox y.$ 

Congruence modularity

## Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence modular if and only if it has directed Gumm terms.

- Has been known for locally finite varieties (M. Kozik)
- Similar trick works to show this (L. Barto: finitely related)

## Directed Gumm terms

#### Definition

The ternary terms  $p_1, \ldots, p_n, q$  are **directed Gumm terms** if

Congruence modularity

$$x pprox p_1(x,x,y),$$
 $p_i(x,y,y) pprox p_{i+1}(x,x,y) ext{ for } i=1,\ldots,n-1,$ 
 $p_i(x,y,x) pprox x ext{ for } i=1,\ldots,n,$ 
 $p_n(x,y,y) pprox q(x,y,y) ext{ and } q(x,x,y) pprox y.$ 

## Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence modular if and only if it has directed Gumm terms.

- Has been known for locally finite varieties (M. Kozik)
- Similar trick works to show this (L. Barto: finitely related)

## Directed Gumm terms

#### Definition

The ternary terms  $p_1, \ldots, p_n, q$  are **directed Gumm terms** if

$$x pprox p_1(x,x,y),$$
  $p_i(x,y,y) pprox p_{i+1}(x,x,y) ext{ for } i=1,\ldots,n-1,$   $p_i(x,y,x) pprox x ext{ for } i=1,\ldots,n,$   $p_n(x,y,y) pprox q(x,y,y) ext{ and } q(x,x,y) pprox y.$ 

Congruence modularity

## Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence modular if and only if it has directed Gumm terms.

- Has been known for locally finite varieties (M. Kozik)
- Similar trick works to show this (L. Barto: finitely related) algebras in congruence modular varietes have edge term)

#### $\mathsf{Theorem}$

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

• To show  $\alpha < \gamma \implies (\alpha \vee \beta) \wedge \gamma < \alpha \vee (\beta \wedge \gamma)$  we take again

Congruence modularity

Significantly harder than the distributive case.

#### $\mathsf{Theorem}$

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

• To show  $\alpha \leq \gamma \implies (\alpha \vee \beta) \wedge \gamma \leq \alpha \vee (\beta \wedge \gamma)$  we take again a counterexample pair (a, b) with minial distance in  $\gamma/\gamma^*$ .

Congruence modularity

Significantly harder than the distributive case.

#### $\mathsf{Theorem}$

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

Congruence modularity

- To show  $\alpha \leq \gamma \implies (\alpha \vee \beta) \wedge \gamma \leq \alpha \vee (\beta \wedge \gamma)$  we take again a counterexample pair (a, b) with minial distance in  $\gamma/\gamma^*$ .
- Significantly harder than the distributive case.

#### $\mathsf{Theorem}$

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

Congruence modularity

- To show  $\alpha \leq \gamma \implies (\alpha \vee \beta) \wedge \gamma \leq \alpha \vee (\beta \wedge \gamma)$  we take again a counterexample pair (a, b) with minial distance in  $\gamma/\gamma^*$ .
- Significantly harder than the distributive case.

#### $\mathsf{Theorem}$

For a locally finite variety V the following are equivalent:

- $\bullet$   $\mathcal{V}$  is congruence modular,
- 2 V has [directed] Gumm terms,
- $\odot \mathcal{V}$  is quasiorder modular.

#### $\mathsf{Theorem}$

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

• To show  $\alpha \leq \gamma \implies (\alpha \vee \beta) \wedge \gamma \leq \alpha \vee (\beta \wedge \gamma)$  we take again a counterexample pair (a, b) with minial distance in  $\gamma/\gamma^*$ .

Congruence modularity

Significantly harder than the distributive case.

#### $\mathsf{Theorem}$

For a locally finite variety V the following are equivalent:

- $\bullet$   $\mathcal{V}$  is congruence modular,
- 2 V has [directed] Gumm terms,
- $\odot V$  is quasiorder modular.

## Proposition (I. Chajda, 1991)

In n-permutable varieties compatible quasiorders are congruences.

#### Definition

A variety is **congruence meet semi-distributive** if the congruence lattices of its algebras satisfy

$$\alpha \wedge \gamma = \beta \wedge \gamma \implies (\alpha \vee \beta) \wedge \gamma = \alpha \wedge \gamma.$$

The dual condition is congruence join semi-distributivity.

Typical meet semi-distributive variety is the variety of semilattices (or varieties with totally symmetric operations of all arities).

### Proposition

The variety of semilattices is not quasiorder meet semi-distributive







#### Definition

A variety is **congruence meet semi-distributive** if the congruence lattices of its algebras satisfy

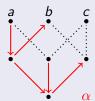
$$\alpha \wedge \gamma = \beta \wedge \gamma \implies (\alpha \vee \beta) \wedge \gamma = \alpha \wedge \gamma.$$

The dual condition is congruence join semi-distributivity.

