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L. Barto, J. Opršal, M. Pinsker, The wonderland of reflections,
arXiv: 1510.04521 (first version Oct. 2015), as tool for CSP

reflections of operations f : An → A
The story starts 2016:
• J. Opřsal, R.P.: the appropriate tool for characterization of
reflections: pairs of relations (instead of relations)
• E. Lehtonen observed the connection to the paper
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L. Barto, J. Opršal, M. Pinsker, The wonderland of reflections,
arXiv: 1510.04521 (first version Oct. 2015), as tool for CSP

reflections of operations f : An → A
The story starts 2016:
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• AAA93 (Bern) (Description of the Galois closures of the Galois
connection mInv−mPol)

some of you were witnesses

• AAA94 (Novi Sad) (Description of the Galois closures of the
Galois connection Mod−mId)

you are a witness in this
moment and you are invited to be a witness during
the next talk (by Erkko)
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S set of sorts

S-sorted set: A := (As)s∈S SA := {s ∈ S | As 6= ∅}

S-sorted mapping: h : A→ B where h = (hs)s∈S , hs : As → Bs

S-sorted algebra: A := (A, (fi )i∈I ) (A = (As)s∈S S-sorted set)

fundamental operations are of the form

f : As1 × . . .× Asn︸ ︷︷ ︸
=:Aw

→ As

i.e., f : Aw → As , where w := s1 . . . sn ∈W (S), s ∈ S
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Reflections

For algebras A = (A, f ) and A′ = (A′, f ′) ,

A′ (or f ′) is a reflection of A (or f , resp.)

i.e. ∃ SA′-sorted mappings h : A′ → A, h′ : A→ A′

f−−→x y
f ′−−→

notation f(h,h′) := f ′

where hw (a1, . . . , an) := (hs1(a1), . . . , hsn(an)) for w := s1 . . . sn ∈W (S)
Remark: subalgebras and homomorphic images are special cases
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“historical” remarks Notions and notations Results

(multisorted similarity) Types (of algebras)

type τ = (S ,Σ, dec)
S set of sorts
Σ set of operation symbols
dec : Σ→W (S)× S declaration for operation symbols
dec(f ) = (w , s), w = s1 . . . sn ∈W (S), s ∈ S

w = s1 . . . sn = arity ar(f ) of f ,
s1, . . . , sn input sorts, s (output) sort of f .

interpretation of the symbol f in a (multisorted) algebra A:

f A : Aw → As , i.e., f A : As1 × . . .× Asn → As

Remark: such functions can exist only if the declaration for f is
reasonable in the multi-sorted set A, i.e., if As = ∅ then Asi = ∅ for
at least one i ∈ {1, . . . , n}.
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“historical” remarks Notions and notations Results

Minor terms and minor identities
Y = (Ys)s∈S multi-sorted set of variable symbols, τ = (S ,Σ, dec)
type
A minor term (or term of height 1, or h1-term) of sort s of type τ
over Y is a term t of the form

notation fσ :=

fy1 . . . yn (or f (y1, . . . ,yn))

where σ : [n] = {1, . . . , n} → Y : i 7→ yi (respecting sorts)

where f ∈ Σ, dec(f ) = (s1 . . . sn, s), yi ∈ Ysi .
MT s

τ (Y ) := set of all such minor terms

A minor identity of sort s is a triple (S ′, t1, t2) where S ′ ⊆ S and
t1, t2 ∈ MT s

τ (YS ′)
MIDτ (Y ):= set of all minor identities (s ∈ S)

in particular, MIDτ (X ) for
standard variables: X = (Xs)s∈S where Xs := {x s1 , x s2 , x s3 . . . }
(all Xs pairwise disjoint)
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AAA94, Novi Sad, June 15, 2017 R. Pöschel, Reflection-closed varieties of multisorted algebras (10/19)



“historical” remarks Notions and notations Results

Minor terms and minor identities
Y = (Ys)s∈S multi-sorted set of variable symbols, τ = (S ,Σ, dec)
type
A minor term (or term of height 1, or h1-term) of sort s of type τ
over Y is a term t of the form

notation fσ := fy1 . . . yn (or f (y1, . . . ,yn))

where σ : [n] = {1, . . . , n} → Y : i 7→ yi (respecting sorts)

where f ∈ Σ, dec(f ) = (s1 . . . sn, s), yi ∈ Ysi .
MT s

τ (Y ) := set of all such minor terms

A minor identity of sort s is a triple (S ′, t1, t2) where S ′ ⊆ S and
t1, t2 ∈ MT s

τ (YS ′)
MIDτ (Y ):= set of all minor identities (s ∈ S)

in particular, MIDτ (X ) for
standard variables: X = (Xs)s∈S where Xs := {x s1 , x s2 , x s3 . . . }
(all Xs pairwise disjoint)
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“historical” remarks Notions and notations Results

The Galois connection mId−Mod

A multisorted algebra A = (A,ΣA) of type τ = (S ,Σ, dec) satisfies
a minor identity (S ′, t1, t2) ∈ MIDτ (X )

A |= (S ′, t1, t2)

if for every valuation map β : X|S ′ → A we have β#(t1) = β#(t2)
where, for a minor term t = fx s1

i1
. . . x snin

= fσ

(with ar(f ) = s1 . . . sn),

the valuation is given by β#(t) := f A(β(x s1
i1

), . . . , β(x snin ))

= f A(β ◦ σ)

.
Remark: The identity is vacuosly satisfied if As = ∅ for some s ∈ S ′.

