A semigroup-theoretical approach to the study of generalized inverses

Miroslav Ćirić

Department of Computer Science
Faculty of Sciences and Mathematics
University of Niš, Serbia
miroslav.ciric@pmf.edu.rs

joint work with
Predrag Stanimirović and Jelena Ignjatović

94. Arbeitstagung Allgemeine Algebra + 5th Novi Sad Algebraic Conference
June 17th, 2017, Novi Sad, Serbia
Origins of generalized inverses

Historical notes

- **E. I. Fredholm** (1903) – generalized inverses of integral operators;
- **D. Hilbert** (1904) – differential operators, **A. Hurwitz** (1912), and others;
- **E. H. Moore** (1920 or earlier) – generalized inverses of matrices (**general reciprocal**);
- Moore’s work has not attracted more attention until the 1950s;
- **A. Bjerhammar** (1951) – links with solutions of linear systems;
 - least-squares solutions (**approximate**) and **minimum-norm solutions**;
- **R. Penrose** (1955) – generalized inverses as solutions of algebraic equations;
 - **Moore-Penrose equations**;
 - in abstract algebraic structures – semigroups, rings, Banach algebras, C^*-algebras, etc.;

Applications

- solving matrix equations;
- solving singular differential and difference equations;
- the investigation of Cesaro-Neumann iterations;
- the least squares approximation;
- finite Markov chains, cryptography, statistics, etc.
Moore-Penrose equations

★ S – an involution semigroup;
★ $a \in S$ – fixed element, x – unknown taking values in S;

★ *Moore-Penrose equations*:

(1) $axa = a$
(2) $xax = x$
(3) $(ax)^* = ax$
(4) $(xa)^* = xa$

★ Additionally, we consider the equation

(5) $ax = xa$

γ-inverses

★ for $\gamma \subseteq \{1, 2, 3, 4, 5\}$, by $\langle \gamma \rangle$ we denote the system consisting of the equations (i), for all $i \in \gamma$;
★ if $\langle \gamma \rangle$ has a solution, then a is called γ-invertible.
★ in this case, solutions of $\langle \gamma \rangle$ are called γ-inverses of a.
Terminology and notation

Terminology

<table>
<thead>
<tr>
<th>Inverse Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>({1})-inverse</td>
<td>g-inverse ("generalized inverse") or inner inverse</td>
</tr>
<tr>
<td>({2})-inverse</td>
<td>outer inverse</td>
</tr>
<tr>
<td>({1,2})-inverse</td>
<td>reflexive g-inverse or Thierrin-Vagner inverse</td>
</tr>
<tr>
<td>({1,3})-inverse</td>
<td>last-squares g-inverse</td>
</tr>
<tr>
<td>({1,4})-inverse</td>
<td>minimum-norm g-inverse</td>
</tr>
<tr>
<td>({1,2,3,4})-inverse</td>
<td>Moore-Penrose inverse or MP-inverse</td>
</tr>
<tr>
<td>({1,2,5})-inverse</td>
<td>group inverse</td>
</tr>
</tbody>
</table>

* When exist, the Moore-Penrose inverse and the group inverse of *a* are *unique*.

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(^\dagger)</td>
<td>Moore-Penrose inverse of a</td>
</tr>
<tr>
<td>a(^#)</td>
<td>Group inverse of a</td>
</tr>
<tr>
<td>a(\gamma)</td>
<td>The set of all γ-inverses of a</td>
</tr>
<tr>
<td>a(\gamma)_(X)</td>
<td>The set of all γ-inverses of a contained in the set X</td>
</tr>
<tr>
<td>S((1))</td>
<td>The set of all ({1})-invertible elements *(Reg(S))</td>
</tr>
<tr>
<td>X(^\bullet)</td>
<td>The set of all idempotents contained in the set X</td>
</tr>
</tbody>
</table>
Matrices with prescribed range and null-space

<table>
<thead>
<tr>
<th>Range, null space, rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ $A \in \mathbb{C}^{m \times n}$ – a complex matrix of type $m \times n$;</td>
</tr>
<tr>
<td>★ range or image of A</td>
</tr>
<tr>
<td>$R(A) = {y \in \mathbb{C}^{m} \mid Ax = y, \text{ for some } x \in \mathbb{C}^{n}}$</td>
</tr>
<tr>
<td>★ null space or kernel of A</td>
</tr>
<tr>
<td>$N(A) = {x \in \mathbb{C}^{n} \mid Ax = 0}$</td>
</tr>
<tr>
<td>★ rank(A) – the rank of A (the dimension of the column space and the row space of A).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generalized inverses with prescribed range and null space</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ $T \subseteq \mathbb{C}^{m}$, $S \subseteq \mathbb{C}^{n}$ – given subspaces, $A \in \mathbb{C}^{m \times n}$;</td>
</tr>
<tr>
<td>★ $A^{(2)}_{T,S}$ – the ${2}$-inverse of A with prescribed range T and null space S (if it exists)</td>
</tr>
<tr>
<td>★ $A^{(1,2)}_{T,S}$ – the ${1,2}$-inverse of A with prescribed range T and null space S (if it exists)</td>
</tr>
<tr>
<td>$A^{\dagger} = A^{(2)}{R(A^),N(A^)} = A^{(1,2)}{R(A^),N(A^)}$</td>
</tr>
<tr>
<td>$A^{#} = A^{(2)}{R(A),N(A)} = A^{(1,2)}{R(A),N(A)}$</td>
</tr>
<tr>
<td>★ A^* – the conjugate transpose of A</td>
</tr>
</tbody>
</table>
Ring-theoretical generalizations

Generalized inverses with prescribed idempotents

★ D. Djordjević, Y. Wei, Communications in Algebra 33 (2005) 3051–3060

outer inverses with prescribed idempotents (\(xax = x\) and idempotents \(ax, xa\) are prescribed)

★ B. Načevska, D. Djordjević, Communications in Algebra 39 (2011) 634–646

inner inverses with prescribed idempotents (\(a = axa\) and idempotents \(ax, xa\) are prescribed)

Generalized inverses with prescribed ideals

outer inverses with prescribed kernel ideals (left and right annihilators)

outer inverses with prescribed image ideals (principal left and right ideals)
Semigroup of matrices $M_\varnothing(\mathbb{C})$

Let $M(\mathbb{C})$ be the set of all matrices of any type with entries in \mathbb{C}, i.e.,

$$M(\mathbb{C}) = \bigcup_{m,n \in \mathbb{N}} \mathbb{C}^{m \times n},$$

Let $M_\varnothing(\mathbb{C}) = M(\mathbb{C}) \cup \{\varnothing\}$, where $\varnothing \notin M(\mathbb{C})$.