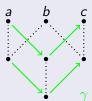
Typical meet semi-distributive variety is the variety of semilattices (or varieties with totally symmetric operations of all arities).

### Proposition

The variety of semilattices is not quasiorder meet semi-distributive.







## Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)

For any locally finite variety V the following are equivalent:

- **1**  $\sup\{\mathcal{V}\} \cap \{1,2\} = \emptyset$ .
- 2 V satisfies an idempotent linear Maltsev condition that does not hold in the varieties of vectorspaces over finite fields.
- **3**  $\mathcal{V} \models_{\text{CON}} \gamma \wedge (\alpha \circ \beta) \subseteq \alpha_m \wedge \beta_m$  for some m where  $\alpha_0 = \alpha$ ,  $\beta_0 = \beta$ ,  $\alpha_{n+1} = \alpha \vee (\gamma \wedge \beta_n)$  and  $\beta_{n+1} = \beta \vee (\gamma \wedge \alpha_n)$ .
- **4**  $M_3$  is not a sublattice of Con(A) for any  $A \in V$ .
- **5**  $\mathcal{V}$  is congruence meet semi-distributive.
- There are no non-trivial abelian congruences.
  - The previous example shows that  $D_1$  is a sublattice of the
  - So items (3) and (5) do not hold for quasiorder lattices.

## Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)

For any locally finite variety V the following are equivalent:

- **1**  $\sup\{\mathcal{V}\} \cap \{1,2\} = \emptyset$ .
- 2 V satisfies an idempotent linear Maltsev condition that does not hold in the varieties of vectorspaces over finite fields.
- **3**  $\mathcal{V} \models_{\text{CON}} \gamma \wedge (\alpha \circ \beta) \subseteq \alpha_m \wedge \beta_m$  for some m where  $\alpha_0 = \alpha$ ,  $\beta_0 = \beta$ ,  $\alpha_{n+1} = \alpha \vee (\gamma \wedge \beta_n)$  and  $\beta_{n+1} = \beta \vee (\gamma \wedge \alpha_n)$ .
- **4**  $M_3$  is not a sublattice of Con(A) for any  $A \in V$ .
- **5**  $\mathcal{V}$  is congruence meet semi-distributive.
- There are no non-trivial abelian congruences.
  - The previous example shows that  $\mathbf{D}_1$  is a sublattice of the quasiorder lattice of the free semilattice with three generators.
  - So items (3) and (5) do not hold for quasiorder lattices.

## Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)

For any locally finite variety V the following are equivalent:

- **1**  $\text{typ}\{\mathcal{V}\} \cap \{\mathbf{1}, \mathbf{2}\} = \emptyset.$
- $\circ$   $\mathcal{V}$  satisfies an idempotent linear Maltsev condition that does not hold in the varieties of vectorspaces over finite fields.
- **3**  $\mathcal{V} \models_{\text{CON}} \gamma \wedge (\alpha \circ \beta) \subseteq \alpha_m \wedge \beta_m$  for some m where  $\alpha_0 = \alpha$ ,  $\beta_0 = \beta$ ,  $\alpha_{n+1} = \alpha \vee (\gamma \wedge \beta_n)$  and  $\beta_{n+1} = \beta \vee (\gamma \wedge \alpha_n)$ .
- **4**  $M_3$  is not a sublattice of Con(A) for any  $A \in V$ .
- **5**  $\mathcal{V}$  is congruence meet semi-distributive.
- There are no non-trivial abelian congruences.
  - The previous example shows that  $\mathbf{D}_1$  is a sublattice of the quasiorder lattice of the free semilattice with three generators.
  - So items (3) and (5) do not hold for quasiorder lattices.

## Minimal algebras

### Definition

A finite algebra **A** is  $(\alpha, \beta)$ -minimal for  $\alpha, \beta \in \text{Quo}(\mathbf{A})$  with  $\alpha < \beta$ if every unary polynomial is either a permutation or  $p(\beta) \subseteq \alpha$ .

The very beginning of tame congruence theory (excluding the classification of minimal algebras) goes through.

Let  $(\alpha, \beta)$  be a tame quasiorder quotient of a finite algebra **A**. Then all  $(\alpha, \beta)$ -minimal sets of **A** are polynomially isomorphic.

Let **A** be a finite algebra and  $\alpha < \beta$  be quasiorders of **A** such that the interval lattice  $[\alpha, \beta]$  in Quo(A) has no strictly increasing,

## Minimal algebras

### Definition

A finite algebra **A** is  $(\alpha, \beta)$ -minimal for  $\alpha, \beta \in \text{Quo}(\mathbf{A})$  with  $\alpha < \beta$ if every unary polynomial is either a permutation or  $p(\beta) \subseteq \alpha$ .

