Cube Term Blockers Without Finiteness

Ágnes Szendrei

CU Boulder/U Szeged

Research supported by OTKA grant no. K104251
Joint work with Keith Kearnes

AAA90
Novi Sad, Serbia, June 4-7, 2015

Cube Terms

Cube Terms

Definition. A d-cube term for a variety \mathcal{V} is a term c such that

Cube Terms

Definition. A d-cube term for a variety \mathcal{V} is a term c such that

\exists cube term $(\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term $)$

Cube Terms

Definition. A d-cube term for a variety \mathcal{V} is a term c such that

$$
\mathcal{V} \models c(\underbrace{\left[\begin{array}{c}
y \\
x \\
\vdots \\
x
\end{array}\right],\left[\begin{array}{c}
x \\
y \\
\vdots \\
x
\end{array}\right], \ldots,\left[\begin{array}{c}
x \\
x \\
\vdots \\
y
\end{array}\right],\left[\begin{array}{c}
y \\
y \\
\vdots \\
x
\end{array}\right], \ldots}_{d \text {-tuples in } x, y, \text { with at least one } y})=\left[\begin{array}{c}
x \\
x \\
\vdots \\
x
\end{array}\right] .
$$

\exists cube term $(\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)
\diamond is a common generalization of ‘ \exists Mal’tsev term’ and ‘ \exists NU term’

Cube Terms

Definition. A d-cube term for a variety \mathcal{V} is a term c such that

\exists cube term $(\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)
\diamond is a common generalization of ‘ \exists Mal’tsev term’ and ‘ \exists NU term’
\diamond for finite \mathbf{A}, is equivalent to $\log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \in O\left(n^{k}\right)$ for some k [Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Cube Terms

Definition. A d-cube term for a variety \mathcal{V} is a term c such that

\exists cube term $(\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)
\diamond is a common generalization of ‘ \exists Mal’tsev term’ and ‘ \exists NU term’
\diamond for finite \mathbf{A}, is equivalent to $\log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \in O\left(n^{k}\right)$ for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
\diamond for \mathbf{A}_{Γ}, implies that $\operatorname{CSP}(\Gamma) \in \mathrm{P}_{\text {[Idziak, Marković, McKenzie, v., W., 2010] }}$

Cube Terms

Definition. A d-cube term for a variety \mathcal{V} is a term c such that

$$
\mathcal{V} \models c(\underbrace{\left[\begin{array}{c}
y \\
x \\
\vdots \\
x
\end{array}\right],\left[\begin{array}{c}
x \\
y \\
\vdots \\
x
\end{array}\right], \ldots,\left[\begin{array}{c}
x \\
x \\
\vdots \\
y
\end{array}\right],\left[\begin{array}{c}
y \\
y \\
\vdots \\
x
\end{array}\right], \ldots}_{d \text {-uples in } x, y, \text { with at least one } y})=\left[\begin{array}{c}
x \\
x \\
\vdots \\
x
\end{array}\right] .
$$

\exists cube term $(\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)
\diamond is a common generalization of ‘ \exists Mal’tsev term’ and ‘ \exists NU term’
\diamond for finite \mathbf{A}, is equivalent to $\log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \in O\left(n^{k}\right)$ for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
\diamond for \mathbf{A}_{Γ}, implies that $\operatorname{CSP}(\Gamma) \in \mathrm{P}$ [Idziak, Marković, McKenzie, v., w., 2010]
\diamond for finite \mathbf{A}, implies that \mathbf{A} is finitely related [Aichinger, Mayr, McKenzie, 2014]

How To Recognize If Cube Terms Exist

How To Recognize If Cube Terms Exist

Let \mathbf{A} be an idempotent algebra.

