The Complexity of Free Combinations of Temporal CSPs

Johannes Greiner

(joint work with Manuel Bodirsky)

Institute of Algebra, Technical University Dresden

AAA94 15.-18.06.2017

• Goal: complexity classification of infinite domain CSPs by means of decomposition of signatures

- Goal: complexity classification of infinite domain CSPs by means of decomposition of signatures
- Approach: bottom up, i.e., combine weak structures (and possibly their algorithms) into richer ones

- Goal: complexity classification of infinite domain CSPs by means of decomposition of signatures
- Approach: bottom up, i.e., combine weak structures (and possibly their algorithms) into richer ones
- Choose a combination with "minimal interaction", i.e., only equality and disequality of variables are shared

- Goal: complexity classification of infinite domain CSPs by means of decomposition of signatures
- Approach: bottom up, i.e., combine weak structures (and possibly their algorithms) into richer ones
- Choose a combination with "minimal interaction", i.e., only equality and disequality of variables are shared
- Focus: problems in P (tractable) vs. NP-hard problems

Definitions

Definition (CSP, classical)

 Γ ...structure with finite relational signature τ CSP(Γ):

 Input: A first-order sentence φ over τ, using only ∧ and ∃ (*primitive positive* sentence)

• Output: Is ϕ satisfiable in Γ ?

Definitions

Definition (CSP, classical)

 Γ ...structure with finite relational signature τ CSP(Γ):

- Input: A first-order sentence φ over τ, using only ∧ and ∃ (*primitive positive* sentence)
- Output: Is ϕ satisfiable in Γ ?

Definition (CSP, generalization)

T... set of first-order sentences over signature τ CSP(T):

- Input: A primitive positive sentence ϕ over τ .
- Output: Is there a model for $T \cup \{\phi\}$?

Examples

Example (classical CSP)

Structures with first-order definition over (\mathbb{Q} ; <) are called *temporal languages*. The complexity of their CSPs has been classified by Bodirsky and Kara '10. Examples:

- $\mathsf{CSP}(\mathbb{Q}; (x = y < z) \lor (z = x < y) \lor (y = z < x))$ is in P
- $\mathsf{CSP}(\mathbb{Q}; (x < y < z) \lor (z < y < x))$ is NP-hard

Examples

Example (classical CSP)

Structures with first-order definition over $(\mathbb{Q}; <)$ are called *temporal languages*. The complexity of their CSPs has been classified by Bodirsky and Kara '10. Examples:

- $\mathsf{CSP}(\mathbb{Q}; (x = y < z) \lor (z = x < y) \lor (y = z < x))$ is in P
- $\mathsf{CSP}(\mathbb{Q}; (x < y < z) \lor (z < y < x))$ is NP-hard

Example (CSP of a theory)

Let T_1 and T_2 be the theory of $(\mathbb{Q}; \{0\}, \neq)$, each theory having its own predicate symbol for $\{0\}$. There is no structure Γ such that $CSP(\Gamma) = CSP(T_1 \cup T_2)$.

First-Order Expansion

Definition (reduct, first-order expansion)

Let Γ be any structure with signature τ . For $\sigma \subseteq \tau$ we define the σ -reduct of Γ , written as Γ^{σ} , as the structure obtained from Γ by forgetting functions and relations which are not in σ .

First-Order Expansion

Definition (reduct, first-order expansion)

Let Γ be any structure with signature τ . For $\sigma \subseteq \tau$ we define the σ -reduct of Γ , written as Γ^{σ} , as the structure obtained from Γ by forgetting functions and relations which are not in σ .

If Δ is a reduct of Γ , then Γ is an *expansion* of Δ . If furthermore all functions and relations in Γ have first-order definitions in Δ , we call Γ a *first-order expansion* of Δ .

Theorem (Bodirsky, G.)

