Reconstructing the topology on monoids and polymorphism clones of reducts of the rationals.

Edith M. Vargas García

University of Novi Sad, Department of Mathematics and Informatics (DMI)

June 15-18, 2017
Outline

1. **Topological Monoids.**
 - Basic open sets
 - Automatic homeomorphicity

2. Betweenness Relation

3. Strict circular order

4. Separation relation

5. Polymorphisms Clones
Outline

1 Topological Monoids.
 • Basic open sets
 • Automatic homeomorphicity

2 Betweenness Relation

3 Strict circular order

4 Separation relation

5 Polymorphisms Clones
Outline

1 Topological Monoids.
 - Basic open sets
 - Automatic homeomorphicity

2 Betweenness Relation

3 Strict circular order

4 Separation relation

5 Polymorphisms Clones
Outline

1. **Topological Monoids.**
 - Basic open sets
 - Automatic homeomorphicity

2. **Betweenness Relation**

3. **Strict circular order**

4. **Separation relation**

5. **Polymorphisms Clones**
Outline

1. Topological Monoids.
 - Basic open sets
 - Automatic homeomorphism

2. Betweenness Relation

3. Strict circular order

4. Separation relation

5. Polymorphisms Clones
Presenting joint work with...

John K. Truss
University of Leeds
Professor of Pure Mathematics.
Reconstruction of Topology

Whether we can reconstruct the canonical topology of an endomorphism monoid $\text{End}(A)$ from its underlying abstract monoid structure?

Whether we can reconstruct the canonical topology of a polymorphism clone $\text{Pol}(A)$ from its underlying abstract clone structure?
Automatic homeomorphicity

Meaning that isomorphisms of certain form must necessarily also be homeomorphisms.
Transformation monoids

- For a set A, we denote by $O_A^{(1)} := A^A$ the set of all unary functions on A and by $\text{Tr}(A)$ the full transformation monoid on A.
- The submonoids $M \leq \text{Tr}(A)$ are transformation monoids on A.
If we equip A with the discrete topology, then $\text{Tr}(A)$ is a product space of A equipped with the **Tychonoff topology**.

Pointwise convergence topology

Let I be an index set. For every finite $J \subseteq I$ and $u : J \to A$:

$$U(J, u) := \{ f : I \to A \mid f \upharpoonright J = u \}.$$

Special case $I = A$, $J = \{a_1^1, \ldots, a_1^m\}$, and we fix m elements $a_j^i = u\left(a_1^i\right) \in A$ for $1 \leq j \leq m$.

If we equip A with the discrete topology, then $\text{Tr}(A)$ is a product space of A equipped with the **Tychonoff topology**.

Pointwise convergence topology

Let I be an index set. For every finite $J \subseteq I$ and $u : J \to A$:

$$U(J, u) := \{ f : I \to A \mid f \restriction_J = u \}.$$

Special case $I = A$, $J = \{a_1^1, \ldots, a_1^m\}$, and we fix m elements $a_j^i = u(a_1^i) \in A$ for $1 \leq j \leq m$.
Topology on $\text{Tr}(A)$

A non-empty basic open set is:

$$U(J, u) = \left\{ f : A \to A \mid \forall 1 \leq j \leq m: f\left(a_1^j\right) = u\left(a_1^j\right) = a_0^j \right\}.$$

- **Topological monoids** are abstract monoids which carry a topology under which the composition is continuous.
- A transformation monoid $M \leq \text{Tr}(A)$ is considered as a topological subspace of $\text{Tr}(A)$.
Given a relational structure $\mathbb{A} = \left(A, \left(R^\mathbb{A} \right)_{R \in \Sigma} \right)$, where $R^\mathbb{A} \subseteq A^{\text{ar}(R)}$ for each $R \in \Sigma$.

Endomorphism monoids

A function $f \in O_A^{(1)}$ is called an endomorphism of \mathbb{A} if

$$f : \mathbb{A} \overset{\text{homo.}}{\longrightarrow} \mathbb{A}.$$

The set of all endomorphisms on \mathbb{A} is denoted by

$$\text{End} \left(\mathbb{A} \right).$$
Given a relational structure $\mathbb{A} = \left(A, (R^\mathbb{A})_{R \in \Sigma} \right)$, where $R^\mathbb{A} \subseteq A^{\text{ar}(R)}$ for each $R \in \Sigma$.