How To Recognize If Cube Terms Exist

Let \mathbf{A} be an idempotent algebra.
Definition. A cube term blocker for \mathbf{A} is a pair (U, B) of subuniverses of \mathbf{A} with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t=t\left(x_{0}, \ldots, x_{n-1}\right)$, the term operation $t^{\mathbf{B}}$ is U-absorbing in some variable x_{i};

How To Recognize If Cube Terms Exist

Let \mathbf{A} be an idempotent algebra.
Definition. A cube term blocker for \mathbf{A} is a pair (U, B) of subuniverses of \mathbf{A} with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t=t\left(x_{0}, \ldots, x_{n-1}\right)$, the term operation $t^{\mathbf{B}}$ is U-absorbing in some variable x_{i};
\diamond i.e., $t^{\mathbf{B}}\left(b_{0}, \ldots, b_{n-1}\right) \in U$ whenever $b_{0}, \ldots, b_{n-1} \in B$ with $b_{i} \in U$.

How To Recognize If Cube Terms Exist

Let \mathbf{A} be an idempotent algebra.
Definition. A cube term blocker for \mathbf{A} is a pair (U, B) of subuniverses of \mathbf{A} with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t=t\left(x_{0}, \ldots, x_{n-1}\right)$, the term operation $t^{\mathbf{B}}$ is U-absorbing in some variable x_{i};
\diamond i.e., $t^{\mathbf{B}}\left(b_{0}, \ldots, b_{n-1}\right) \in U$ whenever $b_{0}, \ldots, b_{n-1} \in B$ with $b_{i} \in U$.
MMM Theorem. [Marković, Maróti, McKenzie, 2012]
TFAE for a finite idempotent algebra \mathbf{A} :
(1) A has no cube term;
(2) A has a cube term blocker.

How To Recognize If Cube Terms Exist

Let \mathbf{A} be an idempotent algebra.
Definition. A cube term blocker for \mathbf{A} is a pair (U, B) of subuniverses of \mathbf{A} with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t=t\left(x_{0}, \ldots, x_{n-1}\right)$, the term operation $t^{\mathbf{B}}$ is U-absorbing in some variable x_{i};
\diamond i.e., $t^{\mathbf{B}}\left(b_{0}, \ldots, b_{n-1}\right) \in U$ whenever $b_{0}, \ldots, b_{n-1} \in B$ with $b_{i} \in U$.
MMM Theorem. [Marković, Maróti, McKenzie, 2012]
TFAE for a finite idempotent algebra \mathbf{A} :
(1) A has no cube term;
(2) A has a cube term blocker.
\diamond Note. $(2) \Rightarrow(1)$ is easy.

Crosses and Cube Term Blockers

Crosses and Cube Term Blockers

Definition. The m-dimensional cross on B with
bases $U_{0}, \ldots, U_{m-1}\left(\emptyset \subsetneq U_{i} \subsetneq B\right)$ is
$\operatorname{Cross}\left(U_{0}, \ldots, U_{m-1}\right)$
$=\left\{\left(b_{i}\right)_{i<m} \in B^{m}: b_{i} \in U_{i}\right.$ for some $\left.i<m\right\}$.

Cross $\left(U_{0}, U_{1}\right)$

Crosses and Cube Term Blockers

Definition. The m-dimensional cross on B with
bases $U_{0}, \ldots, U_{m-1}\left(\emptyset \subsetneq U_{i} \subsetneq B\right)$ is
$\operatorname{Cross}\left(U_{0}, \ldots, U_{m-1}\right)$

$$
=\left\{\left(b_{i}\right)_{i<m} \in B^{m}: b_{i} \in U_{i} \text { for some } i<m\right\}
$$

Easy Fact: Let \mathbf{A} be an idempotent algebra. TFAE for $\mathbf{B} \leq \mathbf{A}$ and $\emptyset \subsetneq U \subsetneq B$:

- (U, B) is a cube term blocker for \mathbf{A};

Cross $\left(U_{0}, U_{1}\right)$

- Cross $(U, \ldots, U) \leq \mathbf{B}^{m}$ for all m.

