Cube Term Blockers Without Finiteness

Ágnes Szendrei

CU Boulder/U Szeged Research supported by OTKA grant no. K104251

Joint work with Keith Kearnes

AAA90 Novi Sad, Serbia, June 4–7, 2015

A. Szendrei (CU Boulder)

Cube Term Blockers

Cube Terms

A. Szendrei (CU Boulder)

<ロト < 回 > < 回 > < 回 >

Cube Terms

Definition. A *d*-cube term for a variety \mathcal{V} is a term *c* such that

Cube Terms

Definition. A *d*-cube term for a variety \mathcal{V} is a term *c* such that

 \exists **cube term** ($\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)

$$\mathcal{V} \models c \left(\underbrace{\begin{bmatrix} y \\ x \\ \vdots \\ x \end{bmatrix}, \begin{bmatrix} x \\ y \\ \vdots \\ x \end{bmatrix}, \dots, \begin{bmatrix} x \\ x \\ \vdots \\ y \end{bmatrix}, \begin{bmatrix} y \\ y \\ \vdots \\ x \end{bmatrix}, \dots \right)_{d-\text{tuples in } x, y, \text{ with at least one } y} = \begin{bmatrix} x \\ x \\ \vdots \\ x \end{bmatrix}$$

 $\exists cube term (\Leftrightarrow \exists edge term \Leftrightarrow \exists parallelogram term) \\ \diamond is a common generalization of `\exists Mal'tsev term' and `\exists NU term'$

$$\mathcal{V} \models c \left(\underbrace{\begin{bmatrix} y \\ x \\ \vdots \\ x \end{bmatrix}, \begin{bmatrix} x \\ y \\ \vdots \\ x \end{bmatrix}, \dots, \begin{bmatrix} x \\ x \\ \vdots \\ y \end{bmatrix}, \begin{bmatrix} y \\ y \\ \vdots \\ x \end{bmatrix}, \dots \right)_{d-\text{tuples in } x, y, \text{ with at least one } y} = \begin{bmatrix} x \\ x \\ \vdots \\ x \end{bmatrix}$$

 \exists **cube term** ($\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)

- \diamond is a common generalization of ' \exists Mal'tsev term' and ' \exists NU term'
- ♦ for finite **A**, is equivalent to $\log_2 |\operatorname{Sub}(\mathbf{A}^n)| \in O(n^k)$ for some *k* [Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

$$\mathcal{V} \models c \left(\underbrace{\begin{bmatrix} y \\ x \\ \vdots \\ x \end{bmatrix}, \begin{bmatrix} x \\ y \\ \vdots \\ x \end{bmatrix}, \dots, \begin{bmatrix} x \\ x \\ \vdots \\ y \end{bmatrix}, \begin{bmatrix} y \\ y \\ \vdots \\ x \end{bmatrix}, \dots \right)_{d-\text{tuples in } x, y, \text{ with at least one } y} = \begin{bmatrix} x \\ x \\ \vdots \\ x \end{bmatrix}$$

 \exists **cube term** ($\Leftrightarrow \exists$ edge term $\Leftrightarrow \exists$ parallelogram term)

- \diamond is a common generalization of ' \exists Mal'tsev term' and ' \exists NU term'
- ♦ for finite **A**, is equivalent to $\log_2 |\operatorname{Sub}(\mathbf{A}^n)| \in O(n^k)$ for some *k* [Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
- \diamond for \mathbf{A}_{Γ} , implies that $\mathrm{CSP}(\Gamma) \in \mathsf{P}$ [Idziak, Marković, McKenzie, V., W., 2010]

$$\mathcal{V} \models c \left(\underbrace{\begin{bmatrix} y \\ x \\ \vdots \\ x \end{bmatrix}, \begin{bmatrix} x \\ y \\ \vdots \\ x \end{bmatrix}, \dots, \begin{bmatrix} x \\ x \\ \vdots \\ y \end{bmatrix}, \begin{bmatrix} y \\ y \\ \vdots \\ x \end{bmatrix}, \dots \right)_{d-\text{tuples in } x, y, \text{ with at least one } y} = \begin{bmatrix} x \\ x \\ \vdots \\ x \end{bmatrix}$$