|= induces the following Galois connection (K ⊆ Alg(τ), J ⊆ MIDτ (X )):

mIdK := {(S ′, t1, t2) ∈ MIDτ (Y ) | ∀A ∈ K : A |= (S ′, t1, t2)},
ModJ := {A ∈ Alg(τ) | ∀(S ′, t1, t2) ∈ J : A |= (S ′, t1, t2)},

The Galois closures are Mod mIdK and mId ModJ .
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AAA94, Novi Sad, June 15, 2017 R. Pöschel, Reflection-closed varieties of multisorted algebras (11/19)



“historical” remarks Notions and notations Results

The Galois connection mId−Mod

A multisorted algebra A = (A,ΣA) of type τ = (S ,Σ, dec) satisfies
a minor identity (S ′, t1, t2) ∈ MIDτ (X )

A |= (S ′, t1, t2)

if for every valuation map β : X|S ′ → A we have β#(t1) = β#(t2)
where, for a minor term t = fx s1

i1
. . . x snin = fσ (with ar(f ) = s1 . . . sn),

the valuation is given by β#(t) := f A(β(x s1
i1

), . . . , β(x snin )) = f A(β ◦ σ).
Remark: The identity is vacuosly satisfied if As = ∅ for some s ∈ S ′.

|= induces the following Galois connection (K ⊆ Alg(τ), J ⊆ MIDτ (X )):

mIdK := {(S ′, t1, t2) ∈ MIDτ (Y ) | ∀A ∈ K : A |= (S ′, t1, t2)},
ModJ := {A ∈ Alg(τ) | ∀(S ′, t1, t2) ∈ J : A |= (S ′, t1, t2)},

The Galois closures are Mod mIdK and mId ModJ .
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“historical” remarks Notions and notations Results

Reflection-closed varieties (RP-varieties)

recall variety generated by K ⊆ Alg(τ): HSPK
now in addition reflection closure: reflection-closed varieties can be
characterized as RHSPK = RPK
(only for this talk at AAA94 also called RP-varieties)

This is the right notion for characterizing the Galois closure
Mod mIdK:

Theorem
For K ⊆ Alg(τ) we have

Mod mIdK = RPK,
i.e., minor-equational classes = RP-varieties.

For usual (one-sorted) algebras this was proved in the wonderland
paper by Barto, Opršal, Pinsker
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Mod mIdK = RPK,
i.e., minor-equational classes = RP-varieties.

For usual (one-sorted) algebras this was proved in the wonderland
paper by Barto, Opršal, Pinsker
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“historical” remarks Notions and notations Results

Sketch of the proof (Part 1)

(straightforward) Part I: RPK ⊆ Mod mIdK
or equivalently: RP(ModJ ) ⊆ ModJ for any set J of identities.

P(ModJ ) ⊆ ModJ holds by the classical Birkhoff HSP-theorem.

It remains to show R(ModJ ) ⊆ ModJ .

Let B ∈ R(ModJ ); then B is an (h, h′)-reflection of some
A ∈ ModJ for some h : B → A and h′ : A→ B.
We need to show that B |= (S ′, fσ, gπ) for every (S ′, fσ, gπ) ∈ J .
Let β : XS ′ → B be a valuation. Then

β#(fσ) = f B(β ◦ σ) = h′(f A(h ◦ β ◦ σ)) = h′(f Aσ (h ◦ β))

= h′(gA
π (h ◦ β)) = h′(gA(h ◦ β ◦ π)) = gB(β ◦ π) = β#(gπ),

where the equality = holds because A |= (S ′, fσ, gπ), whence
f Aσ (h ◦ β) = (h ◦ β)#(fσ) = (h ◦ β)#(gπ) = gA

π (h ◦ β).
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“historical” remarks Notions and notations Results

Sketch of the proof (Part 2)

(crucial) Part 2: Mod mIdK ⊆ RPK (type τ = (S ,Σ, dec))
Let B ∈ Mod mIdK (to show B ∈ RPK) ( w.l.o.g. all Bs disjoint)

Take Y := (Ys)s∈S (S-sorted set of variables) with Ys := Bs

(i.e., variable symbols = the disjoint union of the sets Bs).

Let

N := {(SY , t1, t2) ∈ MIDτ (Y ) | K 6|= (SY , t1, t2)}

(recall: SY = {s ∈ S | Ys 6= ∅}).
Thus for each ν ∈ N , say ν = (SY , fσ, gπ) with dec(f ) = (w , s),
σ : [n]→ Y (n := |w |), dec g = (u, s), π : [m]→ Y (m := |u|),
there exists a counterexample Aν = (Aν ,Σ

Aν ) ∈ K that does not
satisfy ν.

Take P :=
∏
ν∈N Aν (product of all the counterexamples).

Clearly, P ∈ PK.
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“historical” remarks Notions and notations Results

Sketch of the proof (Part 2), continued
Finally, one can show that B is a reflection of P.
Consequently, B ∈ RPK. (�)
more in detail: B is a (h, h′)-reflection of P:
h = (hs)s∈SY such that hs : Bs → Ps is the map b 7→ b, where for
y := b we define y := (βν(y))ν∈N (βν is the valuation witnessing
Aν 6|= ν).
h′ = (h′s)s∈SB such that h′s : Ps → Bs is the following map:

h′s(u) :=


f B(b1, . . . , bn), if u = f P(y1, . . . , yn) for some f ∈ Σw ,s ,

where (b1, . . . , bn) := (y1, . . . , yn) ∈ Yw ,

arbitrary ∈ Bs , otherwise.

i.e., h′s(f P(y1, . . . , yn)) = f B(b1, . . . , bn) = f B(hw (y1, . . . , yn))
according to the reflection property.
The case N = ∅ needs an extra consideration (then B is a
reflection of the trivial algebra D with Ds = {∅} one-element set
for each s ∈ S , and we have D =

∏
∅).
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