Crosses and Cube Term Blockers

Definition. The m-dimensional cross on B with bases $U_{0}, \ldots, U_{m-1}\left(\emptyset \subsetneq U_{i} \subsetneq B\right)$ is
$\operatorname{Cross}\left(U_{0}, \ldots, U_{m-1}\right)$

$$
=\left\{\left(b_{i}\right)_{i<m} \in B^{m}: b_{i} \in U_{i} \text { for some } i<m\right\} .
$$

Easy Fact: Let \mathbf{A} be an idempotent algebra. TFAE for $\mathbf{B} \leq \mathbf{A}$ and $\emptyset \subsetneq U \subsetneq B$:

- (U, B) is a cube term blocker for \mathbf{A};

Cross $\left(U_{0}, U_{1}\right)$

- $\operatorname{Cross}(U, \ldots, U) \leq \mathbf{B}^{m}$ for all m.

MMM Theorem. [rephrased]
TFAE for a finite idempotent algebra A:
(1) A has no cube term;
(2) there exist $\mathbf{B} \leq \mathbf{A}$ and a proper, nonempty subuniverse U of \mathbf{B} such that Cross $(U, \ldots, U) \leq \mathbf{B}^{m}$ for all m.

Cross Sequences As Cube Term Blockers

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.
Theorem 1. TFAE for $2 \leq \nu \leq \omega$:

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.
Theorem 1. TFAE for $2 \leq \nu \leq \omega$:
(1) \mathcal{V} has no d-cube term for $d \leq \nu$;

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.
Theorem 1. TFAE for $2 \leq \nu \leq \omega$:
(1) \mathcal{V} has no d-cube term for $d \leq \nu$;
(2) there exists a ν-sequence $\left(U_{j}\right)_{j<\nu}$ of subuniverses of \mathbf{F} with $y \in \bigcap_{j<\nu} U_{j}$ and $x \notin \bigcup_{j<\nu} U_{j}$ such that
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{d-1}}\right) \leq \mathbf{F}^{d}$ whenever $i_{0}<\cdots<i_{d-1}<\nu$.

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.
Theorem 1. TFAE for $2 \leq \nu \leq \omega$:
(1) \mathcal{V} has no d-cube term for $d \leq \nu$;
(2) there exists a ν-sequence $\left(U_{j}\right)_{j<\nu}$ of subuniverses of \mathbf{F} with $y \in \bigcap_{j<\nu} U_{j}$ and $x \notin \bigcup_{j<\nu} U_{j}$ such that
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{d-1}}\right) \leq \mathbf{F}^{d}$ whenever $i_{0}<\cdots<i_{d-1}<\nu$.
\diamond Definition. Such a $\left(U_{j}\right)_{j<\nu}$ is called a cross sequence.

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.
Theorem 1. TFAE for $2 \leq \nu \leq \omega$:
(1) \mathcal{V} has no d-cube term for $d \leq \nu$;
(2) there exists a ν-sequence $\left(U_{j}\right)_{j<\nu}$ of subuniverses of \mathbf{F} with $y \in \bigcap_{j<\nu} U_{j}$ and $x \notin \bigcup_{j<\nu} U_{j}$ such that
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{d-1}}\right) \leq \mathbf{F}^{d}$ whenever $i_{0}<\cdots<i_{d-1}<\nu$.
\diamond Definition. Such a $\left(U_{j}\right)_{j<\nu}$ is called a cross sequence.
Theorem 1 vs. the MMM Theorem:
\diamond No finiteness assumption on \mathcal{V}; works for finite ν as well.