 $\exists \mathbf{cube term} (\Leftrightarrow \exists edge term \Leftrightarrow \exists parallelogram term)$

- $\diamond\,$ is a common generalization of ' $\exists\,$ Mal'tsev term' and ' $\exists\,$ NU term'
- ♦ for finite **A**, is equivalent to $\log_2 |\operatorname{Sub}(\mathbf{A}^n)| \in O(n^k)$ for some *k* [Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
- \diamond for \mathbf{A}_{Γ} , implies that $\mathrm{CSP}(\Gamma) \in \mathsf{P}$ [Idziak, Marković, McKenzie, V., W., 2010]
- ♦ for finite A, implies that A is finitely related [Aichinger, Mayr, McKenzie, 2014]

How To Recognize If Cube Terms Exist

A. Szendrei (CU Boulder)

Image: A mathematical states and a mathem

How To Recognize If Cube Terms Exist

Let A be an idempotent algebra.

Definition. A *cube term blocker* for **A** is a pair (U, B) of subuniverses of **A** with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t = t(x_0, \ldots, x_{n-1})$, the term operation $t^{\mathbf{B}}$ is *U*-absorbing in some variable x_i ;

Definition. A *cube term blocker* for **A** is a pair (U, B) of subuniverses of **A** with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t = t(x_0, \ldots, x_{n-1})$, the term operation $t^{\mathbf{B}}$ is *U*-absorbing in some variable x_i ;

 \diamond i.e., $t^{\mathbf{B}}(b_0, \ldots, b_{n-1}) \in U$ whenever $b_0, \ldots, b_{n-1} \in B$ with $b_i \in U$.

Definition. A *cube term blocker* for **A** is a pair (U, B) of subuniverses of **A** with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t = t(x_0, \ldots, x_{n-1})$, the term operation $t^{\mathbf{B}}$ is *U*-absorbing in some variable x_i ; \diamond i.e., $t^{\mathbf{B}}(b_0, \ldots, b_{n-1}) \in U$ whenever $b_0, \ldots, b_{n-1} \in B$ with $b_i \in U$.

MMM Theorem. [Marković, Maróti, McKenzie, 2012] *TFAE for a finite idempotent algebra* **A**:

- (1) **A** has no cube term;
- (2) A has a cube term blocker.

Definition. A *cube term blocker* for **A** is a pair (U, B) of subuniverses of **A** with $\emptyset \subsetneq U \subsetneq B$ such that for every term $t = t(x_0, \ldots, x_{n-1})$, the term operation $t^{\mathbf{B}}$ is *U*-absorbing in some variable x_i ; \diamond i.e., $t^{\mathbf{B}}(b_0, \ldots, b_{n-1}) \in U$ whenever $b_0, \ldots, b_{n-1} \in B$ with $b_i \in U$.

MMM Theorem. [Marković, Maróti, McKenzie, 2012] *TFAE for a finite idempotent algebra* **A**:

- (1) A has no cube term;
- (2) A has a cube term blocker.

♦ **Note.** (2) \Rightarrow (1) is easy.

Crosses and Cube Term Blockers

A. Szendrei (CU Boulder)

< D > < P > < P > < P >

Crosses and Cube Term Blockers

Definition. The *m*-dimensional cross on *B* with bases U_0, \ldots, U_{m-1} ($\emptyset \subsetneq U_i \subsetneq B$) is $Cross(U_0, \ldots, U_{m-1})$ $= \{(b_i)_{i < m} \in B^m : b_i \in U_i \text{ for some } i < m\}.$

Definition. The *m*-dimensional cross on *B* with bases U_0, \ldots, U_{m-1} ($\emptyset \subsetneq U_i \subsetneq B$) is $Cross(U_0, \ldots, U_{m-1})$ $= \{(b_i)_{i < m} \in B^m : b_i \in U_i \text{ for some } i < m\}.$

Easy Fact: Let **A** be an idempotent algebra. TFAE for **B** \leq **A** and $\emptyset \subsetneq U \subsetneq B$:

- (U, B) is a cube term blocker for A;
- $Cross(U, \ldots, U) \leq \mathbf{B}^m$ for all m.