Let Γ_1 and Γ_2 be first-order expansions of $(\mathbb{Q}; <, \neq)$ with disjoint, finite relational signatures and T_1 , T_2 the first-order theories of Γ_1 , Γ_2 respectively. Then $\text{CSP}(T_1 \cup T_2)$ is in P if both Γ_1 and Γ_2 have tractable CSPs and binary injective polymorphisms, and NP-hard otherwise.

Theorem (Bodirsky, G.)

Let Γ_1 and Γ_2 be first-order expansions of $(\mathbb{Q}; <, \neq)$ with disjoint, finite relational signatures and T_1 , T_2 the first-order theories of Γ_1 , Γ_2 respectively. Then $\text{CSP}(T_1 \cup T_2)$ is in P if both Γ_1 and Γ_2 have tractable CSPs and binary injective polymorphisms, and NP-hard otherwise.

Example (Classification in action)

•
$$T_i = \text{Theory}(\mathbb{Q}; <_i, \neq, R_i,)$$
 for $i = 1, 2, 3, 4$, where
 $R_1(\bar{x}) := \{\bar{x} \in \mathbb{Q}^4 \mid (x_1 \neq x_2) \lor (x_3 >_1 x_4)\},\$
 $R_2(\bar{x}) := \{\bar{x} \in \mathbb{Q}^3 \mid (x_1 >_2 x_2) \lor (x_1 >_2 x_3) \lor (x_1 = x_2 = x_3)\},\$
 $R_{3,4}(\bar{x}) := \{\bar{x} \in \mathbb{Q}^3 \mid x_1 = \min_{<_{3,4}}(x_2, x_3)\}$
• $\text{CSP}(T_1 \cup T_2)$ is in P, $\text{CSP}(T_3 \cup T_4)$ is NP-hard.

Tractable Case

Theorem (Nelson, Oppen '79)

Let T_1 , T_2 be stably infinite, tractable, **convex** theories with disjoint, finite relational signatures including \neq . Then CSP $(T_1 \cup T_2)$ is in P.

Tractable Case

Theorem (Nelson, Oppen '79)

Let T_1 , T_2 be stably infinite, tractable, **convex** theories with disjoint, finite relational signatures including \neq . Then CSP $(T_1 \cup T_2)$ is in P.

Definition (convex)

A theory T is *convex* if for any pp-formula ϕ the following holds: $T \cup \{\phi\} \vdash \bigvee_{i=1}^{n} x_i = y_i \implies \exists i : T \cup \{\phi\} \vdash x_i = y_i$

Tractable Case

Theorem (Nelson, Oppen '79)

Let T_1 , T_2 be stably infinite, tractable, **convex** theories with disjoint, finite relational signatures including \neq . Then CSP $(T_1 \cup T_2)$ is in P.

Definition (convex)

A theory *T* is *convex* if for any pp-formula ϕ the following holds: $T \cup \{\phi\} \vdash \bigvee_{i=1}^{n} x_i = y_i \implies \exists i : T \cup \{\phi\} \vdash x_i = y_i$

Lemma

Let Γ be an ω -categorical structure with finite relational signature where \neq is pp-definable. Then Theory(Γ) is convex iff Γ has a binary injective polymorphism.

Free Combination

Definition (*-operator)

For disjoint relational signatures τ_1 , τ_2 and classes of finite τ_1 , τ_2 structures \mathcal{K}_1 , \mathcal{K}_2 we define

$$\mathcal{K}_1 * \mathcal{K}_2 := \{ S \mid S^{\tau_1} \in \mathcal{K}_1 \text{ and } S^{\tau_2} \in \mathcal{K}_2 \}.$$

Free Combination

Lemma

Let T_1 , T_2 be ω -categorial theories with disjoint, finite relational signatures τ_1 , τ_2 and without algebraicity. Then there exists an (up to isomorphism unique) model Γ of $T_1 \cup T_2$ with countably infinite domain D such that

$$\mathsf{Sym}(D) = \overline{\mathsf{Aut}(\Gamma^{\tau_1}) \circ \mathsf{Aut}(\Gamma^{\tau_2})} = \overline{\mathsf{Aut}(\Gamma^{\tau_2}) \circ \mathsf{Aut}(\Gamma^{\tau_1})}. \quad (\dagger)$$

The structure Γ is ω -categorical, without algebraicity and $Age(\Gamma) = Age(\Gamma^{\tau_1}) * Age(\Gamma^{\tau_2})$.

