# A Dichotomy for First-order Reducts of Unary Structures

Manuel Bodirsky

Joint work with Antoine Mottet. Institut für Algebra, TU Dresden

June 2017

# Happy Birthday!



## Working assumption

**Reducts of Unary Structures** 

 for every finite structure Γ, the constraint satisfaction problem for Γ is in P or NP-hard.

- for every finite structure Γ, the constraint satisfaction problem for Γ is in P or NP-hard.
- The universal-algebraic tractability conjecture is true:

- for every finite structure Γ, the constraint satisfaction problem for Γ is in P or NP-hard.
- The universal-algebraic tractability conjecture is true:
  - **CSP**( $\Gamma$ ) is in P if  $\Gamma$  has a Taylor polymorphism

- for every finite structure Γ, the constraint satisfaction problem for Γ is in P or NP-hard.
- The universal-algebraic tractability conjecture is true:
  - **CSP**( $\Gamma$ ) is in P if  $\Gamma$  has a Taylor polymorphism
  - **CSP**( $\Gamma$ ) is NP-hard otherwise.

- for every finite structure Γ, the constraint satisfaction problem for Γ is in P or NP-hard.
- The universal-algebraic tractability conjecture is true:
  - $\blacksquare \ \mathbf{CSP}(\Gamma) \text{ is in } \mathbf{P} \text{ if } \Gamma \text{ has a Taylor polymorphism}$
  - $\blacksquare \ \mathbf{CSP}(\Gamma) \text{ is NP-hard otherwise.}$

Can we go home?

### The current landscape







### The current landscape



### 1 (Short) Introduction to (infinite-domain) CSPs

- 1 (Short) Introduction to (infinite-domain) CSPs
- 2 A general reduction from infinite-domain CSPs to finite-domain CSPs (for finitely bounded structures)

- 1 (Short) Introduction to (infinite-domain) CSPs
- 2 A general reduction from infinite-domain CSPs to finite-domain CSPs (for finitely bounded structures)
- 3 Universal-algebraic dichotomy:

- 1 (Short) Introduction to (infinite-domain) CSPs
- 2 A general reduction from infinite-domain CSPs to finite-domain CSPs (for finitely bounded structures)
- 3 Universal-algebraic dichotomy:
  - for finite domains
  - for first-order reducts of unary structures

- 1 (Short) Introduction to (infinite-domain) CSPs
- A general reduction from infinite-domain CSPs to finite-domain CSPs (for finitely bounded structures)
- 3 Universal-algebraic dichotomy:
  - for finite domains
  - for first-order reducts of unary structures
- 4 For the proof: need
  - concept of a topological clone

- 1 (Short) Introduction to (infinite-domain) CSPs
- A general reduction from infinite-domain CSPs to finite-domain CSPs (for finitely bounded structures)
- 3 Universal-algebraic dichotomy:
  - for finite domains
  - for first-order reducts of unary structures
- 4 For the proof: need
  - concept of a topological clone
  - canonical functions and Ramsey's theorem

- 1 (Short) Introduction to (infinite-domain) CSPs
- A general reduction from infinite-domain CSPs to finite-domain CSPs (for finitely bounded structures)
- 3 Universal-algebraic dichotomy:
  - for finite domains
  - for first-order reducts of unary structures
- 4 For the proof: need
  - concept of a topological clone
  - canonical functions and Ramsey's theorem
- Complexity dichotomy (for CSPs of first-order reducts of unary structures)

Let  $\Gamma$  be a structure with a finite relational signature  $\tau$ .  $\Gamma$  also called the template.

Let  $\Gamma$  be a structure with a finite relational signature  $\tau$ .  $\Gamma$  also called the template.

### Definition (CSP).

 $CSP(\Gamma)$  is the following computational problem:

Input: A primitive positive  $\tau$ -sentence, i.e., a sentence of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$ 

where  $\psi_1, \ldots, \psi_m$  are atomic  $\tau$ -formulas.

Question:  $\Gamma \models \phi$ ?

Let  $\Gamma$  be a structure with a finite relational signature  $\tau$ .  $\Gamma$  also called the template.

### Definition (CSP).

 $CSP(\Gamma)$  is the following computational problem:

Input: A primitive positive  $\tau$ -sentence, i.e., a sentence of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$ 

where  $\psi_1, \ldots, \psi_m$  are atomic  $\tau$ -formulas.

Question:  $\Gamma \models \phi$ ?

#### **Examples:**

•  $CSP(\mathbb{N};=,\neq)$ :

Let  $\Gamma$  be a structure with a finite relational signature  $\tau$ .  $\Gamma$  also called the template.

### Definition (CSP).

 $CSP(\Gamma)$  is the following computational problem:

Input: A primitive positive  $\tau$ -sentence, i.e., a sentence of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$ 

where  $\psi_1, \ldots, \psi_m$  are atomic  $\tau$ -formulas.

Question:  $\Gamma \models \phi$ ?

#### **Examples:**

**CSP** $(\mathbb{N}; =, \neq)$ : can be solved in polynomial time using depth first search.

Let  $\Gamma$  be a structure with a finite relational signature  $\tau$ .  $\Gamma$  also called the template.

### Definition (CSP).

 $CSP(\Gamma)$  is the following computational problem:

Input: A primitive positive  $\tau$ -sentence, i.e., a sentence of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$ 

where  $\psi_1, \ldots, \psi_m$  are atomic  $\tau$ -formulas.

Question:  $\Gamma \models \phi$ ?

#### Examples:

- **CSP**( $\mathbb{N}; =, \neq$ ): can be solved in polynomial time using depth first search.
- $\blacksquare \ \mathsf{CSP}(\mathbb{N};\neq,\textit{P}_3) \text{ where } \textit{P}_3:=\{(x,y,z)\in\mathbb{N}^3 \mid (x=y\neq z) \lor (x\neq y=z)\}:$

Let  $\Gamma$  be a structure with a finite relational signature  $\tau$ .  $\Gamma$  also called the template.