For the sake of convenience, we call \varnothing the empty matrix.

The multiplication in $M_\varnothing(\mathbb{C})$ is defined using the standard procedure for converting a partial semigroup into a semigroup:

- the product in $M_\varnothing(\mathbb{C})$ coincides with the ordinary matrix product, whenever it is defined;
- in all other cases the product is equal to the empty matrix \varnothing.

With respect to this multiplication, $M_\varnothing(\mathbb{C})$ is a semigroup with the zero \varnothing.

We call $M_\varnothing(\mathbb{C})$ the semigroup of matrices with entries in \mathbb{C}.
Green’s equivalences in the semigroup of matrices

For any \(A, B \in M(C) \) we have

\[
A R B \Leftrightarrow R(A) = R(B),
\]

\[
A L B \Leftrightarrow N(A) = N(B),
\]

\[
A H B \Leftrightarrow R(A) = R(B) \& N(A) = N(B),
\]

\[
A D B \Leftrightarrow \text{rank}(A) = \text{rank}(B)
\]

On the other hand,

\[
D_\emptyset = R_\emptyset = L_\emptyset = H_\emptyset = \{\emptyset\}.
\]

Our mission

Outer inverses belonging to prescribed Green’s equivalence classes

- M. Ćirić, P. Stanimirović, J. Ignjatović, Outer inverses in semigroups belonging to prescribed Green’s equivalence classes, to appear.
In the sequel, let S be a semigroup and let $a, b \in S$.

Theorem 1

An element $x \in S$ is an outer inverse of a contained in the R-class R_b if and only if

$$x \in bS \quad \text{and} \quad xab = b.$$

Theorem 2 – The outer inverse in the prescribed R-class

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the R-class R_b;

(ii) there exists $u \in S$ such that $b = buab$;

(iii) $b \in S^{(1)}$ and $ab \in L_b$;

(iv) $ab \in S^{(1)}$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

$$a\{2\}R_b = \{bu \mid u \in S \text{ such that } b = buab\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}.$$
In the sequel, let S be a semigroup and let $a, b \in S$.

Theorem 1

An element $x \in S$ is an outer inverse of a contained in the \mathcal{R}-class R_b if and only if

\[x \in bS \quad \text{and} \quad xab = b. \]

Theorem 2 – The outer inverse in the prescribed \mathcal{R}-class

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{R}-class R_b;

(ii) there exists $u \in S$ such that $b = buab$;

(iii) $b \in S^{(1)}$ and $ab \in L_b$;

(iv) $ab \in S^{(1)}$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

\[a\{2\}_{R_b} = \{bu \mid u \in S \text{ such that } b = buab\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}. \]
In the sequel, let S be a semigroup and let $a, b \in S$.

Theorem 1

An element $x \in S$ is an outer inverse of a contained in the \mathcal{R}-class R_b if and only if

$$x \in bS \quad \text{and} \quad xab = b.$$

Theorem 2 – The outer inverse in the prescribed \mathcal{R}-class

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{R}-class R_b;

(ii) there exists $u \in S$ such that $b = buab$; \textit{linear equation}

(iii) $b \in S^{(1)}$ and $ab \in L_b$;

(iv) $ab \in S^{(1)}$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

$$a\{2\}_{R_b} = \{bu \mid u \in S \text{ such that } b = buab\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}.$$
In the sequel, let S be a semigroup and let $a, b \in S$.

Theorem 1

An element $x \in S$ is an outer inverse of a contained in the R-class R_b if and only if

$$x \in bS \quad \text{and} \quad xab = b.$$

Theorem 2 – The outer inverse in the prescribed R-class

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the R-class R_b;

(ii) there exists $u \in S$ such that $b = buab$; \hspace{1cm} \text{linear equation}

(iii) $b \in S^{(1)}$ and $ab \in L_b$;

(iv) $ab \in S^{(1)}$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

$$a\{2\}_{R_b} = \{bu \mid u \in S \text{ such that } b = buab\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}.$$
In the sequel, let S be a semigroup and let $a, b \in S$.

Theorem 1

An element $x \in S$ is an outer inverse of a contained in the \mathcal{R}-class R_b if and only if

$$x \in bS \quad \text{and} \quad xab = b.$$

Theorem 2 – The outer inverse in the prescribed \mathcal{R}-class

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{R}-class R_b;

(ii) there exists $u \in S$ such that $b = buab$; \hspace{1cm} \text{linear equation}

(iii) $b \in S^{(1)}$ and $ab \in L_b$;

(iv) $ab \in S^{(1)}$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

$$a\{2\}_{R_b} = \{bu \mid u \in S \text{ such that } b = buab\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}.$$

Theorem 3 – *The inner inverse in the prescribed principal right ideal*

The following statements are equivalent:

(i) there exists an inner inverse of \(a \) contained in the principal right ideal \(R(b) \);

(ii) there exists \(u \in S \) such that \(a = abua \);

(iii) \(a \in S^{(1)} \) and \(ab \in R_a \);

(iv) \(ab \in S^{(1)} \) and \(ab(ab)^{(1)}a = a \), for some (equivalently every) \((ab)^{(1)} \in ab{1} \).