The very beginning of tame congruence theory (excluding the classification of minimal algebras) goes through.

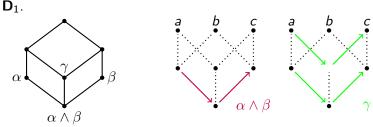
## Proposition (c.f. D. Hobby and R. McKenize, TCT Theorem 2.8)

Let  $(\alpha, \beta)$  be a tame quasiorder quotient of a finite algebra **A**. Then all  $(\alpha, \beta)$ -minimal sets of **A** are polynomially isomorphic.

## Proposition (c.f. D. Hobby and R. McKenize, TCT Lemma 2.10)

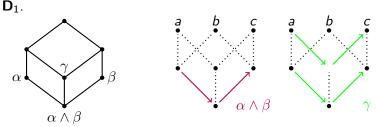
Let **A** be a finite algebra and  $\alpha < \beta$  be quasiorders of **A** such that the interval lattice  $[\alpha, \beta]$  in  $Quo(\mathbf{A})$  has no strictly increasing, non-constant, meet edomorphism. Then every  $(\alpha, \beta)$ -minimal set is the range of an idempotent unary polynomial.

 Consider again the quasiorder lattice of the free semilattce with three generators S, which has a sublattice isomorphic to



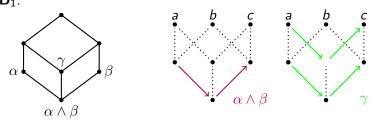
- $D_1$  has critical quotient  $(\alpha \wedge \beta, \gamma)$ , corresponding to meet
- We can take the image of **S** under the idempotent polynomial
- We have  $p(\gamma) \not\subseteq \alpha \land \beta$  so p embeds the  $\mathbf{D}_1$  sublattice into the quasiorder lattice of p(A).

 Consider again the quasiorder lattice of the free semilattce with three generators S, which has a sublattice isomorphic to



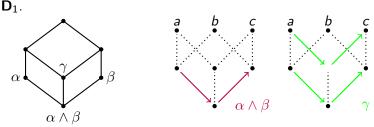
- $\mathbf{D_1}$  has critical quotient  $(\alpha \wedge \beta, \gamma)$ , corresponding to meet semi-distributivity.
- We can take the image of **S** under the idempotent polynomial
- We have  $p(\gamma) \not\subseteq \alpha \land \beta$  so p embeds the  $\mathbf{D}_1$  sublattice into the quasiorder lattice of p(A).

• Consider again the quasiorder lattice of the free semilattce with three generators  $\mathbf{S}$ , which has a sublattice isomorphic to  $\mathbf{D}_1$ .

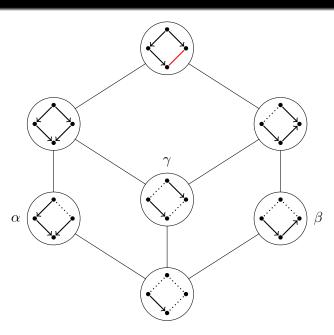


- $\mathbf{D}_1$  has critical quotient  $(\alpha \wedge \beta, \gamma)$ , corresponding to meet semi-distributivity.
- We can take the image of **S** under the idempotent polynomial  $p(x) = a \wedge x$ .
- We have  $p(\gamma) \not\subseteq \alpha \land \beta$  so p embeds the  $\mathbf{D}_1$  sublattice into the quasiorder lattice of  $p(\mathbf{A})$ .

 Consider again the quasiorder lattice of the free semilattce with three generators S, which has a sublattice isomorphic to



- $\mathbf{D}_1$  has critical quotient  $(\alpha \wedge \beta, \gamma)$ , corresponding to meet semi-distributivity.
- We can take the image of **S** under the idempotent polynomial  $p(x) = a \wedge x$ .
- We have  $p(\gamma) \not\subseteq \alpha \land \beta$  so p embeds the  $\mathbf{D}_1$  sublattice into the quasiorder lattice of  $p(\mathbf{A})$ .



For a finite algebra A in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  does not have a sublattice isomorphic to  $\mathbf{M}_3$ .

#### $\mathsf{Theorem}$

For a finite algebra A in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  does not have a sublattice isomorphic to  $\mathbf{M}_3$ .

- **1** Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .

#### $\mathsf{Theorem}$

For a finite algebra A in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  does not have a sublattice isomorphic to  $\mathbf{M}_3$ .

- Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .
- 2 The botton quasiorder  $\alpha$  cannot have a double edge.

For a finite algebra  ${\bf A}$  in a congruence meet semi-distributive variety  ${\rm Quo}({\bf A})$  does not have a sublattice isomorphic to  ${\bf M}_3$ .

