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Preliminaries Result Proof

Motivation

Goal: complexity classification of infinite domain CSPs by
means of decomposition of signatures

Approach: bottom up, i.e., combine weak structures (and
possibly their algorithms) into richer ones
Choose a combination with “minimal interaction”, i.e., only
equality and disequality of variables are shared
Focus: problems in P (tractable) vs. NP-hard problems
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Preliminaries Result Proof

Definitions

Definition (CSP, classical)

Γ. . . structure with finite relational signature τ
CSP(Γ):

Input: A first-order sentence φ over τ , using only ∧ and ∃
(primitive positive sentence)
Output: Is φ satisfiable in Γ?

Definition (CSP, generalization)

T . . . set of first-order sentences over signature τ
CSP(T ):

Input: A primitive positive sentence φ over τ .
Output: Is there a model for T ∪{φ}?
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Preliminaries Result Proof

Examples

Example (classical CSP)

Structures with first-order definition over (Q;<) are called
temporal languages. The complexity of their CSPs has been
classified by Bodirsky and Kara ’10.
Examples:

CSP(Q; (x = y < z) ∨ (z = x < y) ∨ (y = z < x)) is in P
CSP(Q; (x < y < z) ∨ (z < y < x)) is NP-hard

Example (CSP of a theory)

Let T1 and T2 be the theory of (Q;{0}, 6=), each theory having its
own predicate symbol for {0}.
There is no structure Γ such that CSP(Γ) = CSP(T1 ∪ T2).
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Preliminaries Result Proof

First-Order Expansion

Definition (reduct, first-order expansion)

Let Γ be any structure with signature τ . For σ ⊆ τ we define the
σ-reduct of Γ, written as Γσ, as the structure obtained from Γ by
forgetting functions and relations which are not in σ.

If ∆ is a reduct of Γ, then Γ is an expansion of ∆.
If furthermore all functions and relations in Γ have first-order
definitions in ∆, we call Γ a first-order expansion of ∆.
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Result

Theorem (Bodirsky, G.)

Let Γ1 and Γ2 be first-order expansions of (Q;<, 6=) with disjoint,
finite relational signatures and T1, T2 the first-order theories of
Γ1, Γ2 respectively. Then CSP(T1 ∪ T2) is in P if both Γ1 and Γ2
have tractable CSPs and binary injective polymorphisms,
and NP-hard otherwise.

Example (Classification in action)

Ti = Theory(Q;<i , 6=,Ri , ) for i = 1, 2, 3, 4, where

R1(x̄) :=
{
x̄ ∈ Q4 | (x1 6= x2) ∨ (x3 >1 x4)

}
,

R2(x̄) :=
{
x̄ ∈ Q3 | (x1 >2 x2) ∨ (x1 >2 x3) ∨ (x1 = x2 = x3)

}
,

R3,4(x̄) :=
{
x̄ ∈ Q3 | x1 = min<3,4(x2, x3)

}
CSP(T1 ∪ T2) is in P, CSP(T3 ∪ T4) is NP-hard.
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Preliminaries Result Proof

Tractable Case

Theorem (Nelson, Oppen ’79)

Let T1, T2 be stably infinite, tractable, convex theories with
disjoint, finite relational signatures including 6=.
Then CSP(T1 ∪ T2) is in P.

Definition (convex)

A theory T is convex if for any pp-formula φ the following holds:

T ∪{φ}`
n∨

i=1

xi = yi ⇒ ∃i : T ∪{φ}` xi = yi

Lemma
Let Γ be an ω-categorical structure with finite relational signature
where 6= is pp-definable. Then Theory(Γ) is convex iff Γ has a
binary injective polymorphism.
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Preliminaries Result Proof

Free Combination

Definition (∗-operator)
For disjoint relational signatures τ1, τ2 and classes of finite τ1, τ2
structures K1, K2 we define

K1∗K2 :={S | Sτ1 ∈ K1 and Sτ2 ∈ K2}.
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Preliminaries Result Proof

Free Combination

Lemma
Let T1, T2 be ω-categorial theories with disjoint, finite relational
signatures τ1, τ2 and without algebraicity.
Then there exists an (up to isomorphism unique) model Γ of
T1 ∪ T2 with countably infinite domain D such that

Sym(D) = Aut(Γτ1) ◦ Aut(Γτ2) = Aut(Γτ2) ◦ Aut(Γτ1). (†)

The structure Γ is ω-categorical, without algebraicity and
Age(Γ) = Age(Γτ1) ∗ Age(Γτ2).

We call any model of T1 ∪ T2 with (†) the free combination of the
models of T1 and T2 respectively.
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Preliminaries Result Proof

Free Combination of Temporal Structures

Example (Free combination)

Two copies of (Q;<) have a free combination (Q;<1, <2) with
two independent orders (has been studied by Cameron, Linman and
Pinsker and others).

<1

<2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 6 5 8 1 3 9 4 7
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Preliminaries Result Proof

Hard Case

Reminder: Γ1, Γ2 FO expansions of (Q;<, 6=), Γ free combination of
Γ1, Γ2.

1 CSP(Γ1) or CSP(Γ2) not in P ⇒ CSP(Γ) NP hard
(Bodirsky, Kara 2010)

2 Γ has any essential polymorphism (otherwise NP hard)
⇒ Γ1 and Γ2 have binary injective polymorphism

1 existence of bin. inj. polymorphism equivalent to convexity
2 convexity is equivalent to: For any pp-sentence φ and variables

x1, x2, x3, x4: Γ |= φ ∧ x1 6= x2 and Γ |= φ ∧ x3 6= x4 then
Γ |= φ ∧ x1 6= x2 ∧ x3 6= x4.

3 take solution s1 for φ ∧ x1 6= x2 and solution s2 for φ ∧ x3 6= x4
4 take essentially binary poly. f of Γ with witnesses u, v .
5 there are witnesses u′, v ′ of essentiality of f in the same orbit

as (s1(x1), s1(x2), s1(x3)) and (s2(x2), s2(x3), s2(x1))
respectively

6 hence there are α1, α2 ∈ Aut(Γ1) s.t. f (α1, α2)(s1, s2) is a
solution for φ ∧ x1 6= x2 ∧ x3 6= x4
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Preliminaries Result Proof

2.5 in Detail

Remember: f preserves <1 and <2.

f (u1, u3) f (u2, u3)

f (v ′3, v
′
1)

f (v ′3, v
′
2)

6=

6=

< 2

< 2

f (v3, v1)

f (v3, v2)

6=

f (u′1, u
′
3) f (u′2, u

′
3)

6=
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3) f (u′2, u

′
3)

6=
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′
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Questions?

Thank you for your attention!
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