### Definition (CSP).

 $CSP(\Gamma)$  is the following computational problem:

Input: A primitive positive  $\tau$ -sentence, i.e., a sentence of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$ 

where  $\psi_1, \ldots, \psi_m$  are atomic  $\tau$ -formulas.

Question:  $\Gamma \models \phi$ ?

#### **Examples:**

- **CSP** $(\mathbb{N}; =, \neq)$ : can be solved in polynomial time using depth first search.
- CSP( $\mathbb{N}; \neq, P_3$ ) where  $P_3 := \{(x, y, z) \in \mathbb{N}^3 \mid (x = y \neq z) \lor (x \neq y = z)\}$ : NP-complete.

 $\Gamma$ : a relational  $\tau$ -structure.

Age( $\Gamma$ ): class of all finite  $\tau$ -structures that embed into  $\Gamma$ .

 $\mathcal{N}$ : a set of finite  $\tau$ -structures.

$$\begin{split} &\Gamma: \text{ a relational } \tau\text{-structure.} \\ & \text{Age}(\Gamma): \text{ class of all finite } \tau\text{-structures that embed into } \Gamma. \\ & \mathcal{N}: \text{ a set of finite } \tau\text{-structures.} \\ & \text{Forb}(\mathcal{N}): \text{ the class of all finite } \tau\text{-structures} \\ & \text{ that do not embed any structure from } \mathcal{N}. \end{split}$$

$$\label{eq:Gamma-structure} \begin{split} &\Gamma: \mbox{ a relational } \tau\mbox{-structure}. \\ & \mbox{Age}(\Gamma): \mbox{ class of all finite } \tau\mbox{-structures that embed into } \Gamma. \\ & \mathcal{N}: \mbox{ a set of finite } \tau\mbox{-structures}. \\ & \mbox{Forb}(\mathcal{N}): \mbox{ the class of all finite } \tau\mbox{-structures} \\ & \mbox{ that do not embed any structure from } \mathcal{N}. \end{split}$$

### Definition

A structure  $\Gamma$  with finite relational signature  $\tau$  is finitely bounded iff there exists a finite set of finite  $\tau$ -structures  $\mathcal{N}$  such that Age( $\Gamma$ ) = Forb( $\mathcal{N}$ ).

$$\label{eq:Gamma-structure} \begin{split} &\Gamma: \mbox{ a relational } \tau\mbox{-structure}. \\ & \mbox{Age}(\Gamma): \mbox{ class of all finite } \tau\mbox{-structures that embed into } \Gamma. \\ & \mathcal{N}: \mbox{ a set of finite } \tau\mbox{-structures}. \\ & \mbox{Forb}(\mathcal{N}): \mbox{ the class of all finite } \tau\mbox{-structures} \\ & \mbox{ that do not embed any structure from } \mathcal{N}. \end{split}$$

### Definition

A structure  $\Gamma$  with finite relational signature  $\tau$  is finitely bounded iff there exists a finite set of finite  $\tau$ -structures  $\mathcal{N}$  such that  $Age(\Gamma) = Forb(\mathcal{N})$ .

**Examples:** the structure  $(\mathbb{N}; =, \neq)$ ,  $(\mathbb{N}; \neq, P_3)$ ,  $(\mathbb{Q}; <)$ , all finite structures, ...

$$\label{eq:Gamma-structure} \begin{split} &\Gamma: \mbox{ a relational } \tau\mbox{-structure}. \\ & \mbox{Age}(\Gamma): \mbox{ class of all finite } \tau\mbox{-structures that embed into } \Gamma. \\ & \mathcal{N}: \mbox{ a set of finite } \tau\mbox{-structures}. \\ & \mbox{Forb}(\mathcal{N}): \mbox{ the class of all finite } \tau\mbox{-structures} \\ & \mbox{ that do not embed any structure from } \mathcal{N}. \end{split}$$

### Definition

A structure  $\Gamma$  with finite relational signature  $\tau$  is finitely bounded iff there exists a finite set of finite  $\tau$ -structures  $\mathcal{N}$  such that  $Age(\Gamma) = Forb(\mathcal{N})$ .

**Examples:** the structure  $(\mathbb{N};=,\neq)$ ,  $(\mathbb{N};\neq,P_3)$ ,  $(\mathbb{Q};<)$ , all finite structures, ...



$$\label{eq:Gamma-structure} \begin{split} &\Gamma: \mbox{ a relational } \tau\mbox{-structure}. \\ & \mbox{Age}(\Gamma): \mbox{ class of all finite } \tau\mbox{-structures that embed into } \Gamma. \\ & \mathcal{N}: \mbox{ a set of finite } \tau\mbox{-structures}. \\ & \mbox{Forb}(\mathcal{N}): \mbox{ the class of all finite } \tau\mbox{-structures} \\ & \mbox{ that do not embed any structure from } \mathcal{N}. \end{split}$$

### Definition

A structure  $\Gamma$  with finite relational signature  $\tau$  is finitely bounded iff there exists a finite set of finite  $\tau$ -structures  $\mathcal{N}$  such that Age( $\Gamma$ ) = Forb( $\mathcal{N}$ ).

**Examples:** the structure  $(\mathbb{N};=,\neq)$ ,  $(\mathbb{N};\neq,P_3)$ ,  $(\mathbb{Q};<)$ , all finite structures, ...



**Fact:** If  $\Gamma$  is a finitely bounded structure, then  $CSP(\Gamma)$  is in NP.

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ .

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

elements are the (quantifier-free) *m*-types  $\chi(x_1, \ldots, x_m)$  of  $\Gamma$ ;

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

- elements are the (quantifier-free) *m*-types  $\chi(x_1, \ldots, x_m)$  of  $\Gamma$ ;
- for each atomic *τ*-formula *χ* of the form *R*(*x*<sub>*i*<sub>1</sub></sub>,...,*x*<sub>*i*<sub>*r*</sub>) have unary relation containing all *m*-types that contain *χ*.</sub>
Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

- elements are the (quantifier-free) *m*-types  $\chi(x_1, \ldots, x_m)$  of  $\Gamma$ ;
- for each atomic *τ*-formula *χ* of the form *R*(*x*<sub>*i*<sub>1</sub></sub>,...,*x*<sub>*i*<sub>*r*</sub>) have unary relation containing all *m*-types that contain *χ*.</sub>
- for each  $r \in [m]$  and  $i, j: [r] \to [m]$ , have binary compatibility relation: contains all pairs (p, q) of *m*-types such that for all  $t: [s] \to [r]$  and atomic formulas  $R(x_1, \ldots, x_s)$ :

$$R(x_{i(t(1))},\ldots,x_{i(t(s))}) \Leftrightarrow R(x_{j(t(1))},\ldots,x_{j(t(s))}).$$

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

- elements are the (quantifier-free) *m*-types  $\chi(x_1, \ldots, x_m)$  of  $\Gamma$ ;
- for each atomic *τ*-formula *χ* of the form *R*(*x*<sub>*i*<sub>1</sub></sub>,...,*x*<sub>*i*<sub>*r*</sub>) have unary relation containing all *m*-types that contain *χ*.</sub>
- for each  $r \in [m]$  and  $i, j: [r] \to [m]$ , have binary compatibility relation: contains all pairs (p, q) of *m*-types such that for all  $t: [s] \to [r]$  and atomic formulas  $R(x_1, \ldots, x_s)$ :

$$R(x_{i(t(1))},\ldots,x_{i(t(s))}) \Leftrightarrow R(x_{j(t(1))},\ldots,x_{j(t(s))}).$$

#### Theorem (MB,Mottet'16; simplified version).

Let  $\Gamma$  be a finitely bounded structure, and let  $m = max(3, |\tau|, |Max-Bound|)$ .

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

- elements are the (quantifier-free) *m*-types  $\chi(x_1, \ldots, x_m)$  of  $\Gamma$ ;
- for each atomic *τ*-formula *χ* of the form *R*(*x*<sub>*i*<sub>1</sub></sub>,...,*x*<sub>*i*<sub>*r*</sub>) have unary relation containing all *m*-types that contain *χ*.</sub>
- for each  $r \in [m]$  and  $i, j: [r] \to [m]$ , have binary compatibility relation: contains all pairs (p, q) of *m*-types such that for all  $t: [s] \to [r]$  and atomic formulas  $R(x_1, \ldots, x_s)$ :

$$R(\mathbf{x}_{i(t(1))},\ldots,\mathbf{x}_{i(t(s))}) \Leftrightarrow R(\mathbf{x}_{j(t(1))},\ldots,\mathbf{x}_{j(t(s))}).$$

#### Theorem (MB,Mottet'16; simplified version).

Let  $\Gamma$  be a finitely bounded structure, and let  $m = max(3, |\tau|, |Max-Bound|)$ . Then  $CSP(\Gamma)$  has a polynomial-time reduction to  $CSP(T_{\Gamma,m})$ .

Let  $\Gamma$  be a finitely bounded  $\tau$ -structure,  $m \in \mathbb{N}$ . The *m*-type structure  $T_{\Gamma,m}$ :

- elements are the (quantifier-free) *m*-types  $\chi(x_1, \ldots, x_m)$  of  $\Gamma$ ;
- for each atomic *τ*-formula *χ* of the form *R*(*x*<sub>*i*<sub>1</sub></sub>,...,*x*<sub>*i*<sub>*r*</sub>) have unary relation containing all *m*-types that contain *χ*.</sub>
- for each  $r \in [m]$  and  $i, j: [r] \to [m]$ , have binary compatibility relation: contains all pairs (p, q) of *m*-types such that for all  $t: [s] \to [r]$  and atomic formulas  $R(x_1, \ldots, x_s)$ :

$$R(x_{i(t(1))},\ldots,x_{i(t(s))}) \Leftrightarrow R(x_{j(t(1))},\ldots,x_{j(t(s))}).$$

#### Theorem (MB,Mottet'16; simplified version).

Let  $\Gamma$  be a finitely bounded structure, and let  $m = max(3, |\tau|, |Max-Bound|)$ . Then CSP( $\Gamma$ ) has a polynomial-time reduction to CSP( $T_{\Gamma,m}$ ).

For many classes of structures  $\Gamma$  there a polynomial-time reduction in the other direction, from CSP( $T_{\Gamma}$ ) to CSP( $\Gamma$ )!

**Reducts of Unary Structures** 

 $\mathsf{CSP}(\Gamma)$  is polynomial-time equivalent to  $\mathsf{CSP}(\mathcal{T}_{\Gamma,m})$  for:

 $CSP(\Gamma)$  is polynomial-time equivalent to  $CSP(T_{\Gamma,m})$  for:

■ all first-order expansions Γ of the countable random graph (*V*; *E*) (MB+Pinsker'15)

 $\mathsf{CSP}(\Gamma)$  is polynomial-time equivalent to  $\mathsf{CSP}(\mathcal{T}_{\Gamma,m})$  for:

- all first-order expansions Γ of the countable random graph (*V*; *E*) (MB+Pinsker'15)
- all first-order expansions Γ of the countable universal homogeneous poset (Kompatscher+van Pham'16)

 $\mathsf{CSP}(\Gamma)$  is polynomial-time equivalent to  $\mathsf{CSP}(T_{\Gamma,m})$  for:

- all first-order expansions Γ of the countable random graph (V; E) (MB+Pinsker'15)
- all first-order expansions Γ of the countable universal homogeneous poset (Kompatscher+van Pham'16)
- all first-order expansions Γ of all homogeneous graphs (MB+Martin+Pinsker+Pongrácz'16)

 $\mathsf{CSP}(\Gamma)$  is polynomial-time equivalent to  $\mathsf{CSP}(\mathcal{T}_{\Gamma,m})$  for:

- all first-order expansions Γ of the countable random graph (V; E) (MB+Pinsker'15)
- all first-order expansions Γ of the countable universal homogeneous poset (Kompatscher+van Pham'16)
- all first-order expansions Γ of all homogeneous graphs (MB+Martin+Pinsker+Pongrácz'16)
- all templates Γ for CSPs in MMSNP.

