Lattice-valued functions

Eszter K. Horváth, Szeged

Co-authors: Branimir Šešelja, Andreja Tepavčević

Novi Sad, 2017, june 15.
Let S be a nonempty set and L a complete lattice. Every mapping $\mu : S \to L$ is called a **lattice-valued (L-valued) function** on S.
Let $p \in L$. A **cut set** of an L-valued function $\mu : S \to L$ (a p-cut) is a subset $\mu_p \subseteq S$ defined by:

$$x \in \mu_p \text{ if and only if } \mu(x) \geq p.$$

(1)

In other words, a p-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$\mu_p = \mu^{-1}(\uparrow p).$$

(2)

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

Cut set (p-cut)
Let $p \in L$. A **cut set** of an L-valued function $\mu : S \to L$ (a p-cut) is a subset $\mu_p \subseteq S$ defined by:

$$x \in \mu_p \text{ if and only if } \mu(x) \geq p. \quad (1)$$

In other words, a p-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$\mu_p = \mu^{-1}(\uparrow p). \quad (2)$$

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.
Let \(p \in L \). A **cut set** of an \(L \)-valued function \(\mu : S \to L \) (a \(p \)-cut) is a subset \(\mu_p \subseteq S \) defined by:

\[
\forall x \in \mu_p \text{ if and only if } \mu(x) \geq p.
\]

(1)

In other words, a \(p \)-cut of \(\mu : S \to L \) is the inverse image of the principal filter \(\uparrow p \), generated by \(p \in L \):

\[
\mu_p = \mu^{-1}(\uparrow p).
\]

(2)

It is obvious that for every \(p, q \in L \), \(p \leq q \) implies \(\mu_q \subseteq \mu_p \).
Let $p \in L$. A **cut set** of an L-valued function $\mu : S \to L$ (a p-cut) is a subset $\mu_p \subseteq S$ defined by:

$$x \in \mu_p \text{ if and only if } \mu(x) \geq p.$$ \hfill (1)

In other words, a p-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$\mu_p = \mu^{-1}(\uparrow p).$$ \hfill (2)

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

Eszter K. Horváth, Szeged

Co-authors: Branimir ˇSeˇselja, Andreja Tepavˇcevi´c

Lattice-valued functions

Novi Sad, 2017, june 15
Cuts and closure systems

If $\mu : S \rightarrow L$ is an L-valued function on S, then the collection μ_L of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu : S \rightarrow L$, such that the collection μ_L of cuts of μ is \mathcal{F}.

A required lattice L is the collection \mathcal{F} ordered by the reversed-inclusion, and that $\mu : S \rightarrow L$ can be defined as follows:

$$\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}. \quad (3)$$
Cuts and closure systems

If $\mu : S \to L$ is an L-valued function on S, then the collection μ_L of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu : S \to L$, such that the collection μ_L of cuts of μ is \mathcal{F}.

A required lattice L is the collection \mathcal{F} ordered by the reversed-inclusion, and that $\mu : S \to L$ can be defined as follows:

$$\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}. \quad (3)$$
If $\mu : S \to L$ is an L-valued function on S, then the collection μ_L of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu : S \to L$, such that the collection μ_L of cuts of μ is \mathcal{F}.

A required lattice L is the collection \mathcal{F} ordered by the reversed-inclusion, and that $\mu : S \to L$ can be defined as follows:

$$\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}. \quad (3)$$
The relation \approx on L

Given an L-valued function $\mu : S \to L$, we define the relation \approx on L: for $p, q \in L$

$$p \approx q \text{ if and only if } \mu_p = \mu_q.$$ \hfill (4)

The relation \approx is an equivalence on L, and

$$p \approx q \text{ if and only if } \uparrow p \cap \mu(S) = \uparrow q \cap \mu(S),$$ \hfill (5)

where $\mu(S) = \{ r \in L \mid r = \mu(x) \text{ for some } x \in S \}$.

We denote by L/\approx the collection of equivalence classes under \approx.
The relation \(\approx \) on \(L \)

Given an \(L \)-valued function \(\mu : S \to L \), we define the relation \(\approx \) on \(L \): for \(p, q \in L \)

\[
p \approx q \text{ if and only if } \mu_p = \mu_q.
\] (4)

The relation \(\approx \) is an equivalence on \(L \), and

\[
p \approx q \text{ if and only if } \uparrow p \cap \mu(S) = \uparrow q \cap \mu(S),
\] (5)

where \(\mu(S) = \{ r \in L \mid r = \mu(x) \text{ for some } x \in S \} \).

We denote by \(L/\approx \) the collection of equivalence classes under \(\approx \).
Given an L-valued function $\mu : S \rightarrow L$, we define the relation \approx on L: for $p, q \in L$

$$p \approx q \text{ if and only if } \mu_p = \mu_q.$$ \hspace{1cm} (4)

The relation \approx is an equivalence on L, and

$$p \approx q \text{ if and only if } \uparrow p \cap \mu(S) = \uparrow q \cap \mu(S),$$ \hspace{1cm} (5)

where $\mu(S) = \{ r \in L \mid r = \mu(x) \text{ for some } x \in S \}$.

We denote by L/\approx the collection of equivalence classes under \approx.
The collection of cuts

Let (μ_L, \leq) be the poset with $\mu_L = \{\mu_p \mid p \in L\}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_p, \mu_q \in \mu_L$,

$$\mu_p \leq \mu_q \text{ if and only if } \mu_q \subseteq \mu_p.$$

(μ_L, \leq) is a complete lattice and for every collection $\{\mu_p \mid p \in L_1\}$, $L_1 \subseteq L$ of cuts of μ, we have

$$\bigcap\{\mu_p \mid p \in L_1\} = \mu_{\lor\{p \mid p \in L_1\}}.$$

(6)
Let \((\mu_L, \leq)\) be the poset with \(\mu_L = \{\mu_p \mid p \in L\}\) (the collection of cuts of \(\mu\)) and the order \(\leq\) being the inverse of the set-inclusion: for \(\mu_p, \mu_q \in \mu_L\),

\[\mu_p \leq \mu_q \text{ if and only if } \mu_q \subseteq \mu_p.\]

\((\mu_L, \leq)\) is a complete lattice and for every collection \(\{\mu_p \mid p \in L_1\}\), \(L_1 \subseteq L\) of cuts of \(\mu\), we have

\[
\bigcap\{\mu_p \mid p \in L_1\} = \mu \lor (p \mid p \in L_1). \tag{6}
\]
The quotient L/\approx

Each \approx-class contains its supremum:

$$\bigvee [p]_\approx \in [p]_\approx.$$ \hfill (7)

The mapping $p \mapsto \bigvee [p]_\approx$ is a closure operator on L.