Definition. The *m*-dimensional cross on *B* with bases U_0, \ldots, U_{m-1} ($\emptyset \subsetneq U_i \subsetneq B$) is $Cross(U_0, \ldots, U_{m-1})$ $= \{(b_i)_{i < m} \in B^m : b_i \in U_i \text{ for some } i < m\}.$

Easy Fact: Let **A** be an idempotent algebra. TFAE for **B** \leq **A** and $\emptyset \subsetneq U \subsetneq B$:

- (U, B) is a cube term blocker for A;
- $Cross(U, ..., U) \leq \mathbf{B}^m$ for all m.

MMM Theorem. [rephrased]

TFAE for a finite idempotent algebra A:

- (1) **A** has no cube term;
- (2) there exist $\mathbf{B} \leq \mathbf{A}$ and a proper, nonempty subuniverse U of \mathbf{B} such that $Cross(U, ..., U) \leq \mathbf{B}^m$ for all m.

A. Szendrei (CU Boulder)

Image: A mathematical states and a mathem

From now on:

 \mathcal{V} is an idempotent variety and $\mathbf{F} := \mathbf{F}_{\mathcal{V}}(x, y)$.

From now on: V is an idempotent variety and $\mathbf{F} := \mathbf{F}_{V}(x, y)$.

Theorem 1. *TFAE for* $2 \le \nu \le \omega$ *:*

From now on: $|\mathcal{V}|$ is an idempotent variety and $\mathbf{F} := \mathbf{F}_{\mathcal{V}}(x, y)$.

Theorem 1. *TFAE for* $2 \le \nu \le \omega$: (1) \mathcal{V} has no d-cube term for $d \le \nu$;

From now on: $|\mathcal{V}|$ is an idempotent variety and $\mathbf{F} := \mathbf{F}_{\mathcal{V}}(x, y)$.

Theorem 1. *TFAE for* $2 \le \nu \le \omega$:

- (1) \mathcal{V} has no d-cube term for $d \leq \nu$;
- (2) there exists a ν -sequence $(U_j)_{j < \nu}$ of subuniverses of \mathbf{F} with $y \in \bigcap_{j < \nu} U_j$ and $x \notin \bigcup_{j < \nu} U_j$ such that $Cross(U_{i_0}, \dots, U_{i_{d-1}}) \leq \mathbf{F}^d$ whenever $i_0 < \dots < i_{d-1} < \nu$.

From now on: V is an idempotent variety and $\mathbf{F} := \mathbf{F}_{\mathcal{V}}(x, y)$.

Theorem 1. *TFAE for* $2 \le \nu \le \omega$:

- (1) \mathcal{V} has no d-cube term for $d \leq \nu$;
- (2) there exists a ν -sequence $(U_j)_{j<\nu}$ of subuniverses of **F** with $y \in \bigcap_{j<\nu} U_j$ and $x \notin \bigcup_{j<\nu} U_j$ such that $Cross(U_{i_0}, \ldots, U_{i_{d-1}}) \leq \mathbf{F}^d$ whenever $i_0 < \cdots < i_{d-1} < \nu$.

♦ **Definition.** Such a $(U_j)_{j < \nu}$ is called a *cross sequence*.

From now on: V is an idempotent variety and $\mathbf{F} := \mathbf{F}_{V}(x, y)$.

Theorem 1. *TFAE for* $2 \le \nu \le \omega$:

(1) \mathcal{V} has no *d*-cube term for $d \leq \nu$;

(2) there exists a ν-sequence (U_j)_{j<ν} of subuniverses of F with y ∈ ∩_{j<ν} U_j and x ∉ ∪_{j<ν} U_j such that Cross(U_{i0},..., U_{id-1}) ≤ F^d whenever i₀ < ··· < i_{d-1} < ν.
◊ Definition. Such a (U_j)_{j<ν} is called a cross sequence.