 $\mathsf{CSP}(\Gamma)$  is polynomial-time equivalent to  $\mathsf{CSP}(\mathcal{T}_{\Gamma,m})$  for:

- all first-order expansions Γ of the countable random graph (V; E) (MB+Pinsker'15)
- all first-order expansions Γ of the countable universal homogeneous poset (Kompatscher+van Pham'16)
- all first-order expansions Γ of all homogeneous graphs (MB+Martin+Pinsker+Pongrácz'16)
- all templates Γ for CSPs in MMSNP.

Method fails for

■ first-order expansions Γ of (Q;<) (MB+Kara'08)

 $\mathsf{CSP}(\Gamma)$  is polynomial-time equivalent to  $\mathsf{CSP}(\mathcal{T}_{\Gamma,m})$  for:

- all first-order expansions Γ of the countable random graph (V; E) (MB+Pinsker'15)
- all first-order expansions Γ of the countable universal homogeneous poset (Kompatscher+van Pham'16)
- all first-order expansions Γ of all homogeneous graphs (MB+Martin+Pinsker+Pongrácz'16)
- all templates Γ for CSPs in MMSNP.

Method fails for

- first-order expansions  $\Gamma$  of ( $\mathbb{Q}$ ; <) (MB+Kara'08)
- first-order expansions Γ of the homogeneous binary branching C-relation (MB+Van Pham'17)

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

• two elements:  $x_1 = x_2$ ,  $x_1 \neq x_2$ .

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

- two elements:  $x_1 = x_2$ ,  $x_1 \neq x_2$ .
- compatibility relations:  $(x_1 = x_2) \Leftrightarrow (x_3 = x_4)$ .

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

• two elements:  $x_1 = x_2, x_1 \neq x_2$ .

• compatibility relations:  $(x_1 = x_2) \Leftrightarrow (x_3 = x_4)$ .

Identifying  $\neq$  with 0 and = with 1:

 $\mathsf{Pol}(\mathit{T}_{\Gamma\!,2})=\mathsf{Clo}(\{0,1\};\wedge)$ 

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

• two elements:  $x_1 = x_2$ ,  $x_1 \neq x_2$ .

• compatibility relations:  $(x_1 = x_2) \Leftrightarrow (x_3 = x_4)$ .

Identifying  $\neq$  with 0 and = with 1:

 $Pol(T_{\Gamma,2}) = Clo(\{0,1\}; \land)$ 

But: our reduction from  $CSP(\Gamma)$  to  $CSP(\mathcal{T}_{\Gamma,2})$  is not applicable!

Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

• two elements:  $x_1 = x_2, x_1 \neq x_2$ .

• compatibility relations:  $(x_1 = x_2) \Leftrightarrow (x_3 = x_4)$ .

Identifying  $\neq$  with 0 and = with 1:

$$Pol(T_{\Gamma,2}) = Clo(\{0,1\}; \wedge)$$

But: our reduction from  $CSP(\Gamma)$  to  $CSP(T_{\Gamma,2})$  is not applicable!



Let  $\Gamma := (\mathbb{N}; =, \neq)$ .  $T_{\Gamma,2}$  has:

• two elements:  $x_1 = x_2$ ,  $x_1 \neq x_2$ .

• compatibility relations:  $(x_1 = x_2) \Leftrightarrow (x_3 = x_4)$ .

Identifying  $\neq$  with 0 and = with 1:

$$Pol(T_{\Gamma,2}) = Clo(\{0,1\}; \wedge)$$

But: our reduction from  $CSP(\Gamma)$  to  $CSP(T_{\Gamma,2})$  is not applicable!

Need to work with  $m \ge max(3, |\tau|, |Max-Bound|)$ .



Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary.

Let  $\mathfrak{U} = (\mathbb{N}; P_1, \ldots, P_n)$  be a structure

where  $P_1, \ldots, P_n$  are unary.

Let  $\Gamma = (\mathbb{N}; R_1, \ldots, R_m)$  be a structure

where  $R_1, \ldots, R_m$  are first-order definable in  $\mathfrak{U}$ .

Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary.

Let  $\Gamma = (\mathbb{N}; R_1, \ldots, R_m)$  be a structure

where  $R_1, \ldots, R_m$  are first-order definable in  $\mathfrak{U}$ .

 $\Gamma$  called first-order reduct of a unary structure.

Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary. Let  $\Gamma = (\mathbb{N}; R_1, \dots, R_m)$  be a structure where  $R_1, \dots, R_m$  are first-order definable in  $\mathfrak{U}$ .  $\Gamma$  called first-order reduct of a unary structure.



Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary. Let  $\Gamma = (\mathbb{N}; R_1, \dots, R_m)$  be a structure where  $R_1, \dots, R_m$  are first-order definable in  $\mathfrak{U}$ .  $\Gamma$  called first-order reduct of a unary structure.

#### Facts.

■ £1 is finitely bounded.



Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary. Let  $\Gamma = (\mathbb{N}; R_1, \dots, R_m)$  be a structure where  $R_1, \dots, R_m$  are first-order definable in  $\mathfrak{U}$ .  $\Gamma$  called first-order reduct of a unary structure.

#### Facts.

- It is finitely bounded.
- 1-1 correspondence between (quantifier-free)
  *m*-types of \$\mathcal{L}\$ and orbits of *k*-tuples wrt. Aut(\$\mathcal{L}\$).



Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary. Let  $\Gamma = (\mathbb{N}; R_1, \dots, R_m)$  be a structure where  $R_1, \dots, R_m$  are first-order definable in  $\mathfrak{U}$ .  $\Gamma$  called first-order reduct of a unary structure.

