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Happy Birthday!

Reducts of Unary Structures Manuel Bodirsky 2



Working assumption

In this talk, we assume that:

for every finite structure Γ , the constraint satisfaction problem for Γ
is in P or NP-hard.
The universal-algebraic tractability conjecture is true:

CSP(Γ) is in P if Γ has a Taylor polymorphism
CSP(Γ) is NP-hard otherwise.

Can we go home?
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Outline

1 (Short) Introduction to (infinite-domain) CSPs

2 A general reduction from infinite-domain CSPs to finite-domain CSPs
(for finitely bounded structures)

3 Universal-algebraic dichotomy:
for finite domains
for first-order reducts of unary structures

4 For the proof: need
concept of a topological clone
canonical functions and Ramsey’s theorem

5 Complexity dichotomy
(for CSPs of first-order reducts of unary structures)
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CSPs

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition (CSP).

CSP(Γ) is the following computational problem:

Input: A primitive positive τ-sentence, i.e., a sentence of the form

∃x1, . . . , xn (ψ1 ∧ · · ·∧ψm)

where ψ1, . . . , ψm are atomic τ-formulas.

Question: Γ |= φ?

Examples:

CSP(N; =, 6=): can be solved in polynomial time using depth first search.

CSP(N; 6=,P3) where P3 := {(x , y , z) ∈ N3 | (x = y 6= z)∨ (x 6= y = z)}:
NP-complete.
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Finitely Bounded Structures

Γ : a relational τ-structure.
Age(Γ): class of all finite τ-structures that embed into Γ .
N : a set of finite τ-structures.
Forb(N ): the class of all finite τ-structures
that do not embed any structure from N .

Definition
A structure Γ with finite relational signature τ is finitely bounded iff
there exists a finite set of finite τ-structures N such that Age(Γ) = Forb(N ).

Examples: the structure (N; =, 6=), (N; 6=,P3), (Q;<), all finite structures, . . .

Fact: If Γ is a finitely bounded structure, then CSP(Γ) is in NP.
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Reduction to the finite
Let Γ be a finitely bounded τ-structure, m ∈ N.

The m-type structure TΓ,m:

elements are the (quantifier-free) m-types χ(x1, . . . , xm) of Γ ;

for each atomic τ-formula χ of the form R(xi1 , . . . , xir ) have unary relation
containing all m-types that contain χ.

for each r ∈ [m] and i , j : [r ]→ [m], have binary compatibility relation:
contains all pairs (p,q) of m-types such that for all t : [s]→ [r ] and
atomic formulas R(x1, . . . , xs):

R(xi(t(1)), . . . , xi(t(s)))⇔ R(xj(t(1)), . . . , xj(t(s))).

Theorem (MB,Mottet’16; simplified version).

Let Γ be a finitely bounded structure, and let m = max(3, |τ|, |Max-Bound|).
Then CSP(Γ) has a polynomial-time reduction to CSP(TΓ,m).

For many classes of structures Γ there a polynomial-time reduction in the
other direction, from CSP(TΓ ) to CSP(Γ)!
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Scope of the Reduction

CSP(Γ) is polynomial-time equivalent to CSP(TΓ,m) for:

all first-order expansions Γ of the countable random graph (V ;E)

(MB+Pinsker’15)

all first-order expansions Γ of the countable universal
homogeneous poset (Kompatscher+van Pham’16)

all first-order expansions Γ of all homogeneous graphs
(MB+Martin+Pinsker+Pongrácz’16)

all templates Γ for CSPs in MMSNP.

Method fails for

first-order expansions Γ of (Q;<) (MB+Kara’08)

first-order expansions Γ of the homogeneous binary branching C-relation
(MB+Van Pham’17)
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all templates Γ for CSPs in MMSNP.

Method fails for

first-order expansions Γ of (Q;<) (MB+Kara’08)

first-order expansions Γ of the homogeneous binary branching C-relation
(MB+Van Pham’17)

Reducts of Unary Structures Manuel Bodirsky 12



Scope of the Reduction

CSP(Γ) is polynomial-time equivalent to CSP(TΓ,m) for:

all first-order expansions Γ of the countable random graph (V ;E)

(MB+Pinsker’15)

all first-order expansions Γ of the countable universal
homogeneous poset (Kompatscher+van Pham’16)

all first-order expansions Γ of all homogeneous graphs
(MB+Martin+Pinsker+Pongrácz’16)
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Example

Let Γ := (N; =, 6=).

TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable!

x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



Example

Let Γ := (N; =, 6=).
TΓ,2 has:

two elements: x1 = x2, x1 6= x2.

compatibility relations: (x1 = x2)⇔ (x3 = x4).

