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Cube Terms

Definition. A d-cube term for a variety V is a term c such that

V |= c
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 , . . .
︸ ︷︷ ︸

d-tuples in x, y, with at least one y


=


x
x
...
x

 .

∃ cube term (⇔ ∃ edge term⇔ ∃ parallelogram term)
� is a common generalization of ‘∃Mal’tsev term’ and ‘∃ NU term’
� for finite A, is equivalent to log2 |Sub(An)| ∈ O(nk) for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

� for AΓ, implies that CSP(Γ) ∈ P [Idziak, Marković, McKenzie, V., W., 2010]

� for finite A, implies that A is finitely related [Aichinger, Mayr, McKenzie, 2014]
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How To Recognize If Cube Terms Exist

Let A be an idempotent algebra.

Definition. A cube term blocker for A is a pair (U,B) of subuniverses of A
with ∅ ( U ( B such that for every term t = t(x0, . . . , xn−1), the term
operation tB is U-absorbing in some variable xi;

� i.e., tB(b0, . . . , bn−1) ∈ U whenever b0, . . . , bn−1 ∈ B with bi ∈ U.

MMM Theorem. [Marković, Maróti, McKenzie, 2012]

TFAE for a finite idempotent algebra A:
(1) A has no cube term;
(2) A has a cube term blocker.

� Note. (2)⇒ (1) is easy.
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MMM Theorem. [Marković, Maróti, McKenzie, 2012]

TFAE for a finite idempotent algebra A:
(1) A has no cube term;
(2) A has a cube term blocker.

� Note. (2)⇒ (1) is easy.

A. Szendrei (CU Boulder) Cube Term Blockers AAA90, June 2015 3 / 9



How To Recognize If Cube Terms Exist

Let A be an idempotent algebra.

Definition. A cube term blocker for A is a pair (U,B) of subuniverses of A
with ∅ ( U ( B such that for every term t = t(x0, . . . , xn−1), the term
operation tB is U-absorbing in some variable xi;

� i.e., tB(b0, . . . , bn−1) ∈ U whenever b0, . . . , bn−1 ∈ B with bi ∈ U.
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Crosses and Cube Term Blockers

Definition. The m-dimensional cross on B with
bases U0, . . . ,Um−1 (∅ ( Ui ( B) is

Cross(U0, . . . ,Um−1)
= {(bi)i<m ∈ Bm : bi ∈ Ui for some i < m}.

Easy Fact: Let A be an idempotent algebra.
TFAE for B ≤ A and ∅ ( U ( B:
• (U,B) is a cube term blocker for A;
• Cross(U, . . . ,U) ≤ Bm for all m.

B

B

U0

U1

Cross(U0,U1)

MMM Theorem. [rephrased]
TFAE for a finite idempotent algebra A:

(1) A has no cube term;
(2) there exist B ≤ A and a proper, nonempty subuniverse U of B such that

Cross(U, . . . ,U) ≤ Bm for all m.
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Cross Sequences As Cube Term Blockers

From now on: V is an idempotent variety and F := FV(x, y).

Theorem 1. TFAE for 2 ≤ ν ≤ ω:
(1) V has no d-cube term for d ≤ ν;
(2) there exists a ν-sequence (Uj)j<ν of subuniverses of F

with y ∈
⋂

j<ν Uj and x /∈
⋃

j<ν Uj such that
Cross(Ui0 , . . . ,Uid−1) ≤ Fd whenever i0 < · · · < id−1 < ν.

� Definition. Such a (Uj)j<ν is called a cross sequence.

Theorem 1 vs. the MMM Theorem:
� No finiteness assumption on V; works for finite ν as well.
� But: the cross sequence is not constant.
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MMM Type Cube Term Blockers for ν = ω

Theorem 2. TFAE:
(1) V has no cube term;
(2) there exists a subuniverse U of F with y ∈ U and x /∈ U such that

(U,F) is a cube term blocker for F; i.e., Cross(U, . . . ,U) ≤ Fd for all d.

Corollary. TFAE for any finite idempotent algebra A:
(1) A has no cube term;
(2) V(A) has no cube term;
(3) FV(A)(x, y) has a cube term blocker;
(4) A has a cube term blocker.