The quotient L/\approx can be ordered by the relation $\leq_{L/\approx}$ defined as follows:

$$[p]_\approx \leq_{L/\approx} [q]_\approx \text{ if and only if } \uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S).$$

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):
The quotient L/\approx

Each \approx-class contains its supremum:

$$\bigvee[p]_{\approx} \in [p]_{\approx}.$$ \hfill (7)

The mapping $p \mapsto \bigvee[p]_{\approx}$ is a closure operator on L.

The quotient L/\approx can be ordered by the relation $\leq_{L/\approx}$ defined as follows:

$$[p]_{\approx} \leq_{L/\approx} [q]_{\approx} \text{ if and only if } \uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S).$$

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):
The quotient L/\approx

Each \approx-class contains its supremum:

$$\bigvee [p] \approx \in [p] \approx .$$ \hspace{1cm} (7)

The mapping $p \mapsto \bigvee [p] \approx$ is a closure operator on L.

The quotient L/\approx can be ordered by the relation $\leq_{L/\approx}$ defined as follows:

$$[p] \approx \leq_{L/\approx} [q] \approx \text{ if and only if } \uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S).$$

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):
The poset \((L/\approx, \leq_{L/\approx})\)

\(\text{The poset } (L/\approx, \leq_{L/\approx}) \text{ is a complete lattice fulfilling:}\)

1. \([p]_\approx \leq_{L/\approx} [q]_\approx \text{ if and only if } \bigvee[p]_\approx \leq_{L} \bigvee[q]_\approx.\)
2. The mapping \([p]_\approx \mapsto \bigvee[p]_\approx\) is an injection of \(L/\approx\) into \(L.\)

The sub-poset \((\bigvee[p]_\approx, \leq_L)\) of \(L\) is isomorphic to the lattice \((L/\approx, \leq_{L/\approx})\) under \(\bigvee[p]_\approx \mapsto [p]_\approx.\)

Let \(\mu : S \to L\) be an \(L\)-valued function on \(S.\) The lattice \((\mu_L, \leq)\) of cuts of \(\mu\) is isomorphic with the lattice \((L/\approx, \leq_{L/\approx})\) of \(\approx\)-classes in \(L\) under the mapping \(\mu_p \mapsto [p]_\approx.\)
The poset \((L/\approx, \leq_{L/\approx})\)

The poset \((L/\approx, \leq_{L/\approx})\) is a complete lattice fulfilling:

(i) \([p]_\approx \leq_{L/\approx} [q]_\approx\) if and only if \(\bigvee [p]_\approx \leq_{L} \bigvee [q]_\approx\).

(ii) The mapping \([p]_\approx \mapsto \bigvee [p]_\approx\) is an injection of \(L/\approx\) into \(L\).

The sub-poset \((\bigvee [p]_\approx, \leq)\) of \(L\) is isomorphic to the lattice \((L/\approx, \leq_{L/\approx})\) under \(\bigvee [p]_\approx \mapsto [p]_\approx\).

Let \(\mu : S \rightarrow L\) be an \(L\)-valued function on \(S\). The lattice \((\mu_L, \leq)\) of cuts of \(\mu\) is isomorphic with the lattice \((L/\approx, \leq_{L/\approx})\) of \(\approx\)-classes in \(L\) under the mapping \(\mu_p \mapsto [p]_\approx\).
The poset \((L/\approx, \leq_{L/\approx})\)

The poset \((L/\approx, \leq_{L/\approx})\) is a complete lattice fulfilling:

(i) \([p]_{\approx} \leq_{L/\approx} [q]_{\approx}\) if and only if \(\bigvee [p]_{\approx} \leq_{L} \bigvee [q]_{\approx}\).

(ii) The mapping \([p]_{\approx} \mapsto \bigvee [p]_{\approx}\) is an injection of \(L/\approx\) into \(L\).

The sub-poset \((\bigvee [p]_{\approx}, \leq_{L})\) of \(L\) is isomorphic to the lattice \((L/\approx, \leq_{L/\approx})\) under \(\bigvee [p]_{\approx} \mapsto [p]_{\approx}\).

Let \(\mu : S \rightarrow L\) be an \(L\)-valued function on \(S\). The lattice \((\mu_{L}, \leq)\) of cuts of \(\mu\) is isomorphic with the lattice \((L/\approx, \leq_{L/\approx})\) of \(\approx\)-classes in \(L\) under the mapping \(\mu_{p} \mapsto [p]_{\approx}\).
The poset \((L/\approx, \leq_{L/\approx})\)

The poset \((L/\approx, \leq_{L/\approx})\) is a complete lattice fulfilling:

(i) \([p]\approx \leq_{L/\approx} [q]\approx\) if and only if \(\bigvee[p]\approx \leq_{L} \bigvee[q]\approx\).

(ii) The mapping \([p]\approx \mapsto \bigvee[p]\approx\) is an injection of \(L/\approx\) into \(L\).

The sub-poset \((\bigvee[p]\approx, \leq_{L})\) of \(L\) is isomorphic to the lattice \((L/\approx, \leq_{L/\approx})\) under \(\bigvee[p]\approx \mapsto [p]\approx\).

