э

Setting

Action of endomorphism semigroups on definable sets

Eugene Plotkin, Bar-Ilan University, Israel

AAA94 + NSAC 2017 NOVI SAD, SERBIA

June 16, 2017

AAA94 + NSAC 2017 NOVI SAD, SERBIA

э

joint work with G.Mashevizky and B.Plotkin.

General Reference:

G.Mashevizky, B.Plotkin, E.Plotkin "*Action of endomorphism semigroups on definable sets*", Preprint, 28pp

3

Setting

Let Θ be a variety of algebras, F(X), $X = \{x_1, \ldots, x_n\}$ a free algebra in Θ . Take $A \in \Theta$. A^n the *n*-th Cartesian power of A can be identified with Hom(F(X), A) where |X| = n. Let ϕ be a first order formula. Then

- Every formula ϕ is preserved under isomorphisms of algebras.
- Every formula φ without universal quantifiers is preserved under monomorphisms of algebras.
- Every positive formula ϕ is preserved under epimomorphisms of algebras.
- Every positive formula ϕ without universal quantifiers is preserved under homomorphisms of algebras.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

The converse direction: classical Lyndon's, Los-Tarski's and homomorphism preservation theorems.

- A formula φ is preserved under arbitrary monomorphisms of algebras if and only if it is equivalent to a formula without universal quantifiers (Los-Tarski theorem).
- A formula φ is preserved under arbitrary epimorphisms of algebras if and only if it is equivalent to a positive formula (Lyndon's positivity theorem).
- A formula \u03c6 is preserved under arbitrary homomorphisms of algebras if and only it if is equivalent to a positive formula without universal quantifiers (Homomorphism preserving theorem).

◆ 同 → ◆ 三 →

AAA94 + NSAC 2017 NOVI SAD, SERBIA

Definition

Let K be a set of the first order formulas in a language L. We assign to K the set $\mathbf{G}(K)$ of endomorphisms of A such that any formula $\phi \in K$ is preserved under the action of $\mathbf{G}(K)$.

Definition

Let S be a subsemigroup of End(A). We assign to S the set $\mathbf{G}(S)$ of **L**-formulas such that any formula $\phi \in \mathbf{G}(S)$ is preserved under the action of S.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

< (1) > < (1) > <

문어 문

Theorem

The correspondence $S \rightarrow \mathbf{G}(S)$ and $K \rightarrow \mathbf{G}(K)$ between subsemigroups of the endomorphism semigroup End(A) and subsets of first order formulas in \mathbf{L} is the Galois-type correspondence.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

Simple properties

- **1** G(K) is a subsemigroup of End(A),
- **2** G(K) contains Aut(A).
- **G**(*S*) contains all atomic formulas of the first order language of *A*.
- **2** G(S) is closed under conjunctions \land and under disjunctions \lor .
- **3** G(S) is closed under quantifiers $\exists x$.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

= 990

イロン イ団 とくほ とくほとう

Question

Given algebra A, what are the Galois-closed objects?

AAA94 + NSAC 2017 NOVI SAD, SERBIA

- Let F₂ be the two-generator free group. Take Γ = F₂ × F₃^N, where F₂ and F₃ are free groups. The natural embedding f : F₂ → F₃ is elementary. Then monomorphism φ : Γ → Γ which sends F₂ to f(F₂) and shifts all other copies of F₃ as above preserves all definable sets. Hence, G(L) ≠ Aut(Γ). The similar examples can be constructed on the base of hyperbolic groups.
- Let Γ = (Z_p)^N, i.e., Γ is infinite direct product of cyclic groups of prime order. Then a monomorphism φ : Γ → Γ which shifts the *i*-th component to the (*i* + 1)-th one preserves all definable sets. So, G(L) ≠ Aut(Γ). This example shows that Aut(A) is not necessarily G-closed even for countably categorical algebras.
- Consider the abelian group A = (Q, +), which is model complete and co-Hopfian. It means that G(L) = Aut(A), and Aut(A) is G-closed.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

G(S)-type of a point $\mu \in A^n$ is the class of all G(S)-formulas which are satisfied by μ and we denote this class by $G(S)tp(\mu)$.

Definition

Let S = S(A) be a subsemigroup of End(A). Let $\mu \in A^n$ be a point in the affine space.