- **①** Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .
- **②** The botton quasiorder  $\alpha$  cannot have a double edge.
- **3** The top quasiorder  $\beta$  must have a double edge.
- The top quasiorder  $\beta$  must be a congruence.
- **5** The algebra must be  $(\alpha, \beta)$ -minimal
- **1** The algebra must be  $(0, \beta)$ -minimal
- We are back to congruences, use classification of minimal algebras.



# For a finite algebra ${\bf A}$ in a congruence meet semi-distributive variety ${\rm Quo}({\bf A})$ does not have a sublattice isomorphic to ${\bf M}_3$ .

- **①** Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .
- **②** The botton quasiorder  $\alpha$  cannot have a double edge.
- **3** The top quasiorder  $\beta$  must have a double edge.
- The top quasiorder  $\beta$  must be a congruence.
- **1** The algebra must be  $(\alpha, \beta)$ -minimal
- **o** The algebra must be  $(0, \beta)$ -minimal
- We are back to congruences, use classification of minimal algebras.

For a finite algebra  $\bf A$  in a congruence meet semi-distributive variety  ${\rm Quo}({\bf A})$  does not have a sublattice isomorphic to  ${\bf M}_3$ .

- **①** Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .
- **②** The botton quasiorder  $\alpha$  cannot have a double edge.
- **3** The top quasiorder  $\beta$  must have a double edge.
- The top quasiorder  $\beta$  must be a congruence.
- **1** The algebra must be  $(\alpha, \beta)$ -minimal.
- **1** The algebra must be  $(0, \beta)$ -minimal
- We are back to congruences, use classification of minimal algebras.

#### $\mathsf{Theorem}$

For a finite algebra **A** in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  does not have a sublattice isomorphic to  $\mathbf{M}_3$ .

- Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .
- 2 The botton quasiorder  $\alpha$  cannot have a double edge.
- **3** The top quasiorder  $\beta$  must have a double edge.
- The top quasiorder  $\beta$  must be a congruence.
- **1** The algebra must be  $(\alpha, \beta)$ -minimal.
- **1** The algebra must be  $(0, \beta)$ -minimal.

#### $\mathsf{Theorem}$

For a finite algebra A in a congruence meet semi-distributive variety  $Quo(\mathbf{A})$  does not have a sublattice isomorphic to  $\mathbf{M}_3$ .

- Choose a minimal sublattice of  $Quo(\mathbf{A})$  isomorphic to  $\mathbf{M}_3$ .
- 2 The botton quasiorder  $\alpha$  cannot have a double edge.
- **3** The top quasiorder  $\beta$  must have a double edge.
- The top quasiorder  $\beta$  must be a congruence.
- **1** The algebra must be  $(\alpha, \beta)$ -minimal.
- **1** The algebra must be  $(0, \beta)$ -minimal.
- We are back to congruences, use classification of minimal algebras.



- We (hope to) have a construction of an infinite semilattice whose lattice of compatible quasiorders has an  $\mathbf{M}_3$  sublattice.
- Working on congruence join semi-distributivity and omitting the M<sub>3</sub> and D<sub>2</sub> sublattices.
- Trying to find a good notion of the commutator for quasiorders (if there is such a thing).
- Interesting theorems in the TCT book (e.g. Theorem 5.26) about orderable tame quotients (types **4** and **5**) and  $(\alpha, \beta)$ -preorders.

- We (hope to) have a construction of an infinite semilattice whose lattice of compatible quasiorders has an  $M_3$  sublattice.
- Working on congruence join semi-distributivity and omitting the M<sub>3</sub> and D<sub>2</sub> sublattices.
- Trying to find a good notion of the commutator for quasiorders (if there is such a thing).
- Interesting theorems in the TCT book (e.g. Theorem 5.26) about orderable tame quotients (types **4** and **5**) and  $(\alpha, \beta)$ -preorders.

- We (hope to) have a construction of an infinite semilattice whose lattice of compatible quasiorders has an  $M_3$  sublattice.
- Working on congruence join semi-distributivity and omitting the  $M_3$  and  $D_2$  sublattices.
- Trying to find a good notion of the commutator for quasiorders (if there is such a thing).
- Interesting theorems in the TCT book (e.g. Theorem 5.26) about orderable tame quotients (types 4 and 5) and

- We (hope to) have a construction of an infinite semilattice whose lattice of compatible quasiorders has an  $M_3$  sublattice.
- Working on congruence join semi-distributivity and omitting the  $\mathbf{M}_3$  and  $\mathbf{D}_2$  sublattices.
- Trying to find a good notion of the commutator for quasiorders (if there is such a thing).
- Interesting theorems in the TCT book (e.g. Theorem 5.26) about orderable tame quotients (types **4** and **5**) and  $(\alpha, \beta)$ -preorders.

Thank You!