Let \(\mu : S \rightarrow L\) be an \(L\)-valued function on \(S\). The lattice \((\mu L, \leq)\) of cuts of \(\mu\) is isomorphic with the lattice \((L/\approx, \leq_{L/\approx})\) of \(\approx\)-classes in \(L\) under the mapping \(\mu_p \mapsto [p]\approx\).
The poset $(L/\approx, \leq_{L/\approx})$ is a complete lattice fulfilling:

(i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\bigvee[p]_{\approx} \leq_{L} \bigvee[q]_{\approx}$.
(ii) The mapping $[p]_{\approx} \mapsto \bigvee[p]_{\approx}$ is an injection of L/\approx into L.

The sub-poset $(\bigvee[p]_{\approx}, \leq_{L})$ of L is isomorphic to the lattice $(L/\approx, \leq_{L/\approx})$ under $\bigvee[p]_{\approx} \mapsto [p]_{\approx}$.

Let $\mu : S \rightarrow L$ be an L-valued function on S. The lattice (μ_{L}, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx-classes in L under the mapping $\mu_{p} \mapsto [p]_{\approx}$.
We take the lattice \((\mathcal{F}, \leq)\), where \(\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)\) is the collection of cuts of \(\mu\), and the order \(\leq\) is the dual of the set inclusion.

Let \(\hat{\mu} : S \to \mathcal{F}\), where

\[
\hat{\mu}(x) := \bigcap \{\mu_p \in \mu_L \mid x \in \mu_p\}.
\] (8)

Properties:
\(\hat{\mu}\) has the same cuts as \(\mu\).
\(\hat{\mu}\) has one-element classes of the equivalence relation \(\approx\).
Every \(f \in \mathcal{F}\) is equal to the corresponding cut of \(\hat{\mu}\).
We take the lattice \((\mathcal{F}, \leq)\), where \(\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)\) is the collection of cuts of \(\mu\), and the order \(\leq\) is the dual of the set inclusion.

Let \(\hat{\mu} : S \to \mathcal{F}\), where

\[
\hat{\mu}(x) := \bigcap \{ \mu_p \in \mu_L \mid x \in \mu_p \}.
\]

(8)

Properties:
\(\hat{\mu}\) has the same cuts as \(\mu\).
\(\hat{\mu}\) has one-element classes of the equivalence relation \(\approx\).
Every \(f \in \mathcal{F}\) is equal to the corresponding cut of \(\hat{\mu}\).
We take the lattice \((F, \leq)\), where \(F = \mu_L \subseteq \mathcal{P}(S)\) is the collection of cuts of \(\mu\), and the order \(\leq\) is the dual of the set inclusion.

Let \(\hat{\mu} : S \rightarrow F\), where

\[
\hat{\mu}(x) := \bigcap \{\mu_p \in \mu_L \mid x \in \mu_p\}.
\] (8)

Properties:
\(\hat{\mu}\) has the same cuts as \(\mu\).
\(\hat{\mu}\) has one-element classes of the equivalence relation \(\approx\).
Every \(f \in F\) is equal to the corresponding cut of \(\hat{\mu}\).
We take the lattice \((\mathcal{F}, \leq)\), where \(\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)\) is the collection of cuts of \(\mu\), and the order \(\leq\) is the dual of the set inclusion.

Let \(\hat{\mu} : S \to \mathcal{F}\), where

\[
\hat{\mu}(x) := \bigcap \{\mu_p \in \mu_L \mid x \in \mu_p\}. \tag{8}
\]

Properties:

\(\hat{\mu}\) has the same cuts as \(\mu\).

\(\hat{\mu}\) has one-element classes of the equivalence relation \(\approx\).

Every \(f \in \mathcal{F}\) is equal to the corresponding cut of \(\hat{\mu}\).
We take the lattice \((\mathcal{F}, \leq)\), where \(\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)\) is the collection of cuts of \(\mu\), and the order \(\leq\) is the dual of the set inclusion. Let \(\hat{\mu} : S \to \mathcal{F}\), where

\[
\hat{\mu}(x) := \bigcap \{\mu_p \in \mu_L \mid x \in \mu_p\}.
\]

Properties:

\(\hat{\mu}\) has the same cuts as \(\mu\).
\(\hat{\mu}\) has one-element classes of the equivalence relation \(\approx\).
Every \(f \in \mathcal{F}\) is equal to the corresponding cut of \(\hat{\mu}\).
We take the lattice \((\mathcal{F}, \leq)\), where \(\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)\) is the collection of cuts of \(\mu\), and the order \(\leq\) is the dual of the set inclusion. Let \(\hat{\mu} : S \rightarrow \mathcal{F}\), where
\[
\hat{\mu}(x) := \bigcap\{\mu_p \in \mu_L \mid x \in \mu_p\}.
\] (8)

Properties:
\(\hat{\mu}\) has the same cuts as \(\mu\).
\(\hat{\mu}\) has one-element classes of the equivalence relation \(\approx\).
Every \(f \in \mathcal{F}\) is equal to the corresponding cut of \(\hat{\mu}\).
Example

\[S = \{a, b, c, d\} \]

\[\mu = \begin{pmatrix} a & b & c & d \\ p & s & r & t \end{pmatrix} \quad \nu = \begin{pmatrix} a & b & c & d \\ z & w & m & v \end{pmatrix} \]

\[\hat{\mu} = \hat{\nu} = \begin{pmatrix} a & b & c & d \\ \{a\} & \{a, b\} & \{c\} & \{c, d\} \end{pmatrix} \]
A **Boolean function** is a mapping $f : \{0, 1\}^n \rightarrow \{0, 1\}$, $n \in \mathbb{N}$.

A **lattice-valued Boolean function** is a mapping

$$f : \{0, 1\}^n \rightarrow L,$$

where L is a complete lattice.

We also deal with **lattice-valued n-variable functions** on a finite domain $\{0, 1, \ldots, k - 1\}$:

$$f : \{0, 1, \ldots, k - 1\}^n \rightarrow L,$$

where L is a complete lattice.

We use also **p-cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, \ldots, k - 1\}^n \rightarrow L$ and $p \in L$, we have

$$f_p : \{0, 1, \ldots, k - 1\}^n \rightarrow \{0, 1\},$$

such that $f_p(x_1, \ldots, x_n) = 1$ if and only if $f(x_1, \ldots, x_n) \geq p$.

Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.
A **Boolean function** is a mapping \(f : \{0, 1\}^n \rightarrow \{0, 1\}, \ n \in \mathbb{N} \).

A **lattice-valued Boolean function** is a mapping

\[
f : \{0, 1\}^n \rightarrow L,
\]

where \(L \) is a complete lattice.

We also deal with **lattice-valued \(n \)-variable functions** on a finite domain \(\{0, 1, \ldots, k - 1\} \):

\[
f : \{0, 1, \ldots, k - 1\}^n \rightarrow L,
\]

where \(L \) is a complete lattice.

We use also **\(p \)-cuts** of lattice-valued functions as characteristic functions: for \(f : \{0, 1, \ldots, k - 1\}^n \rightarrow L \) and \(p \in L \), we have

\[
f_p : \{0, 1, \ldots, k - 1\}^n \rightarrow \{0, 1\},
\]

such that \(f_p(x_1, \ldots, x_n) = 1 \) if and only if \(f(x_1, \ldots, x_n) \geq p \).

Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.
A **Boolean function** is a mapping $f : \{0, 1\}^n \rightarrow \{0, 1\}$, $n \in \mathbb{N}$.

A **lattice-valued Boolean function** is a mapping

$$f : \{0, 1\}^n \rightarrow L,$$\

where L is a complete lattice.

We also deal with **lattice-valued n-variable functions** on a finite domain $\{0, 1, \ldots, k - 1\}$:

$$f : \{0, 1, \ldots, k - 1\}^n \rightarrow L,$$

where L is a complete lattice.

We use also **p-cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, \ldots, k - 1\}^n \rightarrow L$ and $p \in L$, we have

$$f_p : \{0, 1, \ldots, k - 1\}^n \rightarrow \{0, 1\},$$

such that $f_p(x_1, \ldots, x_n) = 1$ if and only if $f(x_1, \ldots, x_n) \geq p$.

Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.
A **Boolean function** is a mapping \(f : \{0, 1\}^n \rightarrow \{0, 1\}, \ n \in \mathbb{N}. \)

A **lattice-valued Boolean function** is a mapping

\[
 f : \{0, 1\}^n \rightarrow L,
\]

where \(L \) is a complete lattice.

We also deal with **lattice-valued \(n \)-variable functions** on a finite domain \(\{0, 1, \ldots, k - 1\} \):

\[
 f : \{0, 1, \ldots, k - 1\}^n \rightarrow L,
\]

where \(L \) is a complete lattice.

We use also **\(p \)-cuts** of lattice-valued functions as characteristic functions: for \(f : \{0, 1, \ldots, k - 1\}^n \rightarrow L \) and \(p \in L \), we have

\[
 f_p : \{0, 1, \ldots, k - 1\}^n \rightarrow \{0, 1\},
\]

such that \(f_p(x_1, \ldots, x_n) = 1 \) if and only if \(f(x_1, \ldots, x_n) \geq p \).

Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.
A **Boolean function** is a mapping $f : \{0, 1\}^n \to \{0, 1\}$, $n \in \mathbb{N}$.

A **lattice-valued Boolean function** is a mapping

$$f : \{0, 1\}^n \to L,$$

where L is a complete lattice.

We also deal with **lattice-valued n-variable functions** on a finite domain $\{0, 1, \ldots, k - 1\}$:

$$f : \{0, 1, \ldots, k - 1\}^n \to L,$$

where L is a complete lattice.

We use also **p-cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, \ldots, k - 1\}^n \to L$ and $p \in L$, we have

$$f_p : \{0, 1, \ldots, k - 1\}^n \to \{0, 1\},$$

such that $f_p(x_1, \ldots, x_n) = 1$ if and only if $f(x_1, \ldots, x_n) \geq p$.

Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.
As usual, by S_n we denote the symmetric group of all permutations over an n-element set. If f is an n-variable function on a finite domain X and $\sigma \in S_n$, then f is invariant under σ, symbolically $\sigma \vdash f$, if for all $(x_1, \ldots, x_n) \in X^n$

$$f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) .$$

If f is invariant under all permutations in $G \leq S_n$ and not invariant under any permutation from $S_n \setminus G$, then G is called the invariance group of f, and it is denoted by $G(f)$.
Invariance group

As usual, by S_n we denote the symmetric group of all permutations over an n-element set. If f is an n-variable function on a finite domain X and $\sigma \in S_n$, then f is invariant under σ, symbolically $\sigma \vdash f$, if for all $(x_1, \ldots, x_n) \in X^n$

$$f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}).$$

If f is invariant under all permutations in $G \leq S_n$ and not invariant under any permutation from $S_n \setminus G$, then G is called the invariance group of f, and it is denoted by $G(f)$.
A group $G \leq S_n$ is said to be (k, m)-representable if there is a function $f : \{0, 1, \ldots, k-1\}^n \to \{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f : \{0, 1, \ldots, k-1\}^n \to \mathbb{N}$, then it is called (k, ∞)-representable.

$G \leq S_n$ is called m-representable if it is the invariance group of a function $f : \{0, 1\}^n \to \{1, \ldots, m\}$; it is called representable if it is m-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with $(2, \infty)$-representability.
A group $G \leq S_n$ is said to be (k, m)-representable if there is a function $f : \{0, 1, \ldots, k - 1\}^n \to \{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f : \{0, 1, \ldots, k - 1\}^n \to \mathbb{N}$, then it is called (k, ∞)-representable.

$G \leq S_n$ is called m-representable if it is the invariance group of a function $f : \{0, 1\}^n \to \{1, \ldots, m\}$; it is called representable if it is m-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with $(2, \infty)$-representability.
A group $G \leq S_n$ is said to be (k, m)-representable if there is a function $f : \{0, 1, \ldots, k - 1\}^n \rightarrow \{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f : \{0, 1, \ldots, k - 1\}^n \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.