Identifying 6= with 0 and = with 1:

Pol(TΓ,2) = Clo({0,1};∧)

But: our reduction from CSP(Γ) to CSP(TΓ,2)
is not applicable! x1

x2

x3

=

=
≠

Need to work with m ≥ max(3, |τ|, |Max-Bound|).

Reducts of Unary Structures Manuel Bodirsky 13



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.

Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.

Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



First-order Reducts of Unary Structures

Let U = (N;P1, . . . ,Pn) be a structure
where P1, . . . ,Pn are unary.
Let Γ = (N;R1, . . . ,Rm) be a structure
where R1, . . . ,Rm are first-order definable in U.
Γ called first-order reduct of a unary structure.

ℕ

P3

P1

P2

P4

Facts.

U is finitely bounded.

1-1 correspondence between (quantifier-free)
m-types of U and orbits of k -tuples wrt. Aut(U).

First-order reducts of unary structures are ω-categorical:
they are up to isomorphism given by their first-order theory
(equivalently: Aut(Γ) is oligomorphic).

Every finite structure is homomorphically equivalent
to a first-order reduct of a unary structure.

Reducts of Unary Structures Manuel Bodirsky 14



Universal-Algebraic Dichotomy: Finite Case

Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik,
Siggers, Barto+Opršal+Pinsker).

Let Γ be a finite structure. Then the following are equivalent.

A1 Γ primitively positively interprets every finite structure
up to homomorphic equivalence;

A2 Pol(Γ) has a h1-clone homomorphism to the clone of projections P;

B1 Γ has no Taylor polymorphism;

B2 Γ has no (arity 6, or arity 4) Siggers polymorphism;

B3 Γ has no weak near unanimity polymorphism;

B4 Γ has no cyclic polymorphism f (i.e., f (x1, . . . , xn) = f (x2, . . . , xn, x1))

Relevance for the CSP: If these conditions apply, then CSP(Γ) is NP-hard,
otherwise CSP is in P.
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Let Γ be a finite structure. Then the following are equivalent.

A1 Γ primitively positively interprets every finite structure
up to homomorphic equivalence;

A2 Pol(Γ) has a h1-clone homomorphism to the clone of projections P;

B1 Γ has no Taylor polymorphism;

B2 Γ has no (arity 6, or arity 4) Siggers polymorphism;

B3 Γ has no weak near unanimity polymorphism;

B4 Γ has no cyclic polymorphism f (i.e., f (x1, . . . , xn) = f (x2, . . . , xn, x1))

Relevance for the CSP: If these conditions apply, then CSP(Γ) is NP-hard,
otherwise CSP is in P.

Reducts of Unary Structures Manuel Bodirsky 15



Universal-Algebraic Dichotomy: Finite Case

Theorem (Jeavons+Bulatov+Krokhin, Taylor, Maroti+McKenzie, Barto+Kozik,
Siggers, Barto+Opršal+Pinsker).
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Complexity Dichotomy for Reducts of Unary Structures

Theorem (MB+Mottet’16).

Let Γ be a first-order reduct of a unary structure.
Then CSP(Γ) is either in P or NP-complete.

To state the border between the NP-hard and the polynomial cases,
we work with Pol(Γ) as a topological clone:

OB: clone of all operations on the set B.

equip OB with a (Polish) topology: the closed subclones of OB are
precisely the clones of the form Pol(Γ) for a structure Γ on B.

‘Topology of pointwise convergence’.

With respect to this topology, composition is continuous.

If Γ is ω-categorical, the complexity of CSP(Γ) is captured
by Pol(Γ) as a topological clone (MB+Pinsker’15).
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Reducts of Unary Structures: Preparations

Theorem (MB’06, MB+Hils+Martin’12).

Every ω-categorical structure Γ is homomorphically equivalent to an
ω-categorical structure ∆ such that End(∆) = Aut(∆).

∆ is unique up to isomorphism, and called model-complete core of Γ .

Advertisement. another proof: talk by Libor on Sunday!

Lemma. The model-complete core of a first-order reduct of a unary structure
is again a first-order reduct of a unary structure.
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Infinite Universal-Algebraic Dichotomy

Theorem (MB+Mottet’16).

Let Γ be a first-order reduct of a unary structure such that End(Γ) = Aut(Γ).
Then the following are equivalent.