#### Facts.

- It is finitely bounded.
- 1-1 correspondence between (quantifier-free)
  *m*-types of \$\mathcal{L}\$ and orbits of *k*-tuples wrt. Aut(\$\mathcal{L}\$).
- First-order reducts of unary structures are ω-categorical: they are up to isomorphism given by their first-order theory (equivalently: Aut(Γ) is oligomorphic).



Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a structure where  $P_1, \dots, P_n$  are unary. Let  $\Gamma = (\mathbb{N}; R_1, \dots, R_m)$  be a structure where  $R_1, \dots, R_m$  are first-order definable in  $\mathfrak{U}$ .  $\Gamma$  called first-order reduct of a unary structure.

#### Facts.

- It is finitely bounded.
- 1-1 correspondence between (quantifier-free)
  *m*-types of \$\mathcal{L}\$ and orbits of *k*-tuples wrt. Aut(\$\mathcal{L}\$).
- First-order reducts of unary structures are ω-categorical: they are up to isomorphism given by their first-order theory (equivalently: Aut(Γ) is oligomorphic).
- Every finite structure is homomorphically equivalent to a first-order reduct of a unary structure.



Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Let  $\Gamma$  be a finite structure.

Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Let  $\Gamma$  be a finite structure. Then the following are equivalent.

A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;

Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;

# Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;
- B1 Γ has no Taylor polymorphism;

# Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;
- B1 Γ has no Taylor polymorphism;
- B2  $\Gamma$  has no (arity 6, or arity 4) Siggers polymorphism;
# Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

- Let  $\Gamma$  be a finite structure. Then the following are equivalent.
- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;
- B1 Γ has no Taylor polymorphism;
- B2  $\Gamma$  has no (arity 6, or arity 4) Siggers polymorphism;
- B3 Γ has no weak near unanimity polymorphism;

# Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Let  $\Gamma$  be a finite structure. Then the following are equivalent.

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;
- B1 Γ has no Taylor polymorphism;
- B2  $\Gamma$  has no (arity 6, or arity 4) Siggers polymorphism;
- B3 Γ has no weak near unanimity polymorphism;
- B4  $\Gamma$  has no cyclic polymorphism f (i.e.,  $f(x_1, \ldots, x_n) = f(x_2, \ldots, x_n, x_1)$ )

# Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Let  $\Gamma$  be a finite structure. Then the following are equivalent.

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;
- B1 Γ has no Taylor polymorphism;
- B2  $\Gamma$  has no (arity 6, or arity 4) Siggers polymorphism;
- B3 Γ has no weak near unanimity polymorphism;
- B4  $\Gamma$  has no cyclic polymorphism f (i.e.,  $f(x_1, \ldots, x_n) = f(x_2, \ldots, x_n, x_1)$ )

Relevance for the CSP: If these conditions apply, then  $CSP(\Gamma)$  is NP-hard,

# Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik, Siggers, Barto+Opršal+Pinsker).

Let  $\Gamma$  be a finite structure. Then the following are equivalent.

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol( $\Gamma$ ) has a h1-clone homomorphism to the clone of projections  $\mathcal{P}$ ;
- B1 Γ has no Taylor polymorphism;
- B2  $\Gamma$  has no (arity 6, or arity 4) Siggers polymorphism;
- B3 Γ has no weak near unanimity polymorphism;

B4  $\Gamma$  has no cyclic polymorphism f (i.e.,  $f(x_1, \ldots, x_n) = f(x_2, \ldots, x_n, x_1)$ )

Relevance for the CSP: If these conditions apply, then  $CSP(\Gamma)$  is NP-hard, otherwise CSP is in P.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

To state the border between the NP-hard and the polynomial cases, we work with  $Pol(\Gamma)$  as a topological clone:

•  $O_B$ : clone of all operations on the set *B*.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

- $O_B$ : clone of all operations on the set *B*.
- equip  $\mathcal{O}_B$  with a (Polish) topology: the closed subclones of  $\mathcal{O}_B$  are precisely the clones of the form Pol( $\Gamma$ ) for a structure  $\Gamma$  on *B*.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

- $O_B$ : clone of all operations on the set *B*.
- equip  $\mathcal{O}_B$  with a (Polish) topology: the closed subclones of  $\mathcal{O}_B$  are precisely the clones of the form Pol( $\Gamma$ ) for a structure  $\Gamma$  on *B*.
- 'Topology of pointwise convergence'.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

- $O_B$ : clone of all operations on the set *B*.
- equip  $\mathcal{O}_B$  with a (Polish) topology: the closed subclones of  $\mathcal{O}_B$  are precisely the clones of the form Pol( $\Gamma$ ) for a structure  $\Gamma$  on *B*.
- 'Topology of pointwise convergence'.
- With respect to this topology, composition is continuous.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure. Then  $CSP(\Gamma)$  is either in P or NP-complete.

- $O_B$ : clone of all operations on the set *B*.
- equip  $\mathcal{O}_B$  with a (Polish) topology: the closed subclones of  $\mathcal{O}_B$  are precisely the clones of the form Pol( $\Gamma$ ) for a structure  $\Gamma$  on *B*.
- 'Topology of pointwise convergence'.
- With respect to this topology, composition is continuous.
- If Γ is ω-categorical, the complexity of CSP(Γ) is captured by Pol(Γ) as a topological clone (MB+Pinsker'15).

### **Reducts of Unary Structures: Preparations**

### Theorem (MB'06, MB+Hils+Martin'12).

Every  $\omega$ -categorical structure  $\Gamma$  is homomorphically equivalent to an  $\omega$ -categorical structure  $\Delta$  such that  $\text{End}(\Delta) = \overline{\text{Aut}(\Delta)}$ .

## **Reducts of Unary Structures: Preparations**

#### Theorem (MB'06, MB+Hils+Martin'12).

Every  $\omega$ -categorical structure  $\Gamma$  is homomorphically equivalent to an  $\omega$ -categorical structure  $\Delta$  such that  $\text{End}(\Delta) = \overline{\text{Aut}(\Delta)}$ .

 $\Delta$  is unique up to isomorphism, and called model-complete core of  $\Gamma$ .