Theorem 1 vs. the MMM Theorem:

 \diamond No finiteness assumption on \mathcal{V} ; works for finite ν as well.

From now on: V is an idempotent variety and $\mathbf{F} := \mathbf{F}_{V}(x, y)$.

Theorem 1. *TFAE for* $2 \le \nu \le \omega$:

- (1) \mathcal{V} has no *d*-cube term for $d \leq \nu$;
- (2) there exists a ν-sequence (U_j)_{j<ν} of subuniverses of F with y ∈ ∩_{j<ν} U_j and x ∉ ∪_{j<ν} U_j such that Cross(U_{i0},..., U_{id-1}) ≤ F^d whenever i₀ < ··· < i_{d-1} < ν.
 ◊ Definition. Such a (U_j)_{j<ν} is called a cross sequence.

Theorem 1 vs. the MMM Theorem:

- \diamond No finiteness assumption on \mathcal{V} ; works for finite ν as well.
- ♦ But: the cross sequence is not constant.

MMM Type Cube Term Blockers for $\nu = \omega$

A. Szendrei (CU Boulder)

Э AAA90, June 2015

• □ > < □ > < □ > < □ >

MMM Type Cube Term Blockers for $\nu = \omega$

Theorem 2. *TFAE:* (1) *V* has no cube term;

< □ > < □ > < □</p>

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

- (1) \mathcal{V} has no cube term;
- (2) there exists a subuniverse U of **F** with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for **F**; i.e., $Cross(U, ..., U) \leq \mathbf{F}^d$ for all d.

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

- (1) \mathcal{V} has no cube term;
- (2) there exists a subuniverse U of **F** with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for **F**; i.e., $Cross(U, ..., U) \leq \mathbf{F}^d$ for all d.

Corollary. TFAE for any finite idempotent algebra A:

- (1) A has no cube term;
- (2) $\mathcal{V}(\mathbf{A})$ has no cube term;
- (3) $\mathbf{F}_{\mathcal{V}(\mathbf{A})}(x, y)$ has a cube term blocker;
- (4) A has a cube term blocker.

MMM Type Cube Term Blockers for $\nu=\omega$

Theorem 2. TFAE:

- (1) \mathcal{V} has no cube term;
- (2) there exists a subuniverse U of **F** with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for **F**; i.e., $Cross(U, ..., U) \leq \mathbf{F}^d$ for all d.

Corollary. *TFAE for any finite idempotent algebra* **A***:*

- (1) **A** has no cube term;
- (2) $\mathcal{V}(\mathbf{A})$ has no cube term;
- (3) $\mathbf{F}_{\mathcal{V}(\mathbf{A})}(x, y)$ has a cube term blocker;
- (4) A has a cube term blocker.

 \diamond (1) \Leftrightarrow (4) is the MMM Theorem

MMM Type Cube Term Blockers for $\nu = \omega$

Theorem 2. TFAE:

- (1) \mathcal{V} has no cube term;
- (2) there exists a subuniverse U of **F** with $y \in U$ and $x \notin U$ such that (U, F) is a cube term blocker for **F**; i.e., $Cross(U, ..., U) \leq \mathbf{F}^d$ for all d.

Corollary. TFAE for any finite idempotent algebra A:

- (1) A has no cube term;
- (2) $\mathcal{V}(\mathbf{A})$ has no cube term;
- (3) $\mathbf{F}_{\mathcal{V}(\mathbf{A})}(x, y)$ has a cube term blocker;
- (4) A has a cube term blocker.
 - \diamond (1) \Leftrightarrow (4) is the MMM Theorem
 - ♦ Reason for $\neg(4) \Rightarrow \neg(3)$:

In any signature, the class of idempotent algebras with no cube term blockers is closed under H, S, and $P_{\rm fin}$.

A. Szendrei (CU Boulder)

 \mathcal{V} has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i)$ s.t. Cross $(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.

 \mathcal{V} has no cube term $\stackrel{\text{Thml}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$ $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.