If these statements are true, then

\[
a{1}_bS = \{bu \mid u \in S \text{ such that } a = abua\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab{1}\}.
\]
Theorem 3 – *The inner inverse in the prescribed principal right ideal*

The following statements are equivalent:

(i) there exists an inner inverse of \(a \) contained in the principal right ideal \(R(b) \);

(ii) there exists \(u \in S \) such that \(a = abua \);

(iii) \(a \in S^{(1)} \) and \(ab \in R_a \);

(iv) \(ab \in S^{(1)} \) and \(ab(ab)^{(1)}a = a \), for some (equivalently every) \((ab)^{(1)} \in ab\{1\} \).

If these statements are true, then

\[
a\{1\}_{bS} = \{bu \mid u \in S \text{ such that } a = abua\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}.
\]
Theorem 3 – The inner inverse in the prescribed principal right ideal

The following statements are equivalent:

(i) there exists an inner inverse of a contained in the principal right ideal $R(b)$;

(ii) there exists $u \in S$ such that $a = abua$;

(iii) $a \in S^{(1)}$ and $ab \in R_a$;

(iv) $ab \in S^{(1)}$ and $ab(ab)^{(1)}a = a$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

$$a\{1\}_bS = \{bu \mid u \in S \text{ such that } a = abua\} = \{b(ab)^{(1)} \mid (ab)^{(1)} \in ab\{1\}\}.$$

10 Miroslav Ćirić, Predrag Stanimirović, Jelena Ignjatović
Semigroup-theoretical approach to generalized inverses
Theorem 4 – The \{1, 2\}-inverse in the prescribed \mathcal{R}-class

The following statements are equivalent:

(i) there exists a \{1, 2\}-inverse of a contained in the \mathcal{R}-class R_b;

(ii) there exist $u, v \in S$ such that $b = buab$ and $a = abva$;

(iii) there exists $w \in S$ such that $b = bwab$ and $a = abwa$;

(iv) there exist $s, t \in S$ such that $a = abs$ and $b = tab$;

(v) ab is a trace product;

(vi) $ab \in S^{(1)}$, $ab(ab)^{(1)}a = a$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab \{1\}$.

If these statements are true, then

$$a \{1, 2\} \mathcal{R}_b = a \{2\} \mathcal{R}_b = a \{1\} \mathcal{R}_{\mathcal{R}(b)}.$$

Trace product (F. Pastijn, 1982)

- the product ab is called a **trace product** if $ab \in R_a \cap L_b$
- **Miller-Cliffords theorem**: $ab \in R_a \cap L_b \iff R_b \cap L_a$ contains an idempotent
Theorem 4 – The \(\{1, 2\} \)-inverse in the prescribed \(R \)-class

The following statements are equivalent:

(i) there exists a \(\{1, 2\} \)-inverse of \(a \) contained in the \(R \)-class \(R_b \);

(ii) there exist \(u, v \in S \) such that \(b = buab \) and \(a = abva \);

(iii) there exists \(w \in S \) such that \(b = bwab \) and \(a = abwa \);

(iv) there exist \(s, t \in S \) such that \(a = abs \) and \(b = tab \);

(v) \(ab \) is a trace product;

(vi) \(ab \in S^{(1)} \), \(ab(ab)^{(1)}a = a \) and \(b(ab)^{(1)}ab = b \), for some (equivalently every) \((ab)^{(1)} \in ab\{1\} \).

If these statements are true, then

\[a\{1, 2\}_R b = a\{2\}_R b = a\{1\}_{R(b)} . \]

Trace product (F. Pastijn, 1982)

- the product \(ab \) is called a **trace product** if \(ab \in R_a \cap L_b \)

- **Miller-Cliffords theorem**: \(ab \in R_a \cap L_b \iff R_b \cap L_a \) contains an idempotent
Theorem 4 – The \{1, 2\}-inverse in the prescribed R-class

The following statements are equivalent:

(i) there exists a \{1, 2\}-inverse of a contained in the R-class \(R_b\);

(ii) there exist \(u, v \in S\) such that \(b = buab\) and \(a = abva\);

(iii) there exists \(w \in S\) such that \(b = bwab\) and \(a = abwa\);

(iv) there exist \(s, t \in S\) such that \(a = abs\) and \(b = tab\);

(v) \(ab\) is a trace product;

(vi) \(ab \in S^{(1)}\), \(ab(ab)^{(1)}a = a\) and \(b(ab)^{(1)}ab = b\), for some (equivalently every) \((ab)^{(1)} \in ab\{1\}\).

If these statements are true, then

\[a\{1, 2\}_R = a\{2\}_R = a\{1\}_{R(b)}. \]

Trace product (F. Pastijn, 1982)

- the product \(ab\) is called a trace product if \(ab \in R_a \cap L_b\)

- Miller-Cliffords theorem: \(ab \in R_a \cap L_b \iff R_b \cap L_a\) contains an idempotent
Theorem 4 – *The* \{1, 2\}-*inverse in the prescribed* \mathcal{R}-*class*

The following statements are equivalent:

(i) there exists a \{1, 2\}-inverse of a contained in the \mathcal{R}-class R_b;

(ii) there exist $u, v \in S$ such that $b = buab$ and $a = abva$;

(iii) there exists $w \in S$ such that $b = bwab$ and $a = abwa$;

(iv) there exist $s, t \in S$ such that $a = abs$ and $b = tab$;

(v) ab is a trace product;

(vi) $ab \in S^{(1)}$, $ab(ab)^{(1)}a = a$ and $b(ab)^{(1)}ab = b$, for some (equivalently every) $(ab)^{(1)} \in ab\{1\}$.