Free Combination

Lemma

Let T_1 , T_2 be ω -categorial theories with disjoint, finite relational signatures τ_1 , τ_2 and without algebraicity. Then there exists an (up to isomorphism unique) model Γ of $T_1 \cup T_2$ with countably infinite domain D such that

$$\mathsf{Sym}(D) = \overline{\mathsf{Aut}(\Gamma^{\tau_1}) \circ \mathsf{Aut}(\Gamma^{\tau_2})} = \overline{\mathsf{Aut}(\Gamma^{\tau_2}) \circ \mathsf{Aut}(\Gamma^{\tau_1})}. \quad (\dagger)$$

The structure Γ is ω -categorical, without algebraicity and $Age(\Gamma) = Age(\Gamma^{\tau_1}) * Age(\Gamma^{\tau_2})$.

We call any model of $T_1 \cup T_2$ with (†) the *free combination* of the models of T_1 and T_2 respectively.

Free Combination of Temporal Structures

Example (Free combination)

Two copies of $(\mathbb{Q}; <)$ have a free combination $(\mathbb{Q}; <_1, <_2)$ with two independent orders (has been studied by Cameron, Linman and Pinsker and others).

Hard Case

<u>Reminder</u>: Γ_1, Γ_2 FO expansions of $(\mathbb{Q}; <, \neq)$, Γ free combination of Γ_1, Γ_2 .

• CSP(Γ_1) or CSP(Γ_2) not in P \Rightarrow CSP(Γ) NP hard (Bodirsky, Kara 2010)

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)
- **2** Γ has any essential polymorphism (otherwise NP hard) $\Rightarrow \Gamma_1$ and Γ_2 have binary injective polymorphism
 - existence of bin. inj. polymorphism equivalent to convexity

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)
- **2** Γ has any essential polymorphism (otherwise NP hard)
 - \Rightarrow Γ_1 and Γ_2 have binary injective polymorphism
 - ${\small \textbf{0}} \hspace{0.1 cm} \text{existence of bin. inj. polymorphism equivalent to convexity} \\$
 - **2** convexity is equivalent to: For any pp-sentence ϕ and variables x_1, x_2, x_3, x_4 : $\Gamma \models \phi \land x_1 \neq x_2$ and $\Gamma \models \phi \land x_3 \neq x_4$ then $\Gamma \models \phi \land x_1 \neq x_2 \land x_3 \neq x_4$.

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)
- Γ has any essential polymorphism (otherwise NP hard)
 - $\Rightarrow \Gamma_1 \text{ and } \Gamma_2$ have binary injective polymorphism
 - ${\small \textbf{0}} \hspace{0.1 cm} \text{existence of bin. inj. polymorphism equivalent to convexity} \\$
 - **2** convexity is equivalent to: For any pp-sentence ϕ and variables x_1, x_2, x_3, x_4 : $\Gamma \models \phi \land x_1 \neq x_2$ and $\Gamma \models \phi \land x_3 \neq x_4$ then $\Gamma \models \phi \land x_1 \neq x_2 \land x_3 \neq x_4$.
 - **③** take solution s_1 for $\phi \land x_1 \neq x_2$ and solution s_2 for $\phi \land x_3 \neq x_4$