Cross Sequences As Cube Term Blockers

From now on: \mathcal{V} is an idempotent variety and $\mathbf{F}:=\mathbf{F}_{\mathcal{V}}(x, y)$.
Theorem 1. TFAE for $2 \leq \nu \leq \omega$:
(1) \mathcal{V} has no d-cube term for $d \leq \nu$;
(2) there exists a ν-sequence $\left(U_{j}\right)_{j<\nu}$ of subuniverses of \mathbf{F} with $y \in \bigcap_{j<\nu} U_{j}$ and $x \notin \bigcup_{j<\nu} U_{j}$ such that
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{d-1}}\right) \leq \mathbf{F}^{d}$ whenever $i_{0}<\cdots<i_{d-1}<\nu$.
\diamond Definition. Such a $\left(U_{j}\right)_{j<\nu}$ is called a cross sequence.
Theorem 1 vs. the MMM Theorem:
\diamond No finiteness assumption on \mathcal{V}; works for finite ν as well.
\diamond But: the cross sequence is not constant.

MMM Type Cube Term Blockers for $\nu=\omega$

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

(1) \mathcal{V} has no cube term;

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

(1) \mathcal{V} has no cube term;
(2) there exists a subuniverse U of \mathbf{F} with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for \mathbf{F}; i.e., $\operatorname{Cross}(U, \ldots, U) \leq \mathbf{F}^{d}$ for all d.

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

(1) \mathcal{V} has no cube term;
(2) there exists a subuniverse U of \mathbf{F} with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for \mathbf{F}; i.e., $\operatorname{Cross}(U, \ldots, U) \leq \mathbf{F}^{d}$ for all d.

Corollary. TFAE for any finite idempotent algebra A:
(1) A has no cube term;
(2) $\mathcal{V}(\mathbf{A})$ has no cube term;
(3) $\mathbf{F}_{\mathcal{V}(\mathbf{A})}(x, y)$ has a cube term blocker;
(4) A has a cube term blocker.

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

(1) \mathcal{V} has no cube term;
(2) there exists a subuniverse U of \mathbf{F} with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for \mathbf{F}; i.e., $\operatorname{Cross}(U, \ldots, U) \leq \mathbf{F}^{d}$ for all d.

Corollary. TFAE for any finite idempotent algebra A:
(1) A has no cube term;
(2) $\mathcal{V}(\mathbf{A})$ has no cube term;
(3) $\mathbf{F}_{\mathcal{V}(\mathbf{A})}(x, y)$ has a cube term blocker;
(4) A has a cube term blocker.
$\diamond(1) \Leftrightarrow(4)$ is the MMM Theorem

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

(1) \mathcal{V} has no cube term;
(2) there exists a subuniverse U of \mathbf{F} with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for \mathbf{F}; i.e., $\operatorname{Cross}(U, \ldots, U) \leq \mathbf{F}^{d}$ for all d.

Corollary. TFAE for any finite idempotent algebra A:
(1) A has no cube term;
(2) $\mathcal{V}(\mathbf{A})$ has no cube term;
(3) $\mathbf{F}_{\mathcal{V}(\mathbf{A})}(x, y)$ has a cube term blocker;
(4) A has a cube term blocker.
$\diamond(1) \Leftrightarrow(4)$ is the MMM Theorem
\diamond Reason for $\neg(4) \Rightarrow \neg(3)$:
In any signature, the class of idempotent algebras with no cube term blockers is closed under H, S, and $\mathrm{P}_{\text {fin }}$.

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

$\begin{array}{lllll}U_{0} & U_{1} & \cdots & U_{j} & \cdots\end{array}$

\mathcal{U}

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { hm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

\diamond There is no matching from X to \mathcal{U}.

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

\diamond There is no matching from X to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z \subseteq X \ldots$

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

\diamond There is no matching from X to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z \subseteq X \ldots \Rightarrow t^{\mathbf{F}}$ is $\bigcap_{j \geq k} U_{j}$-absorbing in $z \in Z$ for large enough k

Proof of Thm 2: Symmetrizing Infinite Cross Sequences

\mathcal{V} has no cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{i}\right)_{i<\omega}\left(\mathbf{U}_{i} \leq \mathbf{F}, y \in U_{i}, x \notin U_{i}\right)$ s.t.
$\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}$.