## **Reducts of Unary Structures: Preparations**

#### Theorem (MB'06, MB+Hils+Martin'12).

Every  $\omega$ -categorical structure  $\Gamma$  is homomorphically equivalent to an  $\omega$ -categorical structure  $\Delta$  such that  $\text{End}(\Delta) = \overline{\text{Aut}(\Delta)}$ .

 $\Delta$  is unique up to isomorphism, and called model-complete core of  $\Gamma$ . Advertisement. another proof: talk by Libor on Sunday!

### Theorem (MB'06, MB+Hils+Martin'12).

Every  $\omega$ -categorical structure  $\Gamma$  is homomorphically equivalent to an  $\omega$ -categorical structure  $\Delta$  such that  $\text{End}(\Delta) = \overline{\text{Aut}(\Delta)}$ .

 $\Delta$  is unique up to isomorphism, and called model-complete core of  $\Gamma$ .

Advertisement. another proof: talk by Libor on Sunday!

**Lemma.** The model-complete core of a first-order reduct of a unary structure is again a first-order reduct of a unary structure.

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent.

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent.

A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent.

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol(Γ) has a uniformly continuous h1-clone homomorphism to  $\mathcal{P}$ (follows from Barto+Opršal+Pinsker'15)

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent.

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol(Γ) has a uniformly continuous h1-clone homomorphism to  $\mathcal{P}$  (follows from Barto+Opršal+Pinsker'15)
- B2 Γ has no 6-ary Siggers polymorphism modulo endomorphisms (also follows from more general results by Barto+Pinsker and Barto+Kompatscher+Olšak +Pinsker+Van Pham'LICS 2017);

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent.

- A1 Γ primitively positively interprets every finite structure up to homomorphic equivalence;
- A2 Pol(Γ) has a uniformly continuous h1-clone homomorphism to  $\mathcal{P}$  (follows from Barto+Opršal+Pinsker'15)
- B2 Γ has no 6-ary Siggers polymorphism modulo endomorphisms (also follows from more general results by Barto+Pinsker and Barto+Kompatscher+Olšak +Pinsker+Van Pham'LICS 2017);
- B3  $\Gamma$  has no weak nu polymorphism *f* modulo endomorphisms:

$$e_1f(y,x,\ldots,x,x)=e_2f(x,y,\ldots,x)=\cdots=e_nf(x,\ldots,x,y)$$

B4  $\Gamma$  has no cyclic polymorphism modulo endomorphisms.

**Reducts of Unary Structures** 

 $\Gamma$ : structure with domain *B*.

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ).

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

### Observations.

• Automorphisms of  $\Gamma$  are canonical wrt.  $\Gamma$ .

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

- Automorphisms of  $\Gamma$  are canonical wrt.  $\Gamma$ .
- $x \mapsto -x$  is canonical wrt. ( $\mathbb{Q}; <$ ).

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

- Automorphisms of  $\Gamma$  are canonical wrt.  $\Gamma$ .
- $x \mapsto -x$  is canonical wrt. ( $\mathbb{Q}; <$ ).
- The *k*-canonical polymorphisms of  $\Gamma$  form a clone  $\text{Pol}_{k-\text{can}}(\Gamma)$ .

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

- Automorphisms of  $\Gamma$  are canonical wrt.  $\Gamma$ .
- $x \mapsto -x$  is canonical wrt. ( $\mathbb{Q}; <$ ).
- The *k*-canonical polymorphisms of  $\Gamma$  form a clone  $\text{Pol}_{k-\text{can}}(\Gamma)$ .
- For first-order expansions Γ of unary structures there is a continuous clone homomorphism ξ: Pol<sub>k-can</sub>(Γ) → Pol(T<sub>Γ,m</sub>).

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

### Observations.

- Automorphisms of  $\Gamma$  are canonical wrt.  $\Gamma$ .
- $x \mapsto -x$  is canonical wrt. ( $\mathbb{Q}; <$ ).
- The *k*-canonical polymorphisms of  $\Gamma$  form a clone  $\text{Pol}_{k-\text{can}}(\Gamma)$ .
- For first-order expansions Γ of unary structures there is a continuous clone homomorphism ξ: Pol<sub>k-can</sub>(Γ) → Pol(T<sub>Γ,m</sub>).

 $\blacksquare \ \xi(\overline{\operatorname{Aut}(\Gamma)}) = \{\operatorname{id}\}.$ 

Γ: structure with domain *B*. **Definition.** A function  $f: B^n → B$  is called *k*-canonical (wrt. Γ) iff for all  $t_1, ..., t_n ∈ B^k$  the orbit of  $f(t_1, ..., t_n)$  wrt. Aut(Γ) only depends on the orbits of  $t_1, ..., t_n$  wrt. Aut(Γ). canonical: *k*-canonical for all  $k ∈ \mathbb{N}$ .

- Automorphisms of  $\Gamma$  are canonical wrt.  $\Gamma$ .
- $x \mapsto -x$  is canonical wrt. ( $\mathbb{Q}; <$ ).
- The *k*-canonical polymorphisms of  $\Gamma$  form a clone  $\text{Pol}_{k-\text{can}}(\Gamma)$ .
- For first-order expansions Γ of unary structures there is a continuous clone homomorphism ξ: Pol<sub>k-can</sub>(Γ) → Pol(T<sub>Γ,m</sub>).
- $\quad \blacksquare \ \xi(\overline{\operatorname{Aut}(\Gamma)}) = \{\operatorname{id}\}.$
- ξ maps cyclic polymorphisms modulo endomorphisms to cyclic polymorphisms of *T*<sub>Γ,m</sub>.