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)
- Γ has any essential polymorphism (otherwise NP hard)
 - $\Rightarrow \Gamma_1 \text{ and } \Gamma_2$ have binary injective polymorphism
 - ${\small \textbf{0}} \hspace{0.1 cm} \text{existence of bin. inj. polymorphism equivalent to convexity} \\$
 - **2** convexity is equivalent to: For any pp-sentence ϕ and variables x_1, x_2, x_3, x_4 : $\Gamma \models \phi \land x_1 \neq x_2$ and $\Gamma \models \phi \land x_3 \neq x_4$ then $\Gamma \models \phi \land x_1 \neq x_2 \land x_3 \neq x_4$.
 - **③** take solution s_1 for $\phi \land x_1 \neq x_2$ and solution s_2 for $\phi \land x_3 \neq x_4$
 - **3** take essentially binary poly. f of Γ with witnesses u, v.

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)
- Γ has any essential polymorphism (otherwise NP hard)
 - $\Rightarrow \Gamma_1 \text{ and } \Gamma_2$ have binary injective polymorphism
 - ${\small \textbf{0}} \hspace{0.1 cm} \text{existence of bin. inj. polymorphism equivalent to convexity} \\$
 - **2** convexity is equivalent to: For any pp-sentence ϕ and variables x_1, x_2, x_3, x_4 : $\Gamma \models \phi \land x_1 \neq x_2$ and $\Gamma \models \phi \land x_3 \neq x_4$ then $\Gamma \models \phi \land x_1 \neq x_2 \land x_3 \neq x_4$.
 - $\textbf{3} \text{ take solution } s_1 \text{ for } \phi \wedge x_1 \neq x_2 \text{ and solution } s_2 \text{ for } \phi \wedge x_3 \neq x_4$
 - **3** take essentially binary poly. f of Γ with witnesses u, v.
 - there are witnesses u', v' of essentiality of f in the same orbit as (s₁(x₁), s₁(x₂), s₁(x₃)) and (s₂(x₂), s₂(x₃), s₂(x₁)) respectively

Hard Case

- $CSP(\Gamma_1)$ or $CSP(\Gamma_2)$ not in $P \Rightarrow CSP(\Gamma)$ NP hard (Bodirsky, Kara 2010)
- **2** Γ has any essential polymorphism (otherwise NP hard)
 - $\Rightarrow \Gamma_1 \text{ and } \Gamma_2$ have binary injective polymorphism
 - ${\small \textbf{0}} \hspace{0.1 cm} \text{existence of bin. inj. polymorphism equivalent to convexity} \\$
 - **2** convexity is equivalent to: For any pp-sentence ϕ and variables x_1, x_2, x_3, x_4 : $\Gamma \models \phi \land x_1 \neq x_2$ and $\Gamma \models \phi \land x_3 \neq x_4$ then $\Gamma \models \phi \land x_1 \neq x_2 \land x_3 \neq x_4$.
 - **③** take solution s_1 for $\phi \land x_1 \neq x_2$ and solution s_2 for $\phi \land x_3 \neq x_4$
 - **3** take essentially binary poly. f of Γ with witnesses u, v.
 - **9** there are witnesses u', v' of essentiality of f in the same orbit as $(s_1(x_1), s_1(x_2), s_1(x_3))$ and $(s_2(x_2), s_2(x_3), s_2(x_1))$ respectively
 - hence there are $\alpha_1, \alpha_2 \in Aut(\Gamma_1)$ s.t. $f(\alpha_1, \alpha_2)(s_1, s_2)$ is a solution for $\phi \land x_1 \neq x_2 \land x_3 \neq x_4$

$$\begin{array}{c}
\bullet \ f(v_3', v_2') \\
\neq \\
\bullet \ f(v_3', v_1') \\
f(u_1, u_3) \neq f(u_2, u_3) \\
\end{array}$$

2.5 in Detail

$$\begin{array}{c}
\bullet f(v_3', v_2') \\
\neq \\
\bullet f(v_3', v_1') \\
f(u_1, u_3) \neq f(u_2, u_3) \\
\end{array}$$

2.5 in Detail

2.5 in Detail

2.5 in Detail

Thank you for your attention!