• $U := \bigcup_{k < \omega} \bigcap_{j \ge k} U_j$ is a proper, nonempty subuniverse of **F**.

 \mathcal{V} has no cube term $\stackrel{\text{Thml}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$ $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.

- $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
- Claim: (U, F) is a cube term blocker for **F**.

- \mathcal{V} has no cube term $\stackrel{\text{Thml}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$ $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.
 - $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
 - Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

$$x_0 \quad \cdots \quad x_i \quad \cdots \quad x_{n-1} \quad X$$

$$\mathcal{V}$$
 has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$
 $\mathsf{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.

- $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
- Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

- \mathcal{V} has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$ $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.
 - $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
 - Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

- \mathcal{V} has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$ $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.
 - $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
 - Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

 \diamond There is no matching from *X* to \mathcal{U} .

- \mathcal{V} has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$ $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.
 - $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
 - Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

- \diamond There is no matching from *X* to \mathcal{U} .
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z \subseteq X \dots$

$$\mathcal{V}$$
 has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$
 $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.

- $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
- Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

- \diamond There is no matching from *X* to \mathcal{U} .
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z \subseteq X \dots \Rightarrow t^{\mathbf{F}} \text{ is } \bigcap_{j \ge k} U_j \text{-absorbing in } z \in Z$ for large enough k

A. Szendrei (CU Boulder)

$$\mathcal{V}$$
 has no cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < \omega} (\mathbf{U}_i \leq \mathbf{F}, y \in U_i, x \notin U_i) \text{ s.t.}$
 $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1}$.

- $U := \bigcup_{k < \omega} \bigcap_{j > k} U_j$ is a proper, nonempty subuniverse of **F**.
- Claim: (U, F) is a cube term blocker for **F**.
 - \diamond For any term *t* (*n*-ary), consider the bipartite graph

- \diamond There is no matching from *X* to \mathcal{U} .
- ♦ Marriage Thm $\Rightarrow \exists Z \subseteq X \dots \Rightarrow t^{\mathbf{F}}$ is $\bigcap_{j \ge k} U_j$ -absorbing in $z \in Z$ for large enough $k \Rightarrow t^{\mathbf{F}}$ is U-absorbing in $z \in Z_{\neg \neg}$

A. Szendrei (CU Boulder)

Deciding the Existence of a Cube Term

A. Szendrei (CU Boulder)

Image: A mathematical states and a mathem

Theorem 3. Assume \mathcal{V} has k operation symbols f_0, \ldots, f_{k-1} (with $f_{\ell} n_{\ell}$ -ary). If \mathcal{V} has no d-cube term for $d = 1 + \sum_{\ell \leq k} (n_{\ell} - 1)$, then \mathcal{V} has no cube term.

Theorem 3. Assume \mathcal{V} has k operation symbols f_0, \ldots, f_{k-1} (with $f_{\ell} n_{\ell}$ -ary). If \mathcal{V} has no d-cube term for $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$, then \mathcal{V} has no cube term. \diamond This bound is sharp. **Theorem 3.** Assume \mathcal{V} has k operation symbols f_0, \ldots, f_{k-1} (with $f_{\ell} n_{\ell}$ -ary). If \mathcal{V} has no d-cube term for $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$, then \mathcal{V} has no cube term. \diamond This bound is sharp.

Corollary. Assume V has one operation symbol only, which is binary. Then either V has a Mal'tsev term, or it has no cube term at all.

A. Szendrei (CU Boulder)

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_\ell n_\ell$ -ary), and let $d = 1 + \sum_{\ell < k} (n_\ell - 1)$.

< □ > < □ > < □</p>

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_j)_{j < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j)$ s.t. $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1} (< d)$.

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} \ n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\xrightarrow{\text{Thm}1} \exists (U_j)_{j < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j)$ s.t. $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1} \ (< d)$. For each f_{ℓ} , consider the bipartite graph

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} \ n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\xrightarrow{\text{Thm1}} \exists (U_j)_{j < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j)$ s.t. $\text{Cross}(U_{i_0}, \ldots, U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < \ldots < i_{m-1} \ (< d)$. For each f_{ℓ} , consider the bipartite graph

 \diamond There is no matching from X_{ℓ} to \mathcal{U} .