If these statements are true, then

$$a\{1, 2\}R_b = a\{2\}R_b = a\{1\}R(b).$$

Trace product (F. Pastijn, 1982)

- the product ab is called a *trace product* if $ab \in R_a \cap L_b$
- *Miller-Cliffords theorem*: $ab \in R_a \cap L_b \iff R_b \cap L_a$ contains an idempotent
In the sequel, let S be a semigroup and let $a, d \in S$.

Mary’s inverse along an element (Mary, 2011)

An element $x \in S$ is an *inverse of a along d* if any of the following two equivalent conditions holds:

\[(M1) \quad xad = d = dax \quad \text{and} \quad x \in R(d) \cap L(d), \quad (M2) \quad xax = x \quad \text{and} \quad x \mathcal{H} d.\]

(M2) means that an inverse of a along d is exactly an *outer inverse of a in the Green’s \mathcal{H}-class H_d*.

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{H}-class H_d;

(ii) ad is group invertible and $ad \in L_d$;

(iii) da is group invertible and $da \in R_d$;

(iv) $dad \in H_d$.

If these statements are true, then the inverse x of a along d is represented as follows:

\[x = d(ad)^\# = (da)^\# d.\]
Another approach

From now on, let S be a semigroup and $a, b, c \in S$.

Drazin’s (b, c)-inverse (Drazin, LAA, 2012)

An element $x \in S$ is a (b, c)-inverse of a if it satisfies

(a) $x \in bS \cap Sc$;

(b) $xab = b$ and $cax = c$.

If a has a (b, c)-inverse, then it is unique, and in this case we say that a is (b, c)-invertible.

Theorem 5 – The outer inverse in the prescribed H-class

The following two conditions for $x \in S$ are equivalent:

(i) x is a (b, c)-inverse of a;

(ii) x is an outer inverse of a contained in the H-class $R_b \cap L_c$.

Drazin versus Mary

★ Drazin’s (b, c)-inverse \equiv Mary’s inverse along d, for all triples b, c, d such that $R_b \cap L_c = H_d$.

★ the only difference – in the way of representing Green’s H-classes.
Another approach

From now on, let S be a semigroup and $a, b, c \in S$.

Drazin's (b, c)-inverse (Drazin, LAA, 2012)

An element $x \in S$ is a (b, c)-inverse of a if it satisfies

(a) $x \in bS \cap Sc$;
(b) $xab = b$ and $cax = c$.

If a has a (b, c)-inverse, then it is *unique*, and in this case we say that a is (b, c)-invertible.

Theorem 5 – The outer inverse in the prescribed \mathcal{H}-class

The following two conditions for $x \in S$ are equivalent:

(i) x is a (b, c)-inverse of a;
(ii) x is an outer inverse of a contained in the \mathcal{H}-class $R_b \cap L_c$.

Drazin versus Mary

- **Drazin’s (b, c)-inverse \equiv Mary’s inverse along d, for all triples b, c, d such that $R_b \cap L_c = H_d$.**
- **the only difference – in the way of representing Green’s \mathcal{H}-classes.**
The existence of an outer inverse in the \mathcal{H}-class $R_b \cap L_c$

Theorem 6 – The existence theorem

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{H}-class $R_b \cap L_c$ (i.e., a (b, c)-inverse);

(ii) $cab \in R_c \cap L_b$;

(iii) cab is $\{1\}$-invertible, $cab(cab)^{(1)}c = c$ and $b(cab)^{(1)}cab = b$, for some (equiv. all) $(cab)^{(1)} \in cab\{1\}$;

(iv) there exist $u, v \in S$ such that $b = vcab$ and $c = cabu$;

(v) there exist $u, v \in S$ such that $b = bucab$ and $c = cabvc$;

(vi) there exists $w \in S$ such that $b = bwcab$ and $c = cabwc$;

(vii) there exist $u, v \in S$ such that $b = buab$, $c = cavc$ and $bu = vc$.

★ (i)\Leftrightarrow(iv) – Drazin (2012)

★ (ii) – another way to write (iv)

★ the rest – new results

Visualization

$$
\begin{array}{ccc}
& L_b & \quad & L_c \\
R_b & b & \xrightarrow{Q_{tu}} & x \\
\lambda_v & \quad & \lambda_v \\
R_c & cab & \xrightarrow{Q_{tu}} & c \\
\end{array}
$$
The existence of an outer inverse in the \mathcal{H}-class $R_b \cap L_c$

Theorem 6 – The existence theorem

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{H}-class $R_b \cap L_c$ (i.e., a (b, c)-inverse);

(ii) $cab \in R_c \cap L_b$;

(iii) cab is $\{1\}$-invertible, $cab(cab)^{(1)}c = c$ and $b(cab)^{(1)}cab = b$, for some (equiv. all) $(cab)^{(1)} \in cab\{1\}$;

(iv) there exist $u, v \in S$ such that $b = vcab$ and $c = cabu$;

(v) there exist $u, v \in S$ such that $b = bucab$ and $c = cabvc$;

(vi) there exists $w \in S$ such that $b = bwcab$ and $c = cabwc$;

(vii) there exist $u, v \in S$ such that $b = buab$, $c = cavc$ and $bu = vc$.

⋆ (i)\iff(iv) – Drazin (2012)

⋆ (ii) – another way to write (iv)

⋆ the rest – new results

Visualization

\[
\begin{array}{c|c|c}
 & L_b & L_c \\
\hline
R_b & b & Q_u x \\
\lambda_v & | & \\
R_c & cab & Q_u c \\
\end{array}
\]
The first representation theorem

Theorem 7 – The first representation theorem

If it exists, the outer inverse x of a contained in $R_b \cap L_c$ can be represented as

$$x = b(cab)^{(1)} c,$$

for an arbitrary $(cab)^{(1)} \in cab\{1\}$, and it can also be represented as

$$x = b(ab)^{(1)} = (ca)^{(1)} c,$$

for some $(ab)^{(1)} \in ab\{1\}$ and $(ca)^{(1)} \in ca\{1\}$.
The first representation theorem