� (1)⇔ (4) is the MMM Theorem

� Reason for ¬(4)⇒¬(3):
In any signature, the class of idempotent algebras with
no cube term blockers is closed under H, S, and Pfin.
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Corollary. TFAE for any finite idempotent algebra A:
(1) A has no cube term;
(2) V(A) has no cube term;
(3) FV(A)(x, y) has a cube term blocker;
(4) A has a cube term blocker.

� (1)⇔ (4) is the MMM Theorem

� Reason for ¬(4)⇒¬(3):
In any signature, the class of idempotent algebras with
no cube term blockers is closed under H, S, and Pfin.
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Proof of Thm 2: Symmetrizing Infinite Cross Sequences

V has no cube term Thm1
=⇒ ∃ (Ui)i<ω

(
Ui ≤ F, y ∈ Ui, x /∈ Ui

)
s.t.

Cross(Ui0 , . . . ,Uim−1) ≤ Fm whenever i0 < . . . < im−1.
• U :=

⋃
k<ω

⋂
j≥k Uj is a proper, nonempty subuniverse of F.

• Claim: (U,F) is a cube term blocker for F.
� For any term t (n-ary), consider the bipartite graph

x0 · · · xi · · · xn−1 X

U0 U1 · · · Uj · · · U

⇔ tF is not Uj-absorbing in xi

Z

≤ |Z| − 1 ≤ n− 1

� There is no matching from X to U .
� Marriage Thm ⇒ ∃Z ⊆ X . . . ⇒ tF is

⋂
j≥k Uj-absorbing in z ∈ Z

for large enough k ⇒ tF is U-absorbing in z ∈ Z.
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Deciding the Existence of a Cube Term

Theorem 3. Assume V has k operation symbols f0, . . . , fk−1 (with f` n`-ary).
If V has no d-cube term for d = 1 +

∑
`<k(n` − 1), then V has no cube term.

� This bound is sharp.

Corollary. Assume V has one operation symbol only, which is binary.
Then either V has a Mal’tsev term, or it has no cube term at all.
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Proof of Thm 3: Another Matching Argument

Let V have op symbols f0, . . . , fk−1 (f` n`-ary), and let d = 1 +
∑

`<k(n` − 1).

V has no d-cube term Thm1
=⇒ ∃ (Uj)j<d

(
Uj ≤ F, y ∈ Uj, x /∈ Uj

)
s.t.

Cross(Ui0 , . . . ,Uim−1) ≤ Fm whenever i0 < . . . < im−1 (< d).
For each f`, consider the bipartite graph

x0 · · · xi · · · xn`−1

X`

U0 U1 · · · Uj · · · U

⇔ f F
` is not Uj-absorbing in xi

Z`

≤ n` − 1

x0 · · · xn0−1

X0

· · ·

Z0

≤ n0 − 1

x0 · · · xnk−1−1

Xk−1

· · ·

Zk−1

≤ nk−1 − 1

Ur

� There is no matching from X` to U .
� Marriage Thm ⇒ ∃Z` ⊆ X` . . .
� d >

∑
`<k(n` − 1)⇒ ∃ Ur ∈ U s.t. all f F

` have Ur-absorbing variables.
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Proof of Thm 3: Another Matching Argument

Let V have op symbols f0, . . . , fk−1 (f` n`-ary), and let d = 1 +
∑

`<k(n` − 1).

V has no d-cube term Thm1
=⇒ ∃ (Uj)j<d

(
Uj ≤ F, y ∈ Uj, x /∈ Uj

)
s.t.

Cross(Ui0 , . . . ,Uim−1) ≤ Fm whenever i0 < . . . < im−1 (< d).
For each f`, consider the bipartite graph

x0 · · · xi · · · xn`−1

X`

U0 U1 · · · Uj · · · U

⇔ f F
` is not Uj-absorbing in xi

Z`

≤ n` − 1

x0 · · · xn0−1

X0

· · ·

Z0

≤ n0 − 1

x0 · · · xnk−1−1

Xk−1

· · ·

Zk−1

≤ nk−1 − 1

Ur

� There is no matching from X` to U .
� Marriage Thm ⇒ ∃Z` ⊆ X` . . .
� d >

∑
`<k(n` − 1)⇒ ∃ Ur ∈ U s.t. all f F

` have Ur-absorbing variables.
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