$G \leq S_n$ is called m-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \ldots, m\}$; it is called representable if it is m-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with $(2, \infty)$-representability.
A group $G \leq S_n$ is said to be (k, m)-representable if there is a function $f : \{0, 1, \ldots, k - 1\}^n \rightarrow \{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f : \{0, 1, \ldots, k - 1\}^n \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.

$G \leq S_n$ is called m-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \ldots, m\}$; it is called representable if it is m-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with $(2, \infty)$-representability.
A group $G \leq S_n$ is said to be $\text{(}k, m\text{)}$-representable if there is a function $f : \{0, 1, \ldots, k - 1\}^n \to \{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f : \{0, 1, \ldots, k - 1\}^n \to \mathbb{N}$, then it is called $\text{(}k, \infty\text{)}$-representable.

$G \leq S_n$ is called m-representable if it is the invariance group of a function $f : \{0, 1\}^n \to \{1, \ldots, m\}$; it is called representable if it is m-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with $(2, \infty)$-representability.
We say that a permutation group $G \leq S_n$ is (k, L)-representable, if there is a lattice-valued function $f : \{0, 1, \ldots, k-1\}^n \to L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f : \{0, 1\}^n \to L$.

The notion of $(2, L)$-representability is more general than $(2, 2)$-representability. An example is the Klein 4-group:
\{id, (12)(34), (13)(24), (14)(23)\}, which is $(2, L)$ representable (for L being a three element chain), but not $(2, 2)$-representable.
We say that a permutation group $G \leq S_n$ is (k, L)-representable, if there is a lattice-valued function $f : \{0, 1, \ldots, k-1\}^n \to L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f : \{0, 1\}^n \to L$.

The notion of $(2, L)$-representability is more general than $(2, 2)$-representability. An example is the Klein 4-group: \{id, (12)(34), (13)(24), (14)(23)\}, which is $(2, L)$ representable (for L being a three element chain), but not $(2, 2)$-representable.
We say that a permutation group $G \leq S_n$ is (k, L)-representable, if there is a lattice-valued function $f : \{0, 1, \ldots, k - 1\}^n \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f : \{0, 1\}^n \rightarrow L$.

The notion of $(2, L)$-representability is more general than $(2, 2)$-representability. An example is the Klein 4-group: \{id, (12)(34), (13)(24), (14)(23)\}, which is $(2, L)$ representable (for L being a three element chain), but not $(2, 2)$-representable.
Let $O_k^{(n)} = \{ f \mid f : k^n \to k \}$ denote the set of all n-ary operations on k, and for $F \subseteq O_k^{(n)}$ and $G \subseteq S_n$ let

$$F^{\bot} := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \quad \overline{F}^{(k)} := (F^{\bot})^{\bot},$$

$$G^{\bot} := \{ f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad \overline{G}^{(k)} := (G^{\bot})^{\bot}.$$

The assignment $G \mapsto \overline{G}^{(k)}$ is a closure operator on S_n, and it is easy to see that $\overline{G}^{(k)}$ is a subgroup of S_n for every subset $G \subseteq S_n$ (even if G is not a group). For $G \leq S_n$, we call $\overline{G}^{(k)}$ the Galois closure of G over k, and we say that G is Galois closed over k if $\overline{G}^{(k)} = G$.
A Galois connection for invariance groups

Let $O_k^{(n)} = \{ f \mid f : k^n \to k \}$ denote the set of all n-ary operations on k, and for $F \subseteq O_k^{(n)}$ and $G \subseteq S_n$ let

$$F^\vdash := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \quad F^{(k)} := (F^\vdash)^\vdash,$$

$$G^\vdash := \{ f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad G^{(k)} := (G^\vdash)^\vdash.$$

The assignment $G \mapsto G^{(k)}$ is a closure operator on S_n, and it is easy to see that $G^{(k)}$ is a subgroup of S_n for every subset $G \subseteq S_n$ (even if G is not a group). For $G \leq S_n$, we call $G^{(k)}$ the Galois closure of G over k, and we say that G is Galois closed over k if $G^{(k)} = G$.

Eszter K. Horváth, Szeged

Co-authors: Branimir ˇSeˇselja, Andreja Tepavˇcevi´c ()

Lattice-valued functions

Novi Sad, 2017, june 15. 15 / 27
A group $G \leq S_n$ is Galois closed over k if and only if G is (k, ∞)-representable.

For every $G \leq S_n$, we have

$$\overline{G^{(k)}} = \bigcap_{a \in k^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_n that are Galois closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max (2^d, d^2 + d)$ and $G \leq S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq n$ is such that $D := n \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

Eszter K. Horváth, Szeged Co-authors: Branimir ˇSeˇselja, Andreja Tepavˇcevi´c ()
A group $G \leq S_n$ is Galois closed over k if and only if G is (k, ∞)-representable.

For every $G \leq S_n$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in k^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_n that are Galois closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \leq S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq n$ is such that $D := n \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.
A group $G \leq S_n$ is Galois closed over k if and only if G is (k, ∞)-representable.

For every $G \leq S_n$, we have

$$\overline{G}(k) = \bigcap_{a \in k^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_n that are Galois closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max \left(2^d, d^2 + d \right)$ and $G \leq S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G \leq_{sd} S_B \times L$, where $B \subseteq n$ is such that $D := n \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

Eszter K. Horváth, Szeged Co-authors: Branimir Šešelja, Andreja Tepavčević ()
A group $G \leq S_n$ is Galois closed over k if and only if G is (k, ∞)-representable.

For every $G \leq S_n$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in k^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_n that are Galois closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \leq S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq n$ is such that $D := n \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

Eszter K. Horváth, Szeged Co-authors: Branimir ˇSeˇselja, Andreja Tepavˇcevi´c ()

Lattice-valued functions Novi Sad, 2017, june 15. . 16 / 27
One can easily check that a permutation group \(G \subseteq S_n \) is \(L \)-representable if and only if it is Galois closed over \(2 \).