Theorem 7 – The first representation theorem

If it exists, the outer inverse x of a contained in $R_b \cap L_c$ can be represented as

$$x = b(cab)^{(1)}c,$$

for an arbitrary $(cab)^{(1)} \in cab\{1\}$, and it can also be represented as

$$x = b(ab)^{(1)} = (ca)^{(1)}c,$$

for some $(ab)^{(1)} \in ab\{1\}$ and $(ca)^{(1)} \in ca\{1\}$.
The first representation theorem

Theorem 7 – The first representation theorem

If it exists, the outer inverse x of a contained in $R_b \cap L_c$ can be represented as

$$x = b(cab)^{(1)}c,$$

for an arbitrary $(cab)^{(1)} \in cab\{1\}$, and it can also be represented as

$$x = b(ab)^{(1)} = (ca)^{(1)}c,$$

for some $(ab)^{(1)} \in ab\{1\}$ and $(ca)^{(1)} \in ca\{1\}$.
Theorem 8 – The trace factorization theorem

Let D be a D-class of a semigroup S and $d \in D$. Then

(a) For every $e \in D^\bullet$ there exist $u \in L_e$ and $v \in R_e$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$.

(b) For every pair $u, v \in S$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$ there exists $e \in D^\bullet$ such that $u \in L_e$ and $v \in R_e$.

★ the representation $d = uv$

with $e \in D^\bullet$, $u \in R_d \cap L_e$ and $v \in L_d \cap R_e$ –

\textit{trace factorization of d with respect to e}

(since uv is a trace product)

★ direct generalization of the

\textit{full-rank factorization of matrices}

d – matrix

e – identity matrix of the same rank
Theorem 8 – The trace factorization theorem

Let \(D \) be a \(\mathcal{D} \)-class of a semigroup \(S \) and \(d \in D \). Then

(a) For every \(e \in D^\bullet \) there exist \(u \in L_e \) and \(v \in R_e \) such that \(d = uv \), \(R_d = R_u \) and \(L_d = L_v \).

(b) For every pair \(u, v \in S \) such that \(d = uv \), \(R_d = R_u \) and \(L_d = L_v \) there exists \(e \in D^\bullet \) such that \(u \in L_e \) and \(v \in R_e \).

★ the representation \(d = uv \)

with \(e \in D^\bullet \), \(u \in R_d \cap L_e \) and \(v \in L_d \cap R_e \) –

trace factorization of \(d \) with respect to \(e \)

(since \(uv \) is a trace product)

★ direct generalization of the

full-rank factorization of matrices

\(d \) – matrix

\(e \) – identity matrix of the same rank

\(L_d \)	\(L_e \)	
\(R_d \)	\(d = uv \)	\(u \)
\(R_e \)	\(v \)	\(e \)
Theorem 8 – The trace factorization theorem

Let D be a \mathbb{D}-class of a semigroup S and $d \in D$. Then

(a) For every $e \in D^\bullet$ there exist $u \in L_e$ and $v \in R_e$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$.

(b) For every pair $u, v \in S$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$ there exists $e \in D^\bullet$ such that $u \in L_e$ and $v \in R_e$.

★ the representation $d = uv$

with $e \in D^\bullet$, $u \in R_d \cap L_e$ and $v \in L_d \cap R_e$ –

trace factorization of d with respect to e

(since uv is a trace product)

★ direct generalization of the

full-rank factorization of matrices

d – matrix

e – identity matrix of the same rank
Theorem 8 – The trace factorization theorem

Let D be a \mathcal{D}-class of a semigroup S and $d \in D$. Then

(a) For every $e \in D^\bullet$ there exist $u \in L_e$ and $v \in R_e$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$.

(b) For every pair $u, v \in S$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$ there exists $e \in D^\bullet$ such that $u \in L_e$ and $v \in R_e$.

- the representation $d = uv$

 with $e \in D^\bullet$, $u \in R_d \cap L_e$ and $v \in L_d \cap R_e$ – trace factorization of d with respect to e

 (since uv is a trace product)

- direct generalization of the

 full-rank factorization of matrices

 d – matrix

 e – identity matrix of the same rank

<table>
<thead>
<tr>
<th></th>
<th>L_d</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L_e</td>
</tr>
<tr>
<td>R_d</td>
<td>$d = uv$</td>
<td>u</td>
</tr>
<tr>
<td>R_e</td>
<td>v</td>
<td>e</td>
</tr>
</tbody>
</table>
Theorem 8 – The trace factorization theorem

Let D be a \mathcal{D}-class of a semigroup S and $d \in D$. Then

(a) For every $e \in D^\bullet$ there exist $u \in L_e$ and $v \in R_e$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$.

(b) For every pair $u, v \in S$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$ there exists $e \in D^\bullet$ such that $u \in L_e$ and $v \in R_e$.

★ the representation $d = uv$

with $e \in D^\bullet$, $u \in R_d \cap L_e$ and $v \in L_d \cap R_e$ –

trace factorization of d with respect to e

(since uv is a trace product)

★ direct generalization of the

full-rank factorization of matrices

d – matrix

e – identity matrix of the same rank

<table>
<thead>
<tr>
<th></th>
<th>L_d</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R_d</td>
<td>$d=uv$</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>L_e</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>v</td>
<td>e</td>
</tr>
</tbody>
</table>
Theorem 8 – The trace factorization theorem

Let D be a \mathcal{D}-class of a semigroup S and $d \in D$. Then

(a) For every $e \in D^\bullet$ there exist $u \in L_e$ and $v \in R_e$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$.

(b) For every pair $u, v \in S$ such that $d = uv$, $R_d = R_u$ and $L_d = L_v$ there exists $e \in D^\bullet$ such that $u \in L_e$ and $v \in R_e$.