A1 Γ primitively positively interprets every finite structure
up to homomorphic equivalence;

A2 Pol(Γ) has a uniformly continuous h1-clone homomorphism to P

(follows from Barto+Opršal+Pinsker’15)

B2 Γ has no 6-ary Siggers polymorphism modulo endomorphisms
(also follows from more general results by Barto+Pinsker and
Barto+Kompatscher+Olšak +Pinsker+Van Pham’LICS 2017);

B3 Γ has no weak nu polymorphism f modulo endomorphisms:

e1f (y , x , . . . , x , x) = e2f (x , y , . . . , x) = · · · = enf (x , . . . , x , y)

B4 Γ has no cyclic polymorphism modulo endomorphisms.
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Canonical Functions

Γ : structure with domain B.
Definition. A function f : Bn → B is called k -canonical (wrt. Γ ) iff
for all t1, . . . , tn ∈ Bk the orbit of f (t1, . . . , tn) wrt. Aut(Γ)
only depends on the orbits of t1, . . . , tn wrt. Aut(Γ).
canonical: k -canonical for all k ∈ N.

Observations.

Automorphisms of Γ are canonical wrt. Γ .

x 7→ −x is canonical wrt. (Q;<).

The k -canonical polymorphisms of Γ form a clone Polk -can(Γ).

For first-order expansions Γ of unary structures there is a
continuous clone homomorphism ξ : Polk -can(Γ)→ Pol(TΓ,m).

ξ(Aut(Γ)) = {id}.

ξ maps cyclic polymorphisms modulo endomorphisms
to cyclic polymorphisms of TΓ,m.
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Complexity Dichotomy Again

Can now strengthen the universal-algebraic dichotomy so that it implies the
complexity dichotomy:

Theorem (MB+Mottet’16).

Let Γ be a first-order reduct of a unary structure such that End(Γ) = Aut(Γ).
Then the following are equivalent:

B5 Γ has no cyclic polymorphisms modulo endomorphisms;

B6 Γ has no canonical cyclic polymorphism modulo endomorphisms.

Corollary (MB+Mottet’16).

Let Γ be a first-order reduct of a unary structure such that End(Γ) = Aut(Γ).

If the conditions from the previous theorem apply,
then CSP(Γ) is NP-hard.

Otherwise, Γ has a canonical Siggers polymorphism modulo
endomorphisms, and CSP(TΓ,m) is in P, hence CSP(Γ) is in P.
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Canonizing

Definition. A topological group G is called extremely amenable if every
continuous action of G on a compact Hausdorff space has a fixed point.

Aut(Q;<) is extremely amenable (Pestov’98)
(reformulation of Ramsey’s theorem).

Direct products of extremely amenable groups are extremely amenable.
Let U = (N;P1, . . . ,Pn) be a unary structure. Aut(U, <) is extremely
amenable if (wlog the Pi are pairwise distinct)

u ∈ Pi , v ∈ Pj , and i < j , then u < v ,
< is dense and without endpoints on infinite Pi ’s.

Lemma (MB,Pinsker’11).

Let Aut(Γ) be extremely amenable.
For any f : B` → B, the set{

g0(f (g1, . . . ,g`)) | g0,g1, . . . ,g` ∈ Aut(Γ)
}

contains a function g that is canonical wrt Γ .
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Proof Strategy

Lemma. If f : B` → B is canonical wrt (U;<), then it is also canonical wrt. U.

Want to show:
there is a u.c. h1-clone homomorphism Pol(Γ)→ P,
or Pol(Γ) has canonical cyclic polymorphism modulo endomorphisms.

Proof Strategy.

1 Is there a continuous clone homomorphism from Pol1can(Γ)→ P?
If yes: there is a u.c. h1-clone homomorphism Pol(Γ)→ P

(use ‘Mashups’ and canonization, most work here)

2 Is there a continuous homomorphism Pol(Γ)|Pi → P?
If yes, Pol(Γ)→ Pol(Γ)|Pi → P continuously, done.

3 Otherwise: Pol1can(Γ) contains cyclic operation (use finite-domain result)
and Pol(Γ) contains binary operation whose restriction to Pi is injective
(use MB+Kara’06), even a canonical one (use canonisation lemma)

4 Can be shown that then Γ also contains canonical cyclic polymorphism.
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Final Remarks

Previous infinite-domain CSP classifications:

use of Ramsey theory

lots of cases

did not include the class of all finite-domain CSPs.

The classification for first-order reducts of unary structures

does include the class of all finite-domain CSPs

still uses Ramsey theory (actually just Ramsey’s theorem)

reduction to finite-domain CSPs instead of case big distinctions
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Future Work

1 Long-term goal: classify the complexity of the CSP for all first-order
reducts of finitely bounded homogeneous structures.

2 Clarify the scope of our reduction to the finite.

3 When does local consistency solve the CSP?

4 Are CSPs for reducts of finitely bounded homogeneous structures
with semilattice polymorphism in P?

Reference. A Dichotomy for First-Order Reducts of Unary Structures,
MB and Antoine Mottet, 2017.
https://arxiv.org/pdf/1601.04520.pdf
A subset of the results was announced at LICS’16.
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