Polymorphism

A function $f \in O_A^{(k)} := A^{A^k}$ is called a polymorphism of \mathbb{A} if

$$f : \mathbb{A}^k \xrightarrow{\text{homo.}} \mathbb{A}.$$

The set of all polymorphisms on \mathbb{A} is denoted by

$$\text{Pol} (\mathbb{A}) = \bigcup_{k \in \mathbb{N}_+} \text{Pol}^{(k)} (\mathbb{A}) .$$
Topological closure

Lemma

Let $A = (A, \mathcal{P}(A))$, I a set and consider a subset $F \subseteq A^I$. Then we have

$$
\overline{F} = \text{Loc } F,
$$

where

$$
\text{Loc } F := \{g \in A^I \mid \forall J \subseteq I, J \text{ finite } \exists f \in F : f \upharpoonright J = g \upharpoonright J\}.
$$

Using this lemma, $\text{Loc Pol } (\mathcal{A}) = \text{Pol } (\mathcal{A})$, one can prove

Remark

The submonoid $M \leq \text{Tr } (A)$ is closed $\iff M = \text{End } (\mathcal{A})$ for some relational structure \mathcal{A} with domain A.
Automatic homeomorphicity

Definition (M. Bodirsky, M. Pinsker, A. Pongrácz (2014))

A closed monoid $M \leq \text{Tr}(A)$ has reconstruction $:\iff$ for every other closed monoid $M' \leq \text{Tr}(B)$, if there exists a monoid isomorphism between M and M', then there also exists a monoid isomorphism between M and M' which is a homeomorphism.

Definition (M. Bodirsky, M. Pinsker, A. Pongrácz)

A closed monoid $M \leq \text{Tr}(A)$ has automatic homeomorphicity $:\iff$ every monoid isomorphism from M to a closed $M' \leq \text{Tr}(B)$ is a homeomorphism.
For studying such properties is that in the case where G is a closed symmetric group on Ω, G has the small index property [SIP] \Rightarrow it has *automatic homeomorphism*.

SIP

Says that any subgroup of G of index $< 2^{\aleph_0}$ contains the pointwise stabilizer of a finite set.
We investigate the automatic homeomorphicity of the endomorphism monoids of reducts of the rationals, which are:

- Betweenness relation
- Circular order relation
- Separation relation
A **Betweenness relation** betw on \(\mathbb{Q} \) is a ternary relation defined by:

\[
(\alpha, \beta, \gamma) \in \text{betw} \iff (\beta \leq \alpha \leq \gamma) \lor (\gamma \leq \alpha \leq \beta)
\]

1. \(\text{Aut} (\mathbb{Q}, \text{betw}) = \langle \text{Aut} (\mathbb{Q}, \leq), g \rangle \), where \(g(x) = -x \)
2. \(|\text{Aut} (\mathbb{Q}, \text{betw}) : \text{Aut} (\mathbb{Q}, \leq)| = 2 \)
3. \(\text{Aut} (\mathbb{Q}, \text{betw}) \) is 2-transitive.
In order to prove automatic homeomorphicity of \(\text{Emb}(\mathbb{Q}, \text{betw}) \) we use

Lemma (BPP 2014)

Let \(M \) be a closed monoid of \(\text{Tr}(\Omega) \) and \(G \leq M \) be the group of its invertible elements. If

1. \(G \) has automatic homeomorphicity (SIP)
2. \(\overline{G} = M \)
3. Any injective endomorphism \(\xi \) of \(M \) which fixes \(G \) pointwise is equal to the identity.

Then, \(M \) has automatic homeomorphicity.
We use the fact $|\text{Aut}(\mathbb{Q}, \text{betw}) : \text{Aut}(\mathbb{Q}, \leq)| = 2$ and that $\text{Aut}(\mathbb{Q}, \leq)$ has the S.I.P. to prove $\text{Aut}(\mathbb{Q}, \text{betw})$ has S.I.P. (automatic homeomorphicity).

