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The Stone-Čech compactification

N - discrete topological space on the set of natural numbers

Ultrafilter: nonempty x ⊆ P (N) such that:
(1) A,B ∈ x⇒ A ∩B ∈ x;
(2) A ∈ x,A ⊆ B ⇒ B ∈ x;
(3) A ⊆ N ⇒ A ∈ x ∨ Ac ∈ x.

If A ∈ x, we say: ultrafilter x concentrates on A.

βN - the set of ultrafilters on N

Principal ultrafilters {A ⊆ N : n ∈ A} are identified with respective
elements n ∈ N
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The Stone-Čech compactification
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Algebra in βN

Every function f : N → N can be extended uniquely to continuous
f̃ : βN → βN

The multiplication can be extended to βN as follows:

A ∈ p · q ⇔ {n ∈ N : A/n ∈ q} ∈ p.

where, for A ⊆ N and n ∈ N :

A/n = {m ∈ N : mn ∈ A} =
{a
n

: a ∈ A,n | a
}
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|̃ -divisibility

U = {S ⊆ N : S is upward closed for |}

V = {S ⊆ N : S is downward closed for |}

p |̃ q iff p ∩ U ⊆ q iff q ∩ V ⊆ p

The restriction of |̃ to N2 is the usual |
|̃ is reflexive and transitive, but not antisymmetric
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Prime ultrafilters

Prime ultrafilters: p ∈ βN \ {1} divisible only by 1 and themselves

p ∈ βN is prime iff P ∈ p
(P - the set of prime numbers)

So there are 2c prime ultrafilters

For every x ∈ βN \ {1} there is prime p such that p |̃ x
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Prime ultrafilters
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The second level

A2 = {a2 : a ∈ A}

The only ultrafilter above p containing P 2 is

p2 is generated by {A2 : A ∈ p}
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The second level

A(2) = {ab : a, b ∈ A,GCD(a, b) = 1}

F(p,2) = {A(2) : A ∈ p,A ⊆ P}

Ultrafilters containing F(p,2) are also divisible only by 1, p and
themselves

Example. p · p ⊇ F(p,2)

There are either finitely many or 2c ultrafilters containing F(p,2)
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The second level

AB = {ab : a ∈ A, b ∈ B,GCD(a, b) = 1}

F(p,1),(q,1) = {AB : A ∈ p,B ∈ q, A,B ⊆ P are disjoint}

Ultrafilters containing F(p,1),(q,1) are divisible only by 1, p, q and
themselves

They are exactly ultrafilters containing AB for some disjoint A,B ⊆ P

Example. p · q, q · p ⊇ F(p,1),(q,1)

There are either finitely many or 2c ultrafilters containing F(p,1),(q,1)
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The second level
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The third level
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The third level
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Example: perfect numbers

n ∈ N is perfect if σ(n) = 2n
n ∈ N is multiperfect if ∃k ∈ N σ(n) = kn

Is NP = {n ∈ N : n is perfect} infinite?
Is NM = {n ∈ N : n is multiperfect} infinite?

Boris Šobot (Novi Sad) Divisibility of ultrafilters June 17th 2017 19 / 25



Example: perfect numbers

n ∈ N is perfect if σ(n) = 2n
n ∈ N is multiperfect if ∃k ∈ N σ(n) = kn

Is NP = {n ∈ N : n is perfect} infinite?
Is NM = {n ∈ N : n is multiperfect} infinite?
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Example: perfect numbers

|NM | = ℵ0 |NP | = ℵ0

∃x ∈ βN x |̃ σ̃(x) ∃x ∈ βN σ̃(x) = 2x
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Example: perfect numbers

|NM | = ℵ0 |NP | = ℵ0
m

∃x ∈ βN x |̃ σ̃(x) ∃x ∈ βN σ̃(x) = 2x
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Example: perfect numbers

|NM | = ℵ0 |NP | = ℵ0
⇓ m

∃x ∈ βN x |̃ σ̃(x) ∃x ∈ βN σ̃(x) = 2x
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Example: perfect numbers

|NM | = ℵ0 |NP | = ℵ0
⇓ m

∃x ∈ βN x |̃ σ̃(x) ∃x ∈ βN σ̃(x) = 2x
TRUE!
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Thank you for your attention!
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