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5  $\Gamma$  has no cyclic polymorphisms modulo endomorphisms;

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5  $\Gamma$  has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5 Γ has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

#### Corollary (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ .

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5 Γ has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

### Corollary (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ .

 If the conditions from the previous theorem apply, then CSP(Γ) is NP-hard.
## Complexity Dichotomy Again

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5  $\Gamma$  has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

#### Corollary (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ .

- If the conditions from the previous theorem apply, then CSP(Γ) is NP-hard.
- Otherwise, Γ has a canonical Siggers polymorphism modulo endomorphisms,

## Complexity Dichotomy Again

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5  $\Gamma$  has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

#### Corollary (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ .

- If the conditions from the previous theorem apply, then CSP(Γ) is NP-hard.
- Otherwise, Γ has a canonical Siggers polymorphism modulo endomorphisms, and CSP(T<sub>Γ,m</sub>) is in P,

## Complexity Dichotomy Again

Can now strengthen the universal-algebraic dichotomy so that it implies the complexity dichotomy:

#### Theorem (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ . Then the following are equivalent:

B5  $\Gamma$  has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

#### Corollary (MB+Mottet'16).

Let  $\Gamma$  be a first-order reduct of a unary structure such that  $End(\Gamma) = \overline{Aut(\Gamma)}$ .

- If the conditions from the previous theorem apply, then CSP(Γ) is NP-hard.
- Otherwise, Γ has a canonical Siggers polymorphism modulo endomorphisms, and CSP(*T*<sub>Γ,m</sub>) is in P, hence CSP(Γ) is in P.

**Definition.** A topological group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

■ Aut(Q;<) is extremely amenable (Pestov'98) (reformulation of Ramsey's theorem).

- Aut(Q;<) is extremely amenable (Pestov'98) (reformulation of Ramsey's theorem).
- Direct products of extremely amenable groups are extremely amenable.

- Aut(Q;<) is extremely amenable (Pestov'98) (reformulation of Ramsey's theorem).
- Direct products of extremely amenable groups are extremely amenable.
- Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a unary structure.

- Aut(Q;<) is extremely amenable (Pestov'98) (reformulation of Ramsey's theorem).
- Direct products of extremely amenable groups are extremely amenable.
- Let 𝔅 = (𝔅; P<sub>1</sub>,..., P<sub>n</sub>) be a unary structure. Aut(𝔅, <) is extremely amenable if (wlog the P<sub>i</sub> are pairwise distinct)
  - $u \in P_i$ ,  $v \in P_j$ , and i < j, then u < v,
  - $\blacksquare$  < is dense and without endpoints on infinite  $P_i$ 's.

**Definition.** A topological group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

- Aut(Q;<) is extremely amenable (Pestov'98) (reformulation of Ramsey's theorem).
- Direct products of extremely amenable groups are extremely amenable.
- Let  $\mathfrak{U} = (\mathbb{N}; P_1, \dots, P_n)$  be a unary structure. Aut $(\mathfrak{U}, <)$  is extremely amenable if (wlog the  $P_i$  are pairwise distinct)
  - $u \in P_i$ ,  $v \in P_j$ , and i < j, then u < v,
  - $\blacksquare$  < is dense and without endpoints on infinite  $P_i$ 's.

#### Lemma (MB,Pinsker'11).

Let  $Aut(\Gamma)$  be extremely amenable.

For any  $f: B^{\ell} \to B$ , the set

$$\left\{g_0(f(g_1,\ldots,g_\ell)) \mid g_0,g_1,\ldots,g_\ell \in \mathsf{Aut}(\Gamma)\right\}$$

**Definition.** A topological group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

- Aut(Q;<) is extremely amenable (Pestov'98) (reformulation of Ramsey's theorem).
- Direct products of extremely amenable groups are extremely amenable.
- Let 𝔅 = (𝔅; P<sub>1</sub>,..., P<sub>n</sub>) be a unary structure. Aut(𝔅, <) is extremely amenable if (wlog the P<sub>i</sub> are pairwise distinct)
  - $u \in P_i$ ,  $v \in P_j$ , and i < j, then u < v,
  - $\blacksquare$  < is dense and without endpoints on infinite  $P_i$ 's.

#### Lemma (MB,Pinsker'11).

Let  $Aut(\Gamma)$  be extremely amenable.

For any  $f: B^{\ell} \to B$ , the set

$$\left\{ g_0(f(g_1,\ldots,g_\ell)) \mid g_0,g_1,\ldots,g_\ell \in \mathsf{Aut}(\Gamma) \right\}$$

contains a function g that is canonical wrt  $\Gamma$ .

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

### Proof Strategy.

**1** Is there a continuous clone homomorphism from  $Pol_{1can}(\Gamma) \rightarrow \mathcal{P}$ ?

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

### Proof Strategy.

**1** Is there a continuous clone homomorphism from  $Pol_{1can}(\Gamma) \rightarrow \mathcal{P}$ ? If yes: there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ 

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

### Proof Strategy.

Is there a continuous clone homomorphism from Pol<sub>1can</sub>(Γ) → P?
 If yes: there is a u.c. h1-clone homomorphism Pol(Γ) → P
 (use 'Mashups' and canonization, most work here)

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

- Is there a continuous clone homomorphism from Pol<sub>1can</sub>(Γ) → P?
  If yes: there is a u.c. h1-clone homomorphism Pol(Γ) → P
  (use 'Mashups' and canonization, most work here)
- **2** Is there a continuous homomorphism  $Pol(\Gamma)|_{P_i} \to \mathcal{P}$ ?

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

- Is there a continuous clone homomorphism from Pol<sub>1can</sub>(Γ) → P? If yes: there is a u.c. h1-clone homomorphism Pol(Γ) → P (use 'Mashups' and canonization, most work here)
- **2** Is there a continuous homomorphism  $Pol(\Gamma)|_{P_i} \to \mathcal{P}$ ? If yes,  $Pol(\Gamma) \to Pol(\Gamma)|_{P_i} \to \mathcal{P}$  continuously, done.