★ the representation $d = uv$

with $e \in D^\bullet$, $u \in R_d \cap L_e$ and $v \in L_d \cap R_e$ – trace factorization of d with respect to e

(since uv is a trace product)

★ direct generalization of the

full-rank factorization of matrices

d – matrix

e – identity matrix of the same rank
The second representation theorem

Theorem 9

The following statements are equivalent:

(i) \(x \) is a \((b,c)\)-inverse of \(a \);

(ii) for every \(e \in D^\bullet \) there exist \(u \in L_e \cap R_b \) and \(v \in R_e \cap L_c \) such that \(vau \in H_e \) and \(x = u(vau)^\# v \);

(iii) there exist \(e \in D^\bullet \), \(u \in L_e \cap R_b \) and \(v \in R_e \cap L_c \) such that \(vau \in H_e \) and \(x = u(vau)^\# v \).

★ trace factorization

of an arbitrary \(d \in R_b \cap L_c \)

<table>
<thead>
<tr>
<th></th>
<th>(L_b)</th>
<th>(L_e)</th>
<th>(L_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_b)</td>
<td>(b)</td>
<td>(u)</td>
<td>(x)</td>
</tr>
<tr>
<td>(d = uv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_e)</td>
<td></td>
<td>(e)</td>
<td>(v)</td>
</tr>
<tr>
<td>(vau)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_c)</td>
<td>(cab)</td>
<td></td>
<td>(c)</td>
</tr>
</tbody>
</table>

Miroslav Čirić, Predrag Stanimirović, Jelena Ignjatović
Semigroup-theoretical approach to generalized inverses
Theorem 9

The following statements are equivalent:

(i) x is a (b, c)-inverse of a;

(ii) for every $e \in D^\bullet$ there exist $u \in L_e \cap R_b$ and $v \in R_e \cap L_c$ such that $vau \in H_e$ and $x = u(vau)^{\#}v$;

(iii) there exist $e \in D^\bullet$, $u \in L_e \cap R_b$ and $v \in R_e \cap L_c$ such that $vau \in H_e$ and $x = u(vau)^{\#}v$.

★ trace factorization

of an arbitrary $d \in R_b \cap L_c$

<table>
<thead>
<tr>
<th></th>
<th>L_b</th>
<th>L_e</th>
<th>L_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_b</td>
<td>b</td>
<td>u</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$d = uv$</td>
</tr>
<tr>
<td>R_e</td>
<td></td>
<td>e</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vau</td>
<td></td>
</tr>
<tr>
<td>R_c</td>
<td>cab</td>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
The second representation theorem

Theorem 9

The following statements are equivalent:

(i) \(x \) is a \((b,c)\)-inverse of \(a \);

(ii) for every \(e \in D^\bullet \) there exist \(u \in L_e \cap R_b \) and \(v \in R_e \cap L_c \) such that \(vau \in H_e \) and \(x = u(vau)^\# v \);

(iii) there exist \(e \in D^\bullet \), \(u \in L_e \cap R_b \) and \(v \in R_e \cap L_c \) such that \(vau \in H_e \) and \(x = u(vau)^\# v \).

★ trace factorization

d of an arbitrary \(d \in R_b \cap L_c \)

<table>
<thead>
<tr>
<th></th>
<th>(L_b)</th>
<th>(L_e)</th>
<th>(L_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_b)</td>
<td>(b)</td>
<td>(u)</td>
<td>(x)</td>
</tr>
<tr>
<td>(d = uv)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(R_e)</th>
<th>(e)</th>
<th>(vau)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_c)</td>
<td>(cab)</td>
<td></td>
<td>(c)</td>
</tr>
</tbody>
</table>
The third representation theorem

Theorem 10

The following statements are equivalent:

(i) x is a (b,c)-inverse of a;

(ii) for every $e \in D^\bullet$ there exist $u \in L_e \cap R_b$ and $v \in R_e \cap L_c$ such that $vau = e$ and $x = uv$;

(iii) there exist $e \in D^\bullet$, $u \in L_e \cap R_b$ and $v \in R_e \cap L_c$ such that $vau = e$ and $x = uv$.

★ trace factorization of the (b,c)-inverse x
The third representation theorem

Theorem 10

The following statements are equivalent:

(i) \(x \) is a \((b,c)\)-inverse of \(a \);

(ii) for every \(e \in D^\bullet \) there exist \(u \in L_e \cap R_b \) and \(v \in R_e \cap L_c \) such that \(vau = e \) and \(x = uv \);

(iii) there exist \(e \in D^\bullet \), \(u \in L_e \cap R_b \) and \(v \in R_e \cap L_c \) such that \(vau = e \) and \(x = uv \).

★ trace factorization of the \((b,c)\)-inverse \(x \)
Theorem 11

The following statements are equivalent:

(i) there exists a \{1, 2\}-inverse of \(a\) contained in the \(H\)-class \(R_b \cap L_c\);

(ii) there exist a \{1, 2\}-inverse of \(a\) contained in \(R_b\) and a \{1, 2\}-inverse of \(a\) contained in \(L_c\);

(iii) there exists \(u \in S\) such that \(b = bucab\), \(c = cabuc\) and \(a = abuca\).

If these statements are true, the \{1, 2\}-inverse \(x\) of \(a\) contained in the \(H\)-class \(R_b \cap L_c\) is represented by

\[x = buc = yaz, \]

for an arbitrary \(u \in S\) such that \(b = bucab\), and arbitrary \(y \in a\{1, 2\}_R\) and \(z \in a\{1, 2\}_L\).
Theorem 11

The following statements are equivalent:

(i) there exists a \(\{1, 2\}\)-inverse of \(a\) contained in the \(H\)-class \(R_b \cap L_c\);

(ii) there exist a \(\{1, 2\}\)-inverse of \(a\) contained in \(R_b\) and a \(\{1, 2\}\)-inverse of \(a\) contained in \(L_c\);

(iii) there exists \(u \in S\) such that \(b = bucab, c = cabuc\) and \(a = abuca\).