- $U:=\bigcup_{k<\omega} \bigcap_{j \geq k} U_{j}$ is a proper, nonempty subuniverse of \mathbf{F}.
- Claim: (U, F) is a cube term blocker for \mathbf{F}.
\diamond For any term t (n-ary), consider the bipartite graph

\diamond There is no matching from X to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z \subseteq X \ldots \Rightarrow t^{\mathbf{F}}$ is $\bigcap_{j \geq k} U_{j}$-absorbing in $z \in Z$ for large enough $k \Rightarrow t^{\mathbf{F}}$ is U-absorbing in $z \in Z$.

Deciding the Existence of a Cube Term

Deciding the Existence of a Cube Term

Theorem 3. Assume \mathcal{V} has k operation symbols f_{0}, \ldots, f_{k-1} (with $f_{\ell} n_{\ell}$-ary). If \mathcal{V} has no d-cube term for $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$, then \mathcal{V} has no cube term.

Deciding the Existence of a Cube Term

Theorem 3. Assume \mathcal{V} has k operation symbols f_{0}, \ldots, f_{k-1} (with $f_{\ell} n_{\ell}$-ary). If \mathcal{V} has no d-cube term for $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$, then \mathcal{V} has no cube term.
\diamond This bound is sharp.

Deciding the Existence of a Cube Term

Theorem 3. Assume \mathcal{V} has k operation symbols f_{0}, \ldots, f_{k-1} (with $f_{\ell} n_{\ell}$-ary). If \mathcal{V} has no d-cube term for $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$, then \mathcal{V} has no cube term.
\diamond This bound is sharp.
Corollary. Assume \mathcal{V} has one operation symbol only, which is binary. Then either \mathcal{V} has a Mal'tsev term, or it has no cube term at all.

Proof of Thm 3: Another Matching Argument

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$.

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$. \mathcal{V} has no d-cube term $\stackrel{\text { Thm1 }}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$.
\mathcal{V} has no d-cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$.
\mathcal{V} has no d-cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

\diamond There is no matching from X_{ℓ} to \mathcal{U}.

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$.
\mathcal{V} has no d-cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

\diamond There is no matching from X_{ℓ} to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \ldots$

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$. \mathcal{V} has no d-cube term $\stackrel{\text { Thm } 1}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

\diamond There is no matching from X_{ℓ} to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \ldots$

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$. \mathcal{V} has no d-cube term $\stackrel{\text { Thm1 }}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

\diamond There is no matching from X_{ℓ} to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \ldots$

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$. \mathcal{V} has no d-cube term $\stackrel{\text { Thm1 }}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

\diamond There is no matching from X_{ℓ} to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \ldots$
$\diamond d>\sum_{\ell<k}\left(n_{\ell}-1\right)$

Proof of Thm 3: Another Matching Argument

Let \mathcal{V} have op symbols $f_{0}, \ldots, f_{k-1}\left(f_{\ell} n_{\ell}\right.$-ary $)$, and let $d=1+\sum_{\ell<k}\left(n_{\ell}-1\right)$. \mathcal{V} has no d-cube term $\stackrel{\text { Thm1 }}{\Longrightarrow} \exists\left(U_{j}\right)_{j<d}\left(\mathbf{U}_{j} \leq \mathbf{F}, y \in U_{j}, x \notin U_{j}\right)$ s.t. $\operatorname{Cross}\left(U_{i_{0}}, \ldots, U_{i_{m-1}}\right) \leq \mathbf{F}^{m}$ whenever $i_{0}<\ldots<i_{m-1}(<d)$.
For each f_{ℓ}, consider the bipartite graph

\diamond There is no matching from X_{ℓ} to \mathcal{U}.
\diamond Marriage Thm $\Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \ldots$
$\diamond d>\sum_{\ell<k}\left(n_{\ell}-1\right) \Rightarrow \exists U_{r} \in \mathcal{U}$ s.t. all $f_{\ell}^{\mathbf{F}}$ have U_{r}-absorbing variables.