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

- Is there a continuous clone homomorphism from  $\text{Pol}_{1\text{can}}(\Gamma) \to \mathcal{P}$ ? If yes: there is a u.c. h1-clone homomorphism  $\text{Pol}(\Gamma) \to \mathcal{P}$ (use 'Mashups' and canonization, most work here)
- **2** Is there a continuous homomorphism  $Pol(\Gamma)|_{P_i} \to \mathcal{P}$ ? If yes,  $Pol(\Gamma) \to Pol(\Gamma)|_{P_i} \to \mathcal{P}$  continuously, done.
- **3** Otherwise:  $Pol_{1can}(\Gamma)$  contains cyclic operation (use finite-domain result)

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

- Is there a continuous clone homomorphism from  $\text{Pol}_{1\text{can}}(\Gamma) \to \mathcal{P}$ ? If yes: there is a u.c. h1-clone homomorphism  $\text{Pol}(\Gamma) \to \mathcal{P}$ (use 'Mashups' and canonization, most work here)
- **2** Is there a continuous homomorphism  $\text{Pol}(\Gamma)|_{P_i} \to \mathcal{P}$ ? If yes,  $\text{Pol}(\Gamma) \to \text{Pol}(\Gamma)|_{P_i} \to \mathcal{P}$  continuously, done.
- **3** Otherwise:  $Pol_{1can}(\Gamma)$  contains cyclic operation (use finite-domain result) and  $Pol(\Gamma)$  contains binary operation whose restriction to  $P_i$  is injective (use MB+Kara'06),

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

- Is there a continuous clone homomorphism from  $\text{Pol}_{1\text{can}}(\Gamma) \to \mathcal{P}$ ? If yes: there is a u.c. h1-clone homomorphism  $\text{Pol}(\Gamma) \to \mathcal{P}$ (use 'Mashups' and canonization, most work here)
- **2** Is there a continuous homomorphism  $\text{Pol}(\Gamma)|_{P_i} \to \mathcal{P}$ ? If yes,  $\text{Pol}(\Gamma) \to \text{Pol}(\Gamma)|_{P_i} \to \mathcal{P}$  continuously, done.
- **3** Otherwise:  $Pol_{1can}(\Gamma)$  contains cyclic operation (use finite-domain result) and  $Pol(\Gamma)$  contains binary operation whose restriction to  $P_i$  is injective (use MB+Kara'06), even a canonical one (use canonisation lemma)

**Lemma.** If  $f: B^{\ell} \to B$  is canonical wrt  $(\mathfrak{U}; <)$ , then it is also canonical wrt.  $\mathfrak{U}$ .

Want to show:

there is a u.c. h1-clone homomorphism  $Pol(\Gamma) \rightarrow \mathcal{P}$ ,

or  $\text{Pol}(\Gamma)$  has canonical cyclic polymorphism modulo endomorphisms.

- Is there a continuous clone homomorphism from  $\text{Pol}_{1can}(\Gamma) \to \mathcal{P}$ ? If yes: there is a u.c. h1-clone homomorphism  $\text{Pol}(\Gamma) \to \mathcal{P}$ (use 'Mashups' and canonization, most work here)
- **2** Is there a continuous homomorphism  $\text{Pol}(\Gamma)|_{P_i} \to \mathfrak{P}$ ? If yes,  $\text{Pol}(\Gamma) \to \text{Pol}(\Gamma)|_{P_i} \to \mathfrak{P}$  continuously, done.
- **3** Otherwise:  $Pol_{1can}(\Gamma)$  contains cyclic operation (use finite-domain result) and  $Pol(\Gamma)$  contains binary operation whose restriction to  $P_i$  is injective (use MB+Kara'06), even a canonical one (use canonisation lemma)
- 4 Can be shown that then  $\Gamma$  also contains canonical cyclic polymorphism.

# $\text{Pol}(\Gamma)$

# $\mathsf{Pol}(\Gamma)$



Previous infinite-domain CSP classifications:

Previous infinite-domain CSP classifications:

- use of Ramsey theory
- lots of cases
- did not include the class of all finite-domain CSPs.

Previous infinite-domain CSP classifications:

- use of Ramsey theory
- lots of cases
- did not include the class of all finite-domain CSPs.

The classification for first-order reducts of unary structures

Previous infinite-domain CSP classifications:

- use of Ramsey theory
- lots of cases
- did not include the class of all finite-domain CSPs.

The classification for first-order reducts of unary structures

does include the class of all finite-domain CSPs

Previous infinite-domain CSP classifications:

- use of Ramsey theory
- lots of cases
- did not include the class of all finite-domain CSPs.

The classification for first-order reducts of unary structures

- does include the class of all finite-domain CSPs
- still uses Ramsey theory (actually just Ramsey's theorem)

Previous infinite-domain CSP classifications:

- use of Ramsey theory
- lots of cases
- did not include the class of all finite-domain CSPs.

The classification for first-order reducts of unary structures

- does include the class of all finite-domain CSPs
- still uses Ramsey theory (actually just Ramsey's theorem)
- reduction to finite-domain CSPs instead of case big distinctions

 Long-term goal: classify the complexity of the CSP for all first-order reducts of finitely bounded homogeneous structures.

- Long-term goal: classify the complexity of the CSP for all first-order reducts of finitely bounded homogeneous structures.
- 2 Clarify the scope of our reduction to the finite.

- Long-term goal: classify the complexity of the CSP for all first-order reducts of finitely bounded homogeneous structures.
- 2 Clarify the scope of our reduction to the finite.
- 3 When does local consistency solve the CSP?

- Long-term goal: classify the complexity of the CSP for all first-order reducts of finitely bounded homogeneous structures.
- 2 Clarify the scope of our reduction to the finite.
- 3 When does local consistency solve the CSP?
- Are CSPs for reducts of finitely bounded homogeneous structures with semilattice polymorphism in P?

- Long-term goal: classify the complexity of the CSP for all first-order reducts of finitely bounded homogeneous structures.
- 2 Clarify the scope of our reduction to the finite.
- 3 When does local consistency solve the CSP?
- Are CSPs for reducts of finitely bounded homogeneous structures with semilattice polymorphism in P?

**Reference.** A Dichotomy for First-Order Reducts of Unary Structures, MB and Antoine Mottet, 2017. https://arxiv.org/pdf/1601.04520.pdf

A subset of the results was announced at LICS'16.