If these statements are true, the \(\{1, 2\}\)-inverse \(x\) of \(a\) contained in the \(H\)-class \(R_b \cap L_c\) is represented by

\[x = buc = yaz, \]

for an arbitrary \(u \in S\) such that \(b = bucab\), and arbitrary \(y \in a\{1, 2\}_R\) and \(z \in a\{1, 2\}_L\).
The following statements are equivalent:

(i) there exists a \{1,2\}-inverse of a contained in the \mathcal{H}-class $R_b \cap L_c$;

(ii) there exist a \{1,2\}-inverse of a contained in R_b and a \{1,2\}-inverse of a contained in L_c;

(iii) there exists $u \in S$ such that $b = bucab$, $c = cabuc$ and $a = abuca$.

If these statements are true, the \{1,2\}-inverse x of a contained in the \mathcal{H}-class $R_b \cap L_c$ is represented by

$$x = buc = yaz,$$

for an arbitrary $u \in S$ such that $b = bucab$, and arbitrary $y \in a\{1,2\}_R$ and $z \in a\{1,2\}_L$.

{1,2}-inverses in prescribed Green’s \mathcal{H}-classes

Theorem 11
The following statements are equivalent:

(i) there exists a \{1, 2\}-inverse of a contained in the \(H\)-class \(R_b \cap L_c\);

(ii) there exist a \{1, 2\}-inverse of a contained in \(R_b\) and a \{1, 2\}-inverse of a contained in \(L_c\);

(iii) there exists \(u \in S\) such that \(b = buca\), \(c = cabu\) and \(a = abuc\).

If these statements are true, the \{1, 2\}-inverse \(x\) of a contained in the \(H\)-class \(R_b \cap L_c\) is represented by

\[x = buca = yaz, \]

for an arbitrary \(u \in S\) such that \(b = buca\), and arbitrary \(y \in a\{1, 2\}_{R_b}\) and \(z \in a\{1, 2\}_{L_c}\).
Outer inverses in involutive semigroups

Theorem 12

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{R}-class R_{a^*};

(ii) there exists an inner inverse of a contained in the principal right ideal $R(a^*)$;

(iii) there exists a $\{1, 2\}$-inverse of a contained in the \mathcal{R}-class R_{a^*};

(iv) a is $\{1, 4\}$-invertible;

(v) a is $\{1, 2, 4\}$-invertible;

(vi) there exists $u \in S$ such that $a^* = a^* u a^*$;

(vii) there exists $v \in S$ such that $a^* = v a^*$;

(viii) $a a^*$ is a trace product.

If these statements are true, then

\[a\{1, 4\} = \{v \in S \mid a^* = v a^*\}, \]

\[a\{1, 2, 4\} = a\{2\}_{R_{a^*}} = a\{1\}_{R(a^*)} = a\{1, 2\}_{R_{a^*}} = \{a^* u \mid u \in S \text{ such that } a^* = a^* u a^*\} \]

\[= \{a^* (aa^*)^{(1)} \mid (aa^*)^{(1)} \in aa^*\{1\}\} = \{v a v \mid v \in S \text{ such that } a^* = v a^*\}. \]
Theorem 12

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{R}-class R_{a^*};

(ii) there exists an inner inverse of a contained in the principal right ideal $R(a^*)$;

(iii) there exists a $\{1, 2\}$-inverse of a contained in the \mathcal{R}-class R_{a^*};

(iv) a is $\{1, 4\}$-invertible;

(v) a is $\{1, 2, 4\}$-invertible;

(vi) there exists $u \in S$ such that $a^* = a^* u a a^*$;

(vii) there exists $v \in S$ such that $a^* = v a a^*$;

(viii) $a a^*$ is a trace product.

If these statements are true, then

\[
a\{1, 4\} = \{v \in S \mid a^* = v a a^*\},\\
a\{1, 2, 4\} = a\{2\}_{R_{a^*}} = a\{1\}_{R(a^*)} = a\{1, 2\}_{R_{a^*}} = \{a^* u \mid u \in S \text{ such that } a^* = a^* u a a^*\} = \{a^*(a a^*)^{(1)} \mid (a a^*)^{(1)} \in a a^*\{1\}\} = \{v a v \mid v \in S \text{ such that } a^* = v a a^*\}.
\]
The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{H}-class $R_{a*} \cap L_{a*}$;
(ii) there exist an outer inverse of a contained in R_{a*} and an outer inverse of a contained in L_{a*};
(iii) there exists an inner inverse of a contained in $R(a*) \cap L(a*)$;
(iv) there exists a $\{1, 2\}$-inverse of a contained in the \mathcal{H}-class $R_{a*} \cap L_{a*}$;
(v) a is $\{1, 3, 4\}$-invertible;
(vi) a is MP-invertible;
(vii) there exists $u \in S$ such that $a^* = a^*aa^* u$;
(viii) there exists $v \in S$ such that $a^* = va^*aa^*$;
(ix) there exist $u, v \in S$ such that $a^* = a^*uaa^*$ and $a^* = a^*ava^*$;
(x) there exist $u, v \in S$ such that $a^* = vaa^*$ and $a^* = a^*au$;
(xi) a^*a and aa^* are trace products.