We prove that

\[
\text{Aut}(\mathbb{Q}, \text{betw}) = \text{Emb}(\mathbb{Q}, \text{betw}) = \text{End}(\mathbb{Q}, \text{strictbetw})
\]

To prove that if $\xi : \text{Emb}(\mathbb{Q}, \text{betw}) \to \text{Emb}(\mathbb{Q}, \text{betw})$ is an injective endomorphism, which fixes every element in G, then ξ fixes every element in $\text{Emb}(\mathbb{Q}, \text{betw})$.
The circular ordering relation on \mathbb{Q}

If we twist the (strict) linear order on \mathbb{Q} around the two ends we obtain a (strict) circular order.

A (strict) circular order on \mathbb{Q} is a ternary relation defined by:

$$(x, y, z) \in \text{circ} \iff (x < y < z) \lor (y < z < x) \lor (z < x < y)$$

We demonstrate automatic homeomorphicity for its monoid of embeddings.
1. We use the fact $|\text{Aut} (\mathbb{Q}, \text{circ}) : \text{Aut} (\mathbb{Q}, <)| = \aleph_0$ and that $\text{Aut} (\mathbb{Q}, <)$ has the S.I.P. to prove $\text{Aut} (\mathbb{Q}, \text{circ})$ has S.I.P. (automatic homeomorphicity).

2. We prove that

$$\text{Aut} (\mathbb{Q}, \text{circ}) = \text{Emb} (\mathbb{Q}, \text{circ}) = \text{End} (\mathbb{Q}, \text{circ})$$

3. To prove that if $\xi : \text{Emb} (\mathbb{Q}, \text{circ}) \rightarrow \text{Emb} (\mathbb{Q}, \text{circ})$ is an injective endomorphism, which fixes every element in G, then ξ fixes every element in $\text{Emb} (\mathbb{Q}, \text{circ})$.
Our remaining task is to show that:

If $\xi(g) = g$ for all $g \in G$, then $\xi(f) = f$ for all $f \in \text{Emb}(\mathbb{Q}, \text{circ})$.

We work with a special subset Γ of $\text{Emb}(\mathbb{Q}, \text{circ})$

1. Note that for any $x, y \in \mathbb{Q}$, we may form the closed interval $[x, y] = \{z : \text{circ}(x, z, y)\}$, even if $y < x$ (in which case it actually equals $[x, \infty) \cup (-\infty, y]$ for ‘usual’ intervals).

2. For any embedding f of $(\mathbb{Q}, \text{circ})$, we define \sim by $x \sim y$ if $[x, y]$ or $[y, x]$ contains at most one point of the image of f.

3. If one point, then the interval is red; if no point, then it is blue.
Our remaining task is to show that:

If \(\xi(g) = g \) for all \(g \in G \), then \(\xi(f) = f \) for all \(f \in \text{Emb}(\mathbb{Q}, \text{circ}) \).

We work with a special subset \(\Gamma \) of \(\text{Emb}(\mathbb{Q}, \text{circ}) \):

1. Note that for any \(x, y \in \mathbb{Q} \), we may form the closed interval \([x, y] = \{ z : \text{circ}(x, z, y) \} \), even if \(y < x \) (in which case it actually equals \([x, \infty) \cup (-\infty, y] \) for ‘usual’ intervals).

2. For any embedding \(f \) of \((\mathbb{Q}, \text{circ}) \), we define \(\sim \) by \(x \sim y \) if \([x, y] \) or \([y, x] \) contains at most one point of the image of \(f \).

3. If one point, then the interval is \textit{red}; if no point, then it is \textit{blue}.
Our remaining task is to show that:

If $\xi(g) = g$ for all $g \in G$, then $\xi(f) = f$ for all $f \in \text{Emb}(\mathbb{Q}, \circlearrowright)$.

We work with a special subset Γ of $\text{Emb}(\mathbb{Q}, \circlearrowright)$

1. Note that for any $x, y \in \mathbb{Q}$, we may form the closed interval $[x, y] = \{ z : \circlearrowright(x, z, y) \}$, even if $y < x$ (in which case it actually equals $[x, \infty) \cup (-\infty, y]$ for ‘usual’ intervals).

2. For any embedding f of $(\mathbb{Q}, \circlearrowright)$, we define \sim by $x \sim y$ if $[x, y]$ or $[y, x]$ contains at most one point of the image of f.