Similarly, it is easy to show that a permutation group is \((k, L)\)-representable if and only if it is Galois closed over the \(k \)-element domain.
One can easily check that a permutation group $G \subseteq S_n$ is L-representable if and only if it is Galois closed over 2.

Similarly, it is easy to show that a permutation group is (k, L)-representable if and only if it is Galois closed over the k-element domain.
Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma : A \to A$, $\mu : A \to L$, $\psi : L \to L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi \circ p.
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \to L$. Then the following holds.

(i) $\mu_p = \mu \circ (I_L)_p$, where I_L is the identity mapping $I_L : L \to L$.

(ii) $(\sigma \circ \mu)_p = \sigma \circ \mu \circ p$, for $\sigma : A \to A$.

(iii) $(\mu \circ \psi)_p = \mu \circ \psi \circ p$, where ψ is a map $\psi : L \to L$.
Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma : A \to A$, $\mu : A \to L$, $\psi : L \to L$. Then, for every $p \in L$,

$$(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi_p.$$
Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma : A \rightarrow A$, $\mu : A \rightarrow L$, $\psi : L \rightarrow L$. Then, for every $p \in L$,

$$(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi_p.$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_p = \mu \circ (I_L)_p$, where I_L is the identity mapping $I_L : L \rightarrow L$.

(ii) $(\sigma \circ \mu)_p = \sigma \circ \mu_p$, for $\sigma : A \rightarrow A$.

(iii) $(\mu \circ \psi)_p = \mu \circ \psi_p$, where ψ is a map $\psi : L \rightarrow L$.

Eszter K. Horváth, Szeged
Co-authors: Branimir Šešelja, Andreja Tepavčević

Lattice-valued functions
Novi Sad, 2017, june 15.
Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let
\[\sigma : A \to A, \quad \mu : A \to L, \quad \psi : L \to L. \]
Then, for every $p \in L$,
\[(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi_p. \]

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \to L$.
Then the following holds.

(i) $\mu_p = \mu \circ (\mathcal{I}_L)_p$, where \mathcal{I}_L is the identity mapping $\mathcal{I}_L : L \to L$.

(ii) $(\sigma \circ \mu)_p = \sigma \circ \mu_p$, for $\sigma : A \to A$.

(iii) $(\mu \circ \psi)_p = \mu \circ \psi_p$, where ψ is a map $\psi : L \to L$.
Theorem Let \(L \) be a complete lattice, let \(A \neq \emptyset \) be a set and let \(\sigma : A \rightarrow A, \mu : A \rightarrow L, \psi : L \rightarrow L \). Then, for every \(p \in L \),

\[
(\sigma \circ \mu \circ \psi)_p = \sigma \circ \mu \circ \psi_p.
\]

Corollary Let \(L \) be a complete lattice, let \(A \neq \emptyset \) and let \(\mu : A \rightarrow L \). Then the following holds.

\begin{enumerate}
 \item \(\mu_p = \mu \circ (I_L)_p \), where \(I_L \) is the identity mapping \(I_L : L \rightarrow L \).
 \item \((\sigma \circ \mu)_p = \sigma \circ \mu_p \), for \(\sigma : A \rightarrow A \).
 \item \((\mu \circ \psi)_p = \mu \circ \psi_p \), where \(\psi \) is a map \(\psi : L \rightarrow L \).
\end{enumerate}
Proposition Let $f : \{0, \ldots, k - 1\}^n \to L$ and $\sigma \in S_n$. Then

$$\sigma \vdash f \text{ if and only if for every } p \in L, \sigma \vdash f_p.$$

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_1 : \{0, \ldots, k - 1\}^n \to L_1$ and $f_2 : \{0, \ldots, k - 1\}^n \to L_2$ are two n-variable lattice-valued functions on the same domain, then $\hat{f}_1 = \hat{f}_2$ implies $G(f_1) = G(f_2)$.
Proposition Let $f : \{0, \ldots, k - 1\}^n \to L$ and $\sigma \in S_n$. Then

$$\sigma \vdash f \text{ if and only if for every } p \in L, \sigma \vdash f_p.$$
Proposition Let $f : \{0, \ldots, k - 1\}^n \to L$ and $\sigma \in S_n$. Then

$$\sigma
\vdash f \text{ if and only if for every } p \in L, \sigma \vdash f_p.$$

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_1 : \{0, \ldots, k - 1\}^n \to L_1$ and $f_2 : \{0, \ldots, k - 1\}^n \to L_2$ are two n-variable lattice-valued functions on the same domain, then $\hat{f}_1 = \hat{f}_2$ implies $G(f_1) = G(f_2)$.
For every $n \in \mathbb{N}$, there is a lattice L and a lattice valued Boolean function $F : \{0, 1\}^n \rightarrow L$ satisfying the following: If $G \leq S_n$ and $G = G(f)$ for a Boolean function f, then $G = G(F_p)$, for a cut F_p.
Representation theorem on the k-element set

Every subgroups of S_n is an invariance group of a function
\[\{0, \ldots, k - 1\}^n \to \{0, \ldots, k - 1\}\] if and only if $k \geq n$.

If $k \geq n$, then for every subgroup G of S_n there exists a function $f : \{0, \ldots, k - 1\}^n \to \{0, 1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \geq n$, there is a lattice L and a lattice valued function $F : \{0, \ldots, k - 1\}^n \to L$ such that the following holds: If $G \leq S_n$, then $G = G(F_p)$ for a cut F_p of F.
Every subgroup of S_n is an invariance group of a function
$\{0, \ldots, k - 1\}^n \rightarrow \{0, \ldots, k - 1\}$ if and only if $k \geq n$.

If $k \geq n$, then for every subgroup G of S_n there exists a function
$f : \{0, \ldots, k - 1\}^n \rightarrow \{0, 1\}$ such that the invariance group of f is
effectively G.

For $k, n \in \mathbb{N}$ and $k \geq n$, there is a lattice L and a lattice valued
function $F : \{0, \ldots, k - 1\}^n \rightarrow L$ such that the following holds: If
$G \leq S_n$, then $G = G(F_p)$ for a cut F_p of F.
Every subgroup of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \to \{0, \ldots, k-1\}$ if and only if $k \geq n$.