If these statements are true, then

$$a^\dagger = a^*(a^*aa^*)^{(1)}a^* = (a^* a)^\#a^* = a^*(aa^*)^\# = a^* u = va^* = a^* p a q a^* = sat,$$

for arbitrary $(a^*aa^*)^{(1)} \in a^*aa^* \{1\}$, $u \in S$ such that $a^* = a^*aa^* u$, $v \in S$ such that $a^* = va^*aa^*$, $p, q \in S$ such that $a^* = a^*pa a^*$ and $a^* = a^*qa a^*$, and $s, t \in S$ such that $a^* = sa a^*$ and $a^* = a^* at$.
Theorem 13

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the \mathcal{H}-class $R_{a^*} \cap L_{a^*}$;
(ii) there exist an outer inverse of a contained in R_{a^*} and an outer inverse of a contained in L_{a^*};
(ii) there exists an inner inverse of a contained in $R(a^*) \cap L(a^*)$;
(iv) there exists a $\{1, 2\}$-inverse of a contained in the \mathcal{H}-class $R_{a^*} \cap L_{a^*}$;
(v) a is $\{1, 3, 4\}$-invertible;
(vi) a is MP-invertible;
(vii) there exists $u \in S$ such that $a^* = a^*aa^*u$;
(viii) there exists $v \in S$ such that $a^* = va^*aa^*$;
(ix) there exist $u, v \in S$ such that $a^* = a^*uaa^*$ and $a^* = a^*ava^*$;
(x) there exist $u, v \in S$ such that $a^* = vaa^*$ and $a^* = a^*au$;
(xi) a^*a and aa^* are trace products.

If these statements are true, then

$$a^\dagger = a^*(a^*aa^*)^{(1)}a^* = (a^*a)^\#a^* = a^*(aa^*)^\# = a^*u = va^* = a^*paqa^* = sat,$$

for arbitrary $(a^*aa^*)^{(1)} \in a^*aa^*\{1\}, u \in S$ such that $a^* = a^*aa^*u$, $v \in S$ such that $a^* = va^*aa^*$, $p, q \in S$ such that $a^* = a^*paa^*$ and $a^* = a^*aqa^*$, and $s, t \in S$ such that $a^* = saa^*$ and $a^* = a^*at$.

21 Miroslav Ćirić, Predrag Stanimirović, Jelena Ignjatović Semigroup-theoretical approach to generalized inverses
Theorem 13

The following statements are equivalent:

(i) there exists an outer inverse of a contained in the H-class $R_a^* \cap L_a^*$;
(ii) there exist an outer inverse of a contained in R_a^* and an outer inverse of a contained in L_a^*;
(ii) there exists an inner inverse of a contained in $R(a^*) \cap L(a^*)$;
(iv) there exists a $\{1, 2\}$-inverse of a contained in the H-class $R_a^* \cap L_a^*$;
(v) a is $\{1, 3, 4\}$-invertible;
(vi) a is MP-invertible;
(vii) there exists $u \in S$ such that $a^* = a^*aa^*u$;
S. Crvenković (1982)
(viii) there exists $v \in S$ such that $a^* = va^*aa^*$;
(ix) there exist $u, v \in S$ such that $a^* = a^*uaa^*$ and $a^* = a^*ava^*$;
(x) there exist $u, v \in S$ such that $a^* = va^*aa^*$ and $a^* = a^*au$;
(xi) a^*a and aa^* are trace products.

If these statements are true, then

$$a^\dagger = a^*(a^*aa^*)^{(1)}a^* = (a^*a)^#a^* = a^*(aa^*)^# = a^*u = va^* = a^*paqa^* = sat,$$

for arbitrary $(a^*aa^*)^{(1)} \in a^*aa^*\{1\}$, $u \in S$ such that $a^* = a^*aa^*u$, $v \in S$ such that $a^* = va^*aa^*$, $p, q \in S$ such that $a^* = a^*paa^*$ and $a^* = a^*aqa^*$, and $s, t \in S$ such that $a^* = saa^*$ and $a^* = a^*at$.

S. Crvenković (1982)
The following statements are equivalent:

(i) there exists an outer inverse of \(a\) contained in the \(H\)-class \(R_{a^*} \cap L_{a^*}\);

(ii) there exist an outer inverse of \(a\) contained in \(R_{a^*}\) and an outer inverse of \(a\) contained in \(L_{a^*}\);

(ii) there exists an inner inverse of \(a\) contained in \(R(a^*) \cap L(a^*)\);

(iv) there exists a \(\{1,2\}\)-inverse of \(a\) contained in the \(H\)-class \(R_{a^*} \cap L_{a^*}\);

(v) \(a\) is \(\{1,3,4\}\)-invertible;

(vi) \(a\) is MP-invertible;

(vii) there exists \(u \in S\) such that \(a^* = a^*a^*u\);

(viii) there exists \(v \in S\) such that \(a^* = va^*a^*\);

(ix) there exist \(u, v \in S\) such that \(a^* = a^*ua^*\) and \(a^* = a^*va^*\);

(x) there exist \(u, v \in S\) such that \(a^* = va^*a^*\) and \(a^* = a^*au\);

(xi) \(a^*a\) and \(aa^*\) are trace products.

If these statements are true, then

\[
a^\dagger = a^*(a^*aa^*)^{(1)}a^* = (a^*a)^#a^* = a^*(aa^*)^# = a^*u = va^* = a^*paqa^* = sat,
\]

for arbitrary \((a^*aa^*)^{(1)} \in a^*aa^*\{1\}, u \in S\) such that \(a^* = a^*aa^*u\), \(v \in S\) such that \(a^* = va^*aa^*\), \(p, q \in S\) such that \(a^* = a^*pa^*\) and \(a^* = a^*qa^*\), and \(s, t \in S\) such that \(a^* = saa^*\) and \(a^* = a^*at\).
Theorem 14

Let S be an involutive semigroup, let $a \in S$ be an MP-invertible element, let D be the \mathcal{D}-class of S containing a and a^*. Let $a^* = uv$ be a trace factorization of a^* with respect to an arbitrary $e \in D^\cdot$. Then $vau \in H_e$ and

$$a^+ = u(vau)^\# v.$$
Applications

Generalized inverses of complex matrices

 computation based on representations in terms of linear equations
 and the well-known method for solving matrix equations of the form $AXB = D$

existence criteria – given in terms of ranks (e.g., $\text{rank}(CAB) = \text{rank}(B) = \text{rank}(C)$)

Generalized inverses of fuzzy matrices

 computation based on our methods for solving equations and inequalities defined by residuated functions

Generalized inverses in residuated semigroups and quantales

a similar methodology