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j)$ s.t. $Cross(U_{i_0}, ..., U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < ... < i_{m-1} (< d)$. For each f_{ℓ} , consider the bipartite graph X_{ℓ} Zø $\dots x_{n_{\ell}-1}$ x_i $f_{\ell}^{\mathbf{F}}$ is not U_i -absorbing in x_i \Leftrightarrow U_0 U_1 . . . II. . . \mathcal{U} $< n_{\ell} - 1$

- ♦ There is no matching from X_ℓ to U.
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \dots$

- ♦ There is no matching from X_ℓ to U.
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \dots$

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j)$ s.t. $Cross(U_{i_0}, ..., U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < ... < i_{m-1} (< d)$. For each f_{ℓ} , consider the bipartite graph $Z_0 \qquad X_0$ X_{ℓ} Z_{k-1} X_{k-1} Zo $\dots x_{n_{\ell}-1}$ $\dots x_{n_k}$ $\dots x_{n_0-1}$ x₀ x_{0} x_i $f_{\ell}^{\mathbf{F}}$ is not U_i -absorbing in x_i \Leftrightarrow II_1 II. \mathcal{U} . . . $< n_{\ell} - 1 \le n_{k-1} - 1$ $< n_0 - 1$

- ♦ There is no matching from X_ℓ to U.
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \dots$

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\stackrel{\text{Thm1}}{\Longrightarrow} \exists (U_i)_{i < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j)$ s.t. $Cross(U_{i_0}, ..., U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < ... < i_{m-1} (< d)$. For each f_{ℓ} , consider the bipartite graph $Z_0 \qquad X_0$ X_{ℓ} Z_{k-1} X_{k-1} Zo $\dots x_{n_{\ell}-1}$ $\dots x_{n_k}$ $\dots x_{n_0-1}$ x₀ x_{0} x_i $f_{\ell}^{\mathbf{F}}$ is not U_i -absorbing in x_i \Leftrightarrow II_1 II. \mathcal{U} . . . $< n_{\ell} - 1 \le n_{k-1} - 1$ $< n_0 - 1$

- ♦ There is no matching from X_{ℓ} to U.
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \dots$

$$\diamond d > \sum_{\ell < k} (n_{\ell} - 1)$$

Let \mathcal{V} have op symbols f_0, \ldots, f_{k-1} ($f_{\ell} n_{\ell}$ -ary), and let $d = 1 + \sum_{\ell < k} (n_{\ell} - 1)$. \mathcal{V} has no *d*-cube term $\stackrel{\text{Thm}1}{\Longrightarrow} \exists (U_j)_{j < d} (\mathbf{U}_j \leq \mathbf{F}, y \in U_j, x \notin U_j) \text{ s.t.}$ $Cross(U_{i_0}, ..., U_{i_{m-1}}) \leq \mathbf{F}^m$ whenever $i_0 < ... < i_{m-1} (< d)$. For each f_{ℓ} , consider the bipartite graph $Z_0 \qquad X_0$ X_{ℓ} Z_{k-1} X_{k-1} $\dots x_{n_0-1}$ $\dots x_{n_{\ell}-1}$ $\dots x_{n_k}$ l x₀ x_0 x_i $f_{\ell}^{\mathbf{F}}$ is not U_i -absorbing in x_i \Leftrightarrow II_1 . . . 11: **I**I., \mathcal{U} $< n_{\ell} - 1 \le n_{k-1} - 1$ $< n_0 - 1$

- ♦ There is no matching from X_ℓ to U.
- $\diamond \text{ Marriage Thm } \Rightarrow \exists Z_{\ell} \subseteq X_{\ell} \dots$
- ♦ $d > \sum_{\ell < k} (n_{\ell} 1) \Rightarrow \exists U_r \in U$ s.t. all $f_{\ell}^{\mathbf{F}}$ have U_r -absorbing variables.