If $k \geq n$, then for every subgroup G of S_n there exists a function $f : \{0, \ldots, k-1\}^n \to \{0, 1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \geq n$, there is a lattice L and a lattice valued function $F : \{0, \ldots, k-1\}^n \to L$ such that the following holds: If $G \leq S_n$, then $G = G(F_p)$ for a cut F_p of F.
A lattice-valued Boolean function is a map $\mu: \{0, 1\}^n \to L$ where L is a bounded lattice and $n \in \langle 1, 2, 3, \ldots \rangle$.

We say that μ can be given by a linear combination (in L) if there are $w_1, \ldots, w_n \in L$ such that, for all $x = \{x_1, \ldots, x_n\} \in \{0, 1\}^n$,

$$\mu(x) = \bigvee_{i=1}^n w_i x_i, \quad \text{that is,} \quad \mu(x) = \bigvee_{i=1}^n (w_i \land x_i).$$

(9)
A *lattice-valued Boolean function* is a map $\mu: \{0, 1\}^n \rightarrow L$ where L is a bounded lattice and $n \in \langle 1, 2, 3, \ldots \rangle$.

We say that μ can be given by a *linear combination* (in L) if there are $w_1, \ldots, w_n \in L$ such that, for all $x = \{x_1, \ldots, x_n\} \in \{0, 1\}^n$,

$$\mu(x) = \bigvee_{i=1}^n w_i x_i, \quad \text{that is,} \quad \mu(x) = \bigvee_{i=1}^n (w_i \wedge x_i). \quad (9)$$
Cuts and closure systems

For $p \in L$, the set

$$\mu_p := \{ x \in \{0, 1\}^n : \mu(x) \geq p \}$$ \hspace{1cm} (10)

is called a cut of μ.

A closure system \mathcal{F} over B_n is a \cap-subsemilattice of the powerset lattice $P(B_n) = \langle P(B_n); \cup, \cap \rangle$ such that $B_n \in \mathcal{F}$. By finiteness, \mathcal{F} is necessarily a complete \cap-semilattice.

A closure system \mathcal{F} determines a closure operator in the standard way. We only need the closures of singleton sets, that is,

$$\text{for } x \in B_n, \text{ we have } \overline{x} := \bigcap \{ f \in \mathcal{F} : x \in f \}. \hspace{1cm} (11)$$
Cuts and closure systems

For \(p \in L \), the set

\[
\mu_p := \{ x \in \{0, 1\}^n : \mu(x) \geq p \}
\] (10)

is called a cut of \(\mu \).

A closure system \(\mathcal{F} \) over \(B_n \) is a \(\cap \)-subsemilattice of the powerset lattice \(P(B_n) = \langle P(B_n); \cup, \cap \rangle \) such that \(B_n \in \mathcal{F} \). By finiteness, \(\mathcal{F} \) is necessarily a complete \(\cap \)-semilattice.

A closure system \(\mathcal{F} \) determines a closure operator in the standard way. We only need the closures of singleton sets, that is,

\[
\overline{x} := \bigcap \{ f \in \mathcal{F} : x \in f \}. \tag{11}
\]
Cuts and closure systems

For $p \in L$, the set

$$\mu_p := \{x \in \{0, 1\}^n : \mu(x) \geq p\}$$

(10)

is called a cut of μ.

A closure system \mathcal{F} over B_n is a \cap-subsemilattice of the powerset lattice $P(B_n) = \langle P(B_n); \cup, \cap \rangle$ such that $B_n \in \mathcal{F}$. By finiteness, \mathcal{F} is necessarily a complete \cap-semilattice.

A closure system \mathcal{F} determines a closure operator in the standard way. We only need the closures of singleton sets, that is,

for $x \in B_n$, we have $\overline{x} := \bigcap\{f \in \mathcal{F} : x \in f\}$.

(11)
If $\mu : B_n \rightarrow L$ such that $\mu(0) = 0$ and, for all $x, y \in B_n$,
$\mu(x \lor y) = \mu(x) \lor \mu(y)$, then μ is called a \(\{\lor, 0\}\)-homomorphism.

A lattice-valued function $B_n \rightarrow L$ can be given by a linear combination in L iff it is a \(\{\lor, 0\}\)-homomorphism.

$$\mu(x \lor y) = \bigvee_i w_i (x_i \lor y_i) = \bigvee_i (w_i x_i \lor w_i y_i) = \bigvee_i w_i x_i \lor \bigvee_i w_i y_i = \mu(x) \lor \mu(y).$$

Let $e^{(i)} = \langle 0, \ldots, 0, 1, 0, \ldots, 0 \rangle \in B_n$ where 1 stands in the i-th place. Define $w_i := \mu(e^{(i)})$. Observe that $\mu(e^{(i)} \cdot 1) = w_i = w_i \cdot 1$ and $\mu(e^{(i)} \cdot 0) = 0 = w_i \cdot 0$, that is, $\mu(e^{(i)} \cdot x_i) = w_i \cdot x_i$. Therefore, for $x \in B_n$, we obtain $\mu(x) = \mu(\bigvee_i e^{(i)} x_i) = \bigvee_i \mu(e^{(i)} x_i) = \bigvee_i w_i \cdot x_i$.
If \(\mu : B_n \to L \) such that \(\mu(0) = 0 \) and, for all \(x, y \in B_n \),
\(\mu(x \lor y) = \mu(x) \lor \mu(y) \), then \(\mu \) is called a \(\{\lor, 0\}\)-homomorphism.