- **1** The algebraic S-trace of μ is the set $S\mu = \{\nu = \alpha\mu | \alpha \in S\}$.
- **2** The algebraic S-orbit of μ is the set $S_{AO}(\mu) = \{\nu | S\mu = S\nu\}$.
- 3 The logic *S*-trace of μ is the set $S_{LT}(\mu) = \{\nu | \mathbf{G}(S) tp(\mu) \subset \mathbf{G}(S) tp(\nu)\}.$
- 4 The logic *S*-orbit of μ is the set $S_{LO}(\mu) = \{\nu | \mathbf{G}(S) tp(\mu) = \mathbf{G}(S) tp(\nu)\}.$

AAA94 + NSAC 2017 NOVI SAD, SERBIA

프 > > ㅋ ㅋ >

3

Definition

An algebra is logically S-homogeneous if $S\mu = S_{LT}(\mu)$.

Definition

An algebra A is S-oligomorphic if there exists only finitely many algebraic S-orbits under the action of S on A^n for any $n \in N$.

Definition

An algebra A is G(S)-atomic if the G(S)-type of any point of A^n is principal.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

∃ >

E 990

Theorem

Let S be a submonoid of End(A). The following statements are equivalent.

1 A is logically S-homogeneous, i.e., $S\mu = S_{LT}(\mu)$.

2
$$S\mu = <\mu >_S$$
 for any $\mu \in A^n$.

- **3** $S\mu$ is a $\mathbf{G}(S)$ -t-definable set for any $\mu \in A^n$.
- M is the union of G(S)-t-definable sets for any subset M of Aⁿ closed under the action of S.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

- < 문 → - 문

The next theorem is a $\mathbf{G}(S)$ -version of Ryll-Nardzewski, Engeler and Svenonius result.

Theorem

Let A be an algebra. Let S be a subsemigroup of End(A). The following statements are equivalent.

- **1** A possesses the Ryll-Nardzewski G(S)-property.
- **2** A realizes only finitely many n-**G**(S)-types for each $n \in N$.
- **3** A is $\mathbf{G}(S)$ -atomic.
- 4 If A is countable, then A is S-oligomorphic.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

= 990

・ロト ・回ト ・ヨト ・ヨト

SOME PROBLEMS

・ロト ・回ト ・ヨト ・ヨト

3

Let A be an algebra, **L** a first order language, S a semigroup of endomorphisms of A, i.e., $S \subset End(A)$.

Question

Describe the Galois closed objects for the Galois correspondence **G** (Definitions 1 and 2), i.e., for an algebra A of the given class of algebras (e.g. groups, semigroups, associative algebras) find

- subsemigroups S of End(A) such that $\mathbf{GG}(S) = S$,
- subsemigroups S of End(A) such that $\mathbf{G}_{\overline{L}}\mathbf{G}_{\overline{L}}(S) = S$ holds in some extension \overline{L} of \mathbf{L} ,
- subsets K of **L** such that $\mathbf{GG}(K) = K$.
- Describe the lattice of G-closed subsemigroups of End(A).

AAA94 + NSAC 2017 NOVI SAD, SERBIA

- End(A) is the semigroup of all endomorphisms of an algebra A.
- Aut(A) is the group of all automorphisms of an algebra A.
- SEnd(A) is the semigroup of all surjective endomorphisms of an algebra A.
- *IEnd*(A) is the semigroup of all injective endomorphisms of an algebra A.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

3 →

3

Question

Study algebras A such that

- $\hfill classical semigroups of endomorphisms and sets of formulas are <math display="inline">G\mbox{-}closed$,
- classical semigroups of endomorphisms and sets of formulas are the only G-closed objects,
- in particular, what are the algebras such that any their elementary embedding to itself is an automorphism.

AAA94 + NSAC 2017 NOVI SAD, SERBIA

Let Θ be a variety of algebras, A = F(X) the free in Θ algebra over the set $X = \{x_1, \ldots, x_t\}$ of free generators. The next problem is related to a well-known question whether the rank of a free algebra is elementary definable.

Question

Given A = F(X), define the subsemigroup $T_k(A)$ of End(A) by $\alpha \in T_k(A)$ if the set $\alpha(X)$ consists of at most k elements. So, $T_k(A) = \{\alpha \in End(A) | |\alpha(X)| \le k\}$. Recall that subsemigroups S_1 and S_2 of End(A) are **G**-equivalent if $\mathbf{GG}(S_1) = \mathbf{GG}(S_2)$.

Describe $\mathbf{GG}(T_k(A))$. In particular, what are algebras A such that $\mathbf{GG}(T_k(A)) = T_k(A) \cup ElEnd(A)$.

<ロ> <同> <同> < 回> < 回>

Describe algebras A such that $T_k(A)$ and $T_s(A)$ are G-equivalent for all $k, s \in N$ or for all $k, s \geq m$ for some $m \in N$.

AAA94 + NSAC 2017 NOVI SAD, SERBIA