3. If one point, then the interval is red; if no point, then it is blue.
Γ is taken to be the set of all members \(f \) of \(M \) all of whose \(\sim \)-classes are non-empty open intervals, and the red and blue classes form a copy of \(C_2 \).

The main point is that a key lemma in [BPP] can be applied to members of \(\Gamma \).

Lemma

Any injective endomorphism \(\xi \) *of* \(\text{Emb}(\mathbb{Q}, \text{circ}) \) *which fixes* \(G \) *pointwise also fixes every member of* \(\Gamma \).
The two remaining lemmas used to accomplish this are:

Lemma

If g_1 *and* g_2 *lie in* Γ *then so does* $g_2 g_1$.

Lemma

For any $f \in M$, *there is* $g \in \Gamma$ *such that* $gf \in \Gamma$.

Hence

\[
\xi(g)\xi(f) = \xi(gf) = gf = \xi(g)f
\]

\[
\xi(f) = f \quad \text{(since } \xi(g) \text{ is left cancellable.)}
\]
There is a group of permutations of a circular order which preserve or reserve it. This gives rise to a quaternary separation relation \(sep \) defined on \(\mathbb{Q} \) by

\[
(x, y, z, t) \in sep \iff ((x, y, z) \in \text{circ} \land (x, t, y) \in \text{circ})
\land ((x, z, y) \in \text{circ} \land (x, y, t) \in \text{circ})
\]

We demonstrate how to deduce automatic homeomorphicity for \(\text{Emb} (\mathbb{Q}, sep) \)
1. We use the fact $|\text{Aut}(\mathbb{Q}, \text{sep}) : \text{Aut}(\mathbb{Q}, \text{circ})| = 2$ and that $\text{Aut}(\mathbb{Q}, \text{circ})$ has the S.I.P. to prove $\text{Aut}(\mathbb{Q}, \text{sep})$ has S.I.P. (automatic homeomorphismicity).

2. We prove that

$$\text{Aut}(\mathbb{Q}, \text{sep}) = \text{Emb}(\mathbb{Q}, \text{sep}) = \text{End}(\mathbb{Q}, \text{sep})$$

3. To prove that if $\xi : \text{Emb}(\mathbb{Q}, \text{sep}) \rightarrow \text{Emb}(\mathbb{Q}, \text{sep})$ is an injective endomorphism, which fixes every element in G, then ξ fixes every element in $\text{Emb}(\mathbb{Q}, \text{sep})$. We obtain an injective endomorphism η of $\text{Emb}(\mathbb{Q}, \text{circ})$ which by the result for $\text{Emb}(\mathbb{Q}, \text{circ})$ is the identity
To deduce automatic homeomorphicity for

\[
\begin{align*}
\text{Pol} (\mathbb{Q}, \leq) & \quad \text{Pol} (\mathbb{Q}, \text{betw}) & \quad \text{Pol} (\mathbb{Q}, \text{circ}) & \quad \text{Pol} (\mathbb{Q}, \text{sep}) \\
\end{align*}
\]

where

\[(\alpha, \beta, \gamma) \in \text{betw} \iff (\beta \leq \alpha \leq \gamma) \lor (\gamma \leq \alpha \leq \beta)\]

\[(x, y, z) \in \text{circ} \iff (x \leq y \leq z) \lor (y \leq z \leq x) \lor (z \leq x \leq y)\]

\[(x, y, z, t) \in \text{sep} \iff ((x, y, z) \in \text{circ} \land (x, t, y) \in \text{circ}) \lor ((x, z, y) \in \text{circ} \land (x, y, t) \in \text{circ})\]
We use

Proposition (BPP 2014)

*Let \mathcal{C} be a closed clone with domain C which contains all constant functions on C, and let $\theta : \mathcal{C} \to \mathcal{D}$ be an isomorphism onto a clone \mathcal{D}. Then the image of any open subset of \mathcal{C} under θ is open in \mathcal{D}.***

Lemma (BTV 2016)

Let A and B be sets, P and P' be clones on A and B, respectively, and $\theta : P \to P'$ be a clone homomorphism. If for every $b \in B$ there is some unary function $h \in P^{(1)}$ with finite image such that $\theta(h)(b) = b$, then θ is continuous.
Acknowledgment

Thanks to J. K. Truss and M. Behrisch for their constant support.
Thank you :}