A lattice-valued function \(B_n \to L \) can be given by a linear combination in \(L \) iff it is a \(\{\lor, 0\}\)-homomorphism.

\[
\mu(x \lor y) = \bigvee_i w_i (x_i \lor y_i) = \bigvee_i (w_i x_i \lor w_i y_i) = \bigvee_i w_i x_i \lor \bigvee_i w_i y_i = \mu(x) \lor \mu(y).
\]

Let \(e^{(i)} = \langle 0, \ldots, 0, 1, 0, \ldots, 0 \rangle \in B_n \) where 1 stands in the \(i \)-th place. Define \(w_i := \mu(e^{(i)}) \). Observe that \(\mu(e^{(i)} \cdot 1) = w_i = w_i \cdot 1 \) and \(\mu(e^{(i)} \cdot 0) = 0 = w_i \cdot 0 \), that is, \(\mu(e^{(i)} \cdot x_i) = w_i \cdot x_i \). Therefore, for \(x \in B_n \), we obtain \(\mu(x) = \mu(\bigvee_i e^{(i)} x_i) = \bigvee_i \mu(e^{(i)} x_i) = \bigvee_i w_i \cdot x_i. \)
If $\mu : B_n \rightarrow L$ such that $\mu(0) = 0$ and, for all $x, y \in B_n$,
$\mu(x \lor y) = \mu(x) \lor \mu(y)$, then μ is called a $\{\lor, 0\}$-homomorphism.

A lattice-valued function $B_n \rightarrow L$ can be given by a linear combination in L iff it is a $\{\lor, 0\}$-homomorphism.

$$\mu(x \lor y) = \bigvee_i w_i(x_i \lor y_i) = \bigvee_i (w_i x_i \lor w_i y_i) = \bigvee_i w_i x_i \lor \bigvee_i w_i y_i = \mu(x) \lor \mu(y).$$

Let $e^{(i)} = \langle 0, \ldots, 0, 1, 0, \ldots, 0 \rangle \in B_n$ where 1 stands in the i-th place. Define $w_i := \mu(e^{(i)})$. Observe that $\mu(e^{(i)} \cdot 1) = w_i = w_i \cdot 1$ and $\mu(e^{(i)} \cdot 0) = 0 = w_i \cdot 0$, that is, $\mu(e^{(i)} \cdot x_i) = w_i \cdot x_i$. Therefore, for $x \in B_n$, we obtain $\mu(x) = \mu(\bigvee_i e^{(i)} x_i) = \bigvee_i \mu(e^{(i)} x_i) = \bigvee_i w_i \cdot x_i$.
If $\mu : B_n \to L$ such that $\mu(0) = 0$ and, for all $x, y \in B_n$, $\mu(x \lor y) = \mu(x) \lor \mu(y)$, then μ is called a $\{\lor, 0\}$-homomorphism.

A lattice-valued function $B_n \to L$ can be given by a linear combination in L iff it is a $\{\lor, 0\}$-homomorphism.

$$\mu(x \lor y) = \bigvee_i w_i (x_i \lor y_i) = \bigvee_i (w_i x_i \lor w_i y_i) = \bigvee_i w_i x_i \lor \bigvee_i w_i y_i = \mu(x) \lor \mu(y).$$

Let $e^{(i)} = \langle 0, \ldots, 0, 1, 0, \ldots, 0 \rangle \in B_n$ where 1 stands in the i-th place. Define $w_i := \mu(e^{(i)})$. Observe that $\mu(e^{(i)} \cdot 1) = w_i = w_i \cdot 1$ and $\mu(e^{(i)} \cdot 0) = 0 = w_i \cdot 0$, that is, $\mu(e^{(i)} \cdot x_i) = w_i \cdot x_i$. Therefore, for $x \in B_n$, we obtain

$$\mu(x) = \mu(\bigvee_i e^{(i)} x_i) = \bigvee_i \mu(e^{(i)} x_i) = \bigvee_i w_i \cdot x_i.$$
If $\emptyset \neq X \subseteq B_n$ such that $(\forall x \in X)(\forall y \in B_n)(x \leq y \quad \text{then} \quad y \in X)$, then X is an *up-set* of B_n.

The lattice-valued function $\mu: B_n \to L$ is isotone iff all the cuts of μ are up-sets.
Up-sets

If $\emptyset \neq X \subseteq B_n$ such that $(\forall x \in X)(\forall y \in B_n)(x \leq y \text{ then } y \in X)$, then X is an up-set of B_n.

The lattice-valued function $\mu : B_n \to L$ is isotone iff all the cuts of μ are up-sets.
Let \mathcal{F} be a set consisting of some up-sets of B_n. Then, the following three conditions are equivalent.

(i) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $x \subseteq y$ implies $x \lor y = x$.

(ii) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $x \lor y = x \cap y$.

(iii) There exist a bounded lattice L and a lattice-valued function $\mu : B_n \to L$ given by a linear combination such that \mathcal{F} is the family of cuts of μ.
Let \mathcal{F} be a set consisting of some up-sets of B_n. Then, the following three conditions are equivalent.

(i) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $\overline{x} \subseteq \overline{y}$ implies $\overline{x \lor y} = \overline{x}$.

(ii) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $\overline{x \lor y} = \overline{x} \cap \overline{y}$.

(iii) There exist a bounded lattice L and a lattice-valued function $\mu : B_n \rightarrow L$ given by a linear combination such that \mathcal{F} is the family of cuts of μ.
Let \mathcal{F} be a set consisting of some up-sets of B_n. Then, the following three conditions are equivalent.

(i) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $\bar{x} \subseteq \bar{y}$ implies $\bar{x} \lor \bar{y} = \bar{x}$.

(ii) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $\bar{x} \lor \bar{y} = \bar{x} \cap \bar{y}$.

(iii) There exist a bounded lattice L and a lattice-valued function $\mu : B_n \to L$ given by a linear combination such that \mathcal{F} is the family of cuts of μ.
Let \mathcal{F} be a set consisting of some up-sets of B_n. Then, the following three conditions are equivalent.

(i) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $\overline{x \cup y} = \overline{x}$.

(ii) \mathcal{F} is a closure system over B_n, and for all $x, y \in B_n$, $\overline{x \cup y} = \overline{x} \cap \overline{y}$.

(iii) There exist a bounded lattice L and a lattice-valued function $\mu : B_n \rightarrow L$ given by a linear combination such that \mathcal{F} is the family of cuts of μ.
Thank you for your attention